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Abstract

Background: Liver cancer is a substantial disease burden in China. As one of the primary diagnostic tools for detecting liver
cancer, dynamic contrast-enhanced computed tomography provides detailed evidences for diagnosis that are recorded in free-text
radiology reports.

Objective: The aim of our study was to apply a deep learning model and rule-based natural language processing (NLP) method
to identify evidences for liver cancer diagnosis automatically.

Methods: We proposed a pretrained, fine-tuned BERT (Bidirectional Encoder Representations from Transformers)-based
BiLSTM-CRF (Bidirectional Long Short-Term Memory-Conditional Random Field) model to recognize the phrases of APHE
(hyperintense enhancement in the arterial phase) and PDPH (hypointense in the portal and delayed phases). To identify more
essential diagnostic evidences, we used the traditional rule-based NLP methods for the extraction of radiological features. APHE,
PDPH, and other extracted radiological features were used to design a computer-aided liver cancer diagnosis framework by
random forest.

Results: The BERT-BiLSTM-CRF predicted the phrases of APHE and PDPH with an F1 score of 98.40% and 90.67%,
respectively. The prediction model using combined features had a higher performance (F1 score, 88.55%) than those using APHE
and PDPH (84.88%) or other extracted radiological features (83.52%). APHE and PDPH were the top 2 essential features for
liver cancer diagnosis.

Conclusions: This work was a comprehensive NLP study, wherein we identified evidences for the diagnosis of liver cancer
from Chinese radiology reports, considering both clinical knowledge and radiology findings. The BERT-based deep learning
method for the extraction of diagnostic evidence achieved state-of-the-art performance. The high performance proves the feasibility
of the BERT-BiLSTM-CRF model in information extraction from Chinese radiology reports. The findings of our study suggest
that the deep learning–based method for automatically identifying evidences for diagnosis can be extended to other types of
Chinese clinical texts.
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Introduction

In the past decades, electronic health records (EHRs) from
millions of patients have become massive sources of valuable
clinical data. Machine learning–based algorithms, especially
deep learning algorithms, have been applied effectively to
analyze patient data and they have shown promising results,
thereby advancing medical research and better informing clinical
decision making for the secondary use of EHRs [1,2]. Owing
to the high dimensionality, noise, heterogeneity, random errors,
and systematic biases, the data mining of EHRs remains
challenging. Natural language processing (NLP) technologies
could extract meaningful information, thus facilitating the
application of clinical texts. There are 2 types of methods for
information extraction, namely, rule-based methods and machine
learning methods [1]. The use of machine learning methods for
data mining of EHRs can derive previously unknown clinical
insights and be applied powerfully in clinical decision-making
and computer-aided diagnosis of diseases [3,4]. Recently, deep
learning methods have had a profound impact in various areas
of research because of their simplicity, efficient processing, and
state-of-the-art results [5,6]. In particular, recurrent neural
networks and Word2Vec embedding are the most popular
methods that are utilized in clinical NLP tasks [2]. Deep learning
methods have made improvements in various clinical
applications, especially for text classification, named-entity
recognition (NER), relation extraction, and question answering
[7,8]. With growing acceptance and increasing number of
applications, deep learning methods have become a baseline in
many clinical NLP tasks.

Word embedding is an essential step for sequencing labelling
tasks. Learning word representations from massive unannotated
documents is a long-established method. The Word2Vec method
[9] is the first word embedding approach based on deep learning
methods. The model derives the semantic and synthetic meaning
of a word on account of its adjacent words by using
unsupervised learning. Global Vector word representation [10]
is another effective word embedding method, which constructs
a global word-word co-occurrence matrix and utilizes matrix
factorization to learn embeddings in a lower dimensional space.
However, the word-level representations have a limitation that
only a single embedding is provided for a word with no thought
for polysemy under different contexts. Unlike the traditional
embedding methods, ELMo (Embeddings from Language
Models) [11] uses a bidirectional language model to embed the
context information into word representations. BERT
(Bidirectional Encoder Representations from Transformers)
[12] is another prominent contextualized word representation
model, which uses a masked language model that predicts
randomly masked words in a context sequence. Different from
ELMo, BERT targets different training objectives and uses a
masked language model to learn bidirectional representations.
For clinical sequence labelling tasks such as NER, rule-based
approach and conditional random fields (CRFs) have been used
widely. Deep learning technologies substantially improve the

NER performance through multi-layer data representations. Of
the popular deep learning methods, BiLSTM (bidirectional long
short-term memory) can capture long-range related information
effectively. Furthermore, BiLSTM with CRF, known as
BiLSTM-CRF, outperforms the traditional models with feature
extraction and reduces the workload of feature selection [13].

Due to the difference in the grammatical features from English
and the limitation of the EHR corpus, information extraction
of Chinese EHRs using NLP remains challenging. In the medical
field, researchers have developed information extraction
algorithms for varied implementations, including diagnostic
models for different diseases such as cancers [14] and childhood
diseases [15]. For Chinese NER tasks, BiLSTM-CRF is the
most common and practical approach [16,17]. BERT has also
received extensive attention in Chinese EHRs. Zhang et al used
fine-tuning BERT for NER and relation extraction in several
types of Chinese clinical documents. The comprehensive clinical
information related to breast cancer was extracted [14]. Wu et
al developed an aided clinical diagnosis service on EHRs by
using a deep learning model [3]. Liang et al applied an automatic
NLP system and achieved a high diagnostic accuracy in
childhood diseases [15].

The radiology report is a crucial component of EHRs, as it is
the communication bridge between radiologists and physicians.
The accuracy and efficiency of diagnosis are limited since it is
formulated based on subjective judgment, especially for
inexperienced physicians. Hence, extracting useful radiological
information from radiology reports has considerable significance
in advancing radiological research and clinical practice [18,19].
NLP technologies have received great attention in the processing
of radiology reports and have been successfully applied in
identifying biomedical concepts [20], extracting
recommendations [21], determining the change level of clinical
findings [22], and so on.

With the development of machine learning methods in recent
eras, computer-aided early diagnosis for cancer based on
massive clinical data becomes feasible. Many diseases have
been investigated to date, such as hepatocellular cancer [23]
and colorectal cancer [24]. In this study, we focused on the
computer-aided diagnosis of liver cancer, which remains to be
a substantial disease burden in China. For liver cancer diagnosis,
dynamic contrast-enhanced computed tomography (CT) is one
of the primary diagnostic tests. Imaging findings of the key
enhanced scan phases such as the arterial phase, portal phase,
and delayed phase are recorded in the radiology reports.
According to the guidelines of the Chinese Society of Clinical
Oncology (CSCO), hyperintense enhancement in the arterial
phase (APHE) and hypointense enhancement in the portal and
delayed phases (PDPH) are significant diagnostic evidences for
liver cancer [25].

In this study, we designed deep learning–based methods to
identify evidences for liver cancer diagnosis automatically. We
recognized the phrases of APHE and PDPH by using a
BERT-BiLSTM-CRF model by combining a pretrained,
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fine-tuned BERT language model with BiLSTM-CRF. We also
applied the FENLP (feature extraction using the rule-based
NLP) method based on the content of radiology reports to extract
the radiological features. Therefore, the evidences for diagnosis,
considering both clinical knowledge and radiology findings,
contained APHE, PDPH, and radiological features extracted by
FENLP [26]. With these evidences, we designed a
computer-aided liver cancer diagnosis framework by using
random forest.

Methods

Evidence Extraction for Diagnosis of Liver Cancer
Figure 1 shows the workflow of the evidence extraction for the
diagnosis of liver cancer. We implemented 2 feature extraction
methods based on clinical knowledge and the content of
radiology reports to generate a radiological feature set. Then,
we built a random forest model to predict liver cancer by using
these features as inputs.

Figure 1. The workflow of this research. Labels 0/1 represent the absence/presence of a certain feature. BERT: Bidirectional Encoder Representations
from Transformers; BiLSTM: bidirectional long short-term memory; CRF: conditional random field; APHE: hyperintense enhancement in the arterial
phase; PDPH: hypointense in the portal and delayed phases.

Data Sets
We collected abdomen and pelvic CT radiology reports from a
tertiary hospital in Beijing, China, between 2012 and 2019. To
protect patient privacy, we removed all the identifying
information. An unstructured radiology report has different
sections, including Type of Examination, Clinical History,
Comparison, Technique, Imaging Findings, and Impressions.
The Impressions section summarizes crucial radiology findings
from the Findings section and contains a diagnosis indicated
by a radiologist. In this study, the diagnosis of liver cancer was
determined according to the Impression section and the
annotation of experienced radiologists, resulting in 480 patients
with liver cancer. We randomly selected 609 patients without
liver cancer from our data set. Therefore, 480 and 609 radiology
reports for patients with and without liver cancer, respectively,
were used in this study. We then trained and evaluated an NER
model on the Imaging Findings section. The reports were
randomly divided into the training set and the test set in a ratio
of 8:2.

BERT-BiLSTM-CRF for Recognition of APHE and
PDPH
We considered the recognition of APHE and PDPH as a
sequence labelling task at the character level, where the goal
was to assign the BIO (Begin, Inside, Outside) tags to each

Chinese character. In this study, BIO tags contained B-APHE,
I-APHE, B-PDPH, I-PDPH, and O-Outside. We invited 2
radiologists with more than 5 years of medical experience to
annotate all the data. If there was any inconsistency, another
experienced radiological expert was then asked to make the
final annotation, to obtain the gold standard annotated data. To
ensure the consistency of the annotation, radiologists were
trained in advance. At the report level, APHE and PDPH were
not mutually exclusive, that is, 1 report could contain both
APHE and PDPH. Of all the reports, 602 had the phrase of
APHE and 330 had the phrase of PDPH. For the 480 reports
diagnosed with liver cancer, the numbers of APHE and PDPH
were 442 and 330, respectively.

BiLSTM-CRF is commonly used in the sequence labeling task.
To further improve the recognition performance for the features
of APHE and PDPH, we performed the BERT-BiLSTM-CRF
model comprising a fine-tuned BERT language model for word
embedding and BiLSTM-CRF method for feature recognition.
CRF and BiLSTM-CRF model were applied as the baseline.
APHE and PDPH in Chinese radiology reports had a variety of
presentations such as detailed presentation, CT values of
different phases, and abbreviations (Table 1). The deep learning
model for the recognition of APHE and PDPH consisted of 3
layers, namely, the word embedding layer, BiLSTM layer, and
CRF layer (Figure 2).
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Table 1. Some expressions of APHEa and PDPHb in Chinese.

Detailed descriptionsExpressions of APHE and PDPH in Chinese

The arterial phase shows the heterogeneous density in the enhanced scan.增强后动脉期明显不均匀强化

Marked enhancement is shown in the arterial phase.动脉期强化明显

Multiple enhancement areas are seen in the arterial phase.动脉期可见多发强化灶

The portal phase has relatively low density.门脉期相对低密度

PDPH occurs in the portal phase.门脉期可见消退

aAPHE: hyperintense enhancement in the arterial phase.
bPDPH: hypointense in the portal and delayed phases.

Figure 2. The architecture of the BERT-BiLSTM-CRF model for the recognition of APHE and PDPH. BERT: Bidirectional Encoder Representations
from Transformers; BiLSTM: bidirectional long short-term memory; CRF: conditional random field; APHE: hyperintense enhancement in the arterial
phase; PDPH: hypointense in the portal and delayed phases.

Word Embedding Layer
The word embedding layer could map and transform the discrete
characters into distributed representations. A word-level vector
representation learned a real valued vector to represent a word
from a large amount of unannotated text. On most NLP tasks,
BERT could achieve state-of-the-art performance while
requiring minimal architectural modification [27]. In this study,
we applied Word2Vec and BERT to train the character vectors,
followed by a comparison of the results. The Word2Vec was
used with a dimension size of 100 and a batch size of 120. The
Word2Vec was pretrained on the Chinese Wikipedia data. The
sentence embedding had been pretrained and fine-tuned by
BERT on the original Google BERT GitHub repository [28].
The maximum sequence length was set to 256 with a batch size
of 64.

BiLSTM Layer
Recurrent neural networks is a family of neural networks, which
is usually used for modelling sequential data. The LSTM (Long
Short-Term Memory Networks) is a variant of the recurrent
neural networks, and it can effectively capture high
dependencies and retrieve rich global information. LSTM solves
the problem by using the gating mechanism. An LSTM unit
consists of 3 gates (ie, Input Gate, Output Gate, and Forget
Gate), which can select semantic information in a neural

network. Compared with LSTM, BiLSTM can learn forward
and backward information of input words by splitting the
neurons into 2 directions of a text sequence. We set the number
of hidden units in BiLSTM to 100 and the optimizer to Adam.

CRF Layer
For the sequence labelling step in our study, adjacent tags had
dependencies. For example, an inside tag I must follow a begin
tag B. We applied the sequential CRF to calculate optimal
sequence combinations on top of the BiLSTM layer that could
consider the dependencies of adjacent tags.

APHE and PDPH Labels at the Report Level
Considering the characteristics of Chinese language and also
avoiding the noise, we defined the following as APHE or PDPH
features at the report level: (1) 2 continuous characters that were
the abbreviations of APHE (ie, 快进) or PDPH (ie, 快出); (2)
more than 3 continuous characters that were predicted as APHE
or PDPH. Criterion (1) was checked first and was only based
on the characters. If not met, criterion (2) was checked, which
was based on CRF results.

FENLP for Radiological Feature Extraction
We implemented the NLP pipeline in the Findings section to
extract useful features from the unstructured radiology reports
to facilitate liver cancer diagnosis. As shown in Figure 1, the
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NLP pipeline consisted of 4 successive steps, that is, word
segmentation, entity annotation, coreference resolution, and
relationship extraction, resulting in radiological features
consisting of 1 or more terms. The detailed description of the
pipeline is provided in our previous study [26]. The whole
pipeline was based on a lexicon that was constructed manually
according to Chinese grammatical characteristics. A small
number of reports were sampled randomly for generating the
lexicon by manual reading. The lexicon contained clinical terms
and lists of synonyms. The lexicon was collected in the same
hospital and clinical text type with this study. Five entity types
(Location, Morphology, Density, Enhancement, and Modifier)
were recognized. After coreference resolution, according to the
synonym list in the lexicon, we then used several patterns of
entity types as rules to obtain the final radiological features
(Table S1 of Multimedia Appendix 1). Therefore, the
radiological features could be seen as a combination of several
entities such as 肝脏+低密度影 (liver + low density) and 肝脏
+增强扫描未见强化 (liver + enhancement scan showed no
enhancement).

Prediction Models
Using the radiological features obtained by
BERT-BILSTM-CRF and FENLP, we used a random forest
model for the liver cancer diagnosis. Random forest is an
ensemble learning method constructed with a multitude of
decision trees, which is widely used in classification tasks. The
performance was measured by the recall, precision, and F1
score. Random forest could generate the feature importance
score, which was computed by Gini impurity. Gini impurity is
a measurement of the probability that a sample is classified
incorrectly without a specific feature. In our study, the higher
the feature importance score of the radiological features was,
the more linked it was with the liver cancer diagnosis. We used
the feature importance score to rank all the radiological features.

Results

We extracted the features of APHE and PDPH by using 3
different models, that is, CRF, BiLSTM-CRF, and
BERT-BiLSTM-CRF. The recognition results were presented
both at the report level and character level (Table 2). At the
report level, the performance was computed depending on
whether the radiology reports contained a feature of APHE or
PDPH. At the character level, the recognition results of BIO
tags for each Chinese character were counted. For the
character-level recognition results of APHE and PDPH, the
BERT-BiLSTM-CRF model obtained the best performance,
with F1 scores of 89.14% and 82.19%, respectively. At the
report level, the BERT-BiLSTM-CRF model also achieved the
best performance (F1 scores of 98.40% for APHE and 90.67%
for PDPH). For the other 2 baseline models, the BiLSTM-CRF
model outperformed the CRF model but underperformed the
BERT-BiLSTM-CRF model. If a single character was
recognized as a feature, it would be regarded as noisy
information, thereby leading to its exclusion from the
report-level results. As a result, the recognition performances
at the report level were higher than those at the character level
in all the models. We chose the recognition results of APHE
and PDPH at the report level by the BERT-BiLSTM-CRF model
as the predictors for further liver cancer diagnosis.

The feature extraction method FENLP used the lexicon
described in our previous study, which included 831 words and
5 entity types. Entity combinations conforming to specific entity
patterns were formulated as radiological features. The patterns
included Location + Density, Location + Enhancement, Location
+ Enhancement + Modifier, Location + Density + Modifier,
and Location + Morphology. We retained the radiological
features that occurred more than twice. We finally obtained 301
radiological features; among them, 6 features had a frequency
higher than 300 (Table S2 of Multimedia Appendix 1).
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Table 2. Recognition performance of APHEa and PDPHb by using different models at the character level and report level.

F1 score (%)Recall (%)Precision (%)Accuracy (%)Models

Character level

Conditional random field

77.7072.1984.1396.05APHE

68.0659.0280.3797.44PDPH

Bidirectional long short-term memory-conditional random field

86.5182.5690.8697.54APHE

79.8975.7284.5698.24PDPH

BERTc+ Bidirectional long short-term memory-conditional random field

89.1487.2291.1497.97APHE

82.1976.6488.6098.46PDPH

Report level

Conditional random field

95.0091.9498.2894.52APHE

83.2179.1787.6989.00PDPH

Bidirectional long short-term memory-conditional random field

96.0094.7497.3095.89APHE

89.3986.7692.1993.61PDPH

BERT+ Bidirectional long short-term memory-conditional random field

98.4099.1997.6298.17APHE

90.6794.4487.1893.61PDPH

aAPHE: hyperintense enhancement in the arterial phase.
bPDPH: hypointense in the portal and delayed phases.
cBERT: Bidirectional Encoder Representations from Transformers.

According to the presence or absence of each feature extracted
from either BERT-BILSTM-CRF or FENLP, each radiology
report was represented by a 0-1 vector. The prediction results
using different patterns of features are shown in Table 3. F1
scores of random forest using features from
BERT-BILSTM-CRF and FENLP were 84.88% and 83.92%,
respectively. With a combination of both kinds of features, the
final F1 score of prediction model increased to 88.55%. Among
all the feature input patterns, the precision and accuracy also

obtained the highest value while inputting all the features, while
the prediction model had the highest recall rate with only 2
features of APHE and PDPH. Among the features with a
frequency higher than 10 in all the reports, the top 10 features
linked with the liver cancer diagnosis were identified with the
feature importance score computed by Gini impurity (Figure
3). The top 2 features were APHE and PDPH, which had
substantially larger feature importance scores than the other
features extracted from FENLP.

Table 3. Performance of different patterns of features for liver cancer diagnosis.

F1 score (%)Recall (%)Precision (%)Accuracy (%)Patterns of Features

84.8888.7081.3886.11APHEa and PDPHb

83.9284.8083.0685.71Radiological features from FENLPc

88.5585.7791.5290.25All features

aAPHE: hyperintense enhancement in the arterial phase.
bPDPH: hypointense in the portal and delayed phases.
cFENLP: feature extraction using the rule-based natural language processing.
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Figure 3. Top 10 radiological features linked with liver cancer diagnosis ranked by feature importance score. APHE: hyperintense enhancement in the
arterial phase; PDPH: hypointense in the portal and delayed phases.

Discussion

Principal Results
Diagnostic prediction of cancer by using data mining methods
is an essential and significant application of EHRs [5]. From
previous studies, features extracted from EHRs have proved to
be the valid input of the diagnostic model [14,29]. In particular,
the use of machine learning methods, especially deep learning
methods for clinical information extraction, could facilitate in
providing new evidences in computer-aided diagnosis. As the
burden of liver cancer is widely accepted as one of the principal
and universal challenges in health care and as patients with liver
cancer are usually diagnosed at the terminal stage, the early and
accurate diagnosis of liver cancer by radiology examination has
great significance [30,31]. In contrast with previous studies of
liver cancer diagnosis, our study focused on the identification
of evidences for live cancer diagnosis from Chinese radiology
reports. We selected APHE and PDPH as the known evidences
for diagnosis according to the guidelines of CSCO. These 2
features were essential but not sufficient enough to represent
the whole report and further be used to diagnose liver cancer.
Furthermore, using FENLP, we also extracted uncertain numbers
of radiological features from the report content, because we
aimed to obtain new evidences for essential diagnosis.
Therefore, the evidences for diagnosis were obtained both from
clinical knowledge and the content of reports. For the
recognition of APHE and PDPH, we applied BERT on word
embedding in the deep learning method, which achieved
state-of-the-art performance.

Word embedding is an essential step for sequencing labelling
tasks. Previously popular models such as Word2Vec and Global
Vector word representation focused on learning
context-independent word representations. Recent advances in
word representations based on language models, including
ELMo, CoVe, and BERT, could dynamically improve the word
representations and discriminate among multiple meanings of
a word. In particular, based on the attention mechanism, BERT
exhibited an upward trend and outperformed the previous
models in many NLP tasks. Recognition of APHE and PDPH
using traditional NLP methods had difficulties, because the

related descriptions covered varied Chinese sentence structures
and entity types (Table 1). For example, for hyperintense
enhancement, the sentence pattern and phrase could have
different styles due to the different writing habits of different
radiologists or due to the use of Chinese abbreviations. Different
from the Word2Vec model, BERT learned context-dependent
word representations by using bidirectional transformers. The
BiLSTM algorithms are widely used and easily implanted in
sequence-related work such as entity extraction. We annotated
all the characters in the Findings section manually with BIO
tags and then applied the BERT-BiLSTM-CRF model to
recognize APHE and PDPH. The high performance proved the
feasibility of the BERT-BiLSTM-CRF model in information
extraction from Chinese radiology reports.

In this study, among the recognition results of APHE and PDPH
obtained by the 3 different models, the BERT-BILSTM-CRF
model finally achieved the best performance for both APHE
(F1 score 98.40%, precision 97.62%, and recall 99.19%) and
PDPH (90.67%, 87.18%, and 94.44%, respectively) at the report
level. For the 2 baseline models based on CRF, the model with
a BiLSTM layer received a much higher F1 score than the model
without a BiLSTM layer. The results indicated that, with the
word embedding language model BERT and the BiLSTM
model, the recognition of APHE and PDPH could result in much
higher performance. To avoid the noise in the recognition
results, we used the recognition results at the report level to be
the input radiological features of the liver cancer diagnostic
model. Report-level recognition concerned only continuous
characters longer than 3 characters and specific Chinese
abbreviations. Therefore, report-level results could represent
whether the report contained the features of APHE or PDPH.
The recognition of APHE and PDPH by BERT-BiLSTM-CRF
was accurate enough to be the predictors of liver cancer
diagnosis.

Only 2 fixed features of APHE and PDPH were not enough for
liver cancer diagnosis. Therefore, we further performed the
automatic NLP pipeline FENLP to extend the feature set based
on Chinese grammar and radiological characteristics. Different
from that of BERT-BILSTM-CRF, the number of features
generated by FENLP was unknown and changed according to
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the training texts. In this study, we finally extracted 301 features.
The top features were the typical morphology of the different
locations, which were essential to the diagnosis of the liver
diseases (Table S2 of Multimedia Appendix 1).

We chose the random forest as the liver cancer diagnostic model.
With 2 kinds of features obtained by BERT-BILSTM-CRF and
FENLP, random forest could reach an F1 score of 88.55%,
which was much higher than the model using either kind of
features. The performance of the diagnostic model using APHE
and PDPH was slightly higher than that of the model using
features extracted from FENLP. By contrast, FENLP produced
much more features than BERT-BILSTM-CRF. We further
ranked the features by the feature importance score computed
by Gini impurity, which could reflect the degree of association
with liver cancer. APHE and PDPH were the top 2 features with
a clearly higher feature importance score compared with other
features obtained by FENLP. The results indicated the strong
association of APHE and PDPH with liver cancer, which
coincided with the current clinical knowledge. Of the top
features obtained by FENLP, the feature high density of liver
had the highest feature importance score, which was the
important and basic risk factor for the diagnosis of liver diseases.
Broadening of hepatic fissures was an essential feature that
existed in liver cirrhosis or in liver cancer progressed from liver
cirrhosis [30]. Our results confirmed that the radiological
features from FENLP could also be an evidence for diagnosis,
which could further improve the diagnostic performance.
Furthermore, the top features linked with liver cancer could
extend the diagnostic evidence and be the supplementary
features of APHE and PDPH.

Designing disease diagnostic models based on EHRs is a
significantly important research field. Recently, NLP and deep
learning-based models have been widely applied in many studies
[7]. For instance, Sada et al designed and performed
NLP-assisted radiology document classification for liver cancer
detection. The model finally received an F1 score of 0.78 [23].
Compared with previous studies on clinical information
extraction, the evidences for diagnosis in this study were
identified based on the clinical knowledge from the guidelines
of CSCO and the content of the reports. APHE and PDPH are
2 widely accepted evidences for disease diagnosis, and they

have also proved to be essential features in our liver cancer
diagnostic model. Other radiological features from FENLP
enlarged the potential evidences for the diagnosis of liver cancer.
Moreover, we utilized the BERT-BiLSTM-CRF model in this
study, which achieved the state-of-the-art performance.

Limitations
Our study had the following limitations. The number of
radiological features from FENLP was not fixed since all
desirable features were retained, which might introduce some
noise into the extracted radiological features. Besides, from the
clinical knowledge in the guidelines of CSCO, we only extracted
2 characteristic features. In future, we will collect more
evidences for diagnosis in order to further improve the
performance and make the model more explanatory. Through
the analysis of the misjudged samples in the recognition of
APHE and PDPH, we identified the main error that occurred
when the description of APHE and PDPH only included CT
values. With the comparison of CT values in different phases,
we could define these 2 features. However, our methods did not
focus on the CT value extraction, and the number of these cases
were small. In future studies, CT value extraction and analysis
can avoid this kind of error and increase the prediction
performance.

Conclusion
In this study, we developed a deep learning–based method for
the recognition of evidences for disease diagnosis and designed
a computer-aided liver cancer diagnosis framework. The
diagnostic evidences contained APHE, PDPH, and radiological
features extracted by FENLP. We proposed the BERT-based
deep learning model BERT-BILSTM-CRF for recognizing the
phrases of APHE and PDPH, which are the essential features
associated with liver cancer diagnosis. Our work confirms that
BERT-based deep learning model can be used and has desirable
performance in the radiological feature extraction of Chinese
radiology reports. Furthermore, this study was a comprehensive
study for NLP and its application, focusing on Chinese radiology
reports. The deep learning model proposed in this study for
information extraction is expected to be extended to different
types of Chinese clinical texts and other kinds of applications.
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