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Abstract

Background: Deep learning models have attracted significant interest from health care researchers during the last few decades.
There have been many studies that apply deep learning to medical applications and achieve promising results. However, there
are three limitations to the existing models: (1) most clinicians are unable to interpret the results from the existing models, (2)
existing models cannot incorporate complicated medical domain knowledge (eg, a disease causes another disease), and (3) most
existing models lack visual exploration and interaction. Both the electronic health record (EHR) data set and the deep model
results are complex and abstract, which impedes clinicians from exploring and communicating with the model directly.

Objective: The objective of this study is to develop an interpretable and accurate risk prediction model as well as an interactive
clinical prediction system to support EHR data exploration, knowledge graph demonstration, and model interpretation.

Methods: A domain-knowledge–guided recurrent neural network (DG-RNN) model is proposed to predict clinical risks. The
model takes medical event sequences as input and incorporates medical domain knowledge by attending to a subgraph of the
whole medical knowledge graph. A global pooling operation and a fully connected layer are used to output the clinical outcomes.
The middle results and the parameters of the fully connected layer are helpful in identifying which medical events cause clinical
risks. DG-Viz is also designed to support EHR data exploration, knowledge graph demonstration, and model interpretation.

Results: We conducted both risk prediction experiments and a case study on a real-world data set. A total of 554 patients with
heart failure and 1662 control patients without heart failure were selected from the data set. The experimental results show that
the proposed DG-RNN outperforms the state-of-the-art approaches by approximately 1.5%. The case study demonstrates how
our medical physician collaborator can effectively explore the data and interpret the prediction results using DG-Viz.

Conclusions: In this study, we present DG-Viz, an interactive clinical prediction system, which brings together the power of
deep learning (ie, a DG-RNN–based model) and visual analytics to predict clinical risks and visually interpret the EHR prediction
results. Experimental results and a case study on heart failure risk prediction tasks demonstrate the effectiveness and usefulness
of the DG-Viz system. This study will pave the way for interactive, interpretable, and accurate clinical risk predictions.

(J Med Internet Res 2020;22(9):e20645) doi: 10.2196/20645
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Introduction

Clinical risk prediction is an important task in electronic health
record (EHR) analysis aiming to predict the current and future
states of patients based on their historical diagnosis codes,
laboratory results, clinical notes, and other medical events.
Recurrent neural networks (RNNs), as a successful extension
of standard feed-forward networks, have recently been shown
to leverage the superior computational power of neural networks
and gain good performance in clinical tasks, such as diagnostic
code prediction [1-8], disease progression modeling [9], patient
subtyping [10], clinical relation identification [11], and
imputation of missing values [12,13]. To pursue better
performance, some approaches [2,3] attempt to integrate medical
domain knowledge (eg, the hierarchical structure of International
Classification of Diseases, Ninth Revision [ICD-9] codes) to
learn better medical code representations and achieve much
better diagnosis prediction accuracies. The resulting
improvement substantially benefits clinical care applications
such as clinical decision support systems [14].

Despite the superior performance from RNNs, optimizing,
interpreting, and applying such models in clinical practice
remain to be challenges to domain experts [1,4]. First, when
deploying these accurate yet complicated models in clinical
practice, there is an increasing trend for the domain experts to
focus more on trust and interpretability issues. For example, in
the context of a heart failure prediction task, which factors do
models consider more important in determining a high prediction
risk? Second, it is also quite challenging for presenting the
results and interacting with the models. For example, medical
experts may be eager to know what will happen to the prediction
results if we add a new drug on a specific date. However, it is
difficult to ask doctors to interact with a complex model without
any interface design. Thus, it is worthwhile to develop a robust,
interpretable, and interactive system to address the above
limitations.

Recently, there has been an increasing interest in applying visual
analytic techniques to interpret the RNN model for EHR
prediction tasks. For example, RetainVis [4] improved the
reverse time attention model (RETAIN) [1] with additional
features (eg, temporal information) and visualized the
contribution of both visit-level and code-level using multiple
visualization views. Similarly, CarePre [15] is designed to
interpret the prediction results in the context of a group of
similar patients based on the RETAIN model. In this study, we
present DG-Viz, which brings together the power of deep
learning (ie, an interpretable RNN model) and visual analytics
to predict clinical risks and visually interpret the EHR prediction
results. Specifically, we develop an interpretable RNN model,

called domain-knowledge–guided recurrent neural network
(DG-RNN), which incorporates medical knowledge from a
public medical knowledge graph KnowLife [16] with a
graph-based attention mechanism. Then, the output vectors are
concatenated, and a global max-pooling layer is followed to
generate a fixed-size vector. Next, a fully connected layer is
used to generate clinical outcomes. Following this, based on
the model and EHR data, we design and implement the DG-Viz
system, as shown in Figure 1, which consists of a projection
view, a patient history view, and a knowledge graph view to
present an overview of EHR data; the prediction results of
individual patients; and the knowledge graph contribution of
our model. The patient history view also allows users to conduct
what-if analysis to understand how a specific factor will cause
the variance of the prediction result. We present the robustness
and performance of our model by comparing our model with
both traditional machine-learning methods and recent deep
learning approaches for heart failure risk prediction tasks.
Finally, we demonstrate the effectiveness of our system through
a case study using a real-world data set with a medical expert.
In summary, the main contributions of this study are as follows:

• We present the clinical risk prediction framework DG-RNN,
which can incorporate medical domain knowledge with a
graph-based attention mechanism.

• We introduce a global pooling operation to DG-RNN, which
makes our prediction model interpretable. The model can
output the medical events that cause the final clinical
outcome.

• We designed and developed a visual analytics system,
DG-Viz, which enables the exploration and interpretation
of clinical risk prediction tasks by integrating our deep
learning model with the design of visualizations and
interactions.

• We validated the robustness and effectiveness of our system
by conducting both quantitative experiments and a case
study with medical experts. We summarized the insights
from the feedback.

Note that DG-RNN was introduced in our previous conference
paper [17]. The key differences between this paper and the prior
conference paper are as follows:

• We discuss with clinicians and summarize four main themes
of visual design requirements.

• We developed a new visual analytics system, DG-Viz, to
display the DG-RNN prediction results and validated its
effectiveness with a case study on a real-world data set.

• We provide two kinds of what-if operations to edit the input
data (by removing medical codes and adding drugs) and
compare the changes in predicted risks.
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Figure 1. A screenshot of DG-Viz. (A) The patient distribution view shows an overview of all patients. (B) The demographic chart shows the
demographics distribution of all patients. (C) The patient history view shows the contributions of all visits and medical codes of a single patient. The
line chart presents the prediction results among time. (D) Knowledge graph view shows the whole network structure. v1-v28: different visits.

Methods

Analytical Tasks
To integrate the proposed interpretable model DG-RNN [17]
with a visual analytics system, we conducted weekly meetings
among all coauthors from this paper, who are experts in
visualization, deep learning, and medical domains, to distill the
requirements of the desired visual analytics system. The 2-month
discussion elicited the following 4 main themes of the visual
design requirements:

• R1: Provide an overview of all patients and their
demographic information. It is a fundamental requirement
for experts to provide an overview of the patients in the
data set. In particular, they are interested in the following
questions:
• R1.1: What are the distributions of all patients? For

example, can we find different subtypes of patients
within the data set?

• R1.2: What are the distributions of patients’
demographic information? (eg, gender ratio and range
of ages)

• R2: Present the medical history and prediction results of a
single patient. This requirement enables users to explore a
patient’s history; the system should especially be able to
do the following:
• R2.1: Show all visits and medical codes for a single

patient.
• R2.2: Reveal the temporal time interval between

different visits. The temporal interval information is
important for experts to analyze patients’ medical
history.

• R2.3: Visualize how the prediction results evolved with
time. Users are curious about the prediction results up
to a certain visit.

• R3: Enable the model interpretation. In addition to
presenting the prediction results from the model, it is crucial
to understand how the prediction results are made; to this
end, we include the following goals:
• R3.1: Demonstrate the contribution of patient visits

and medical codes to the final prediction scores. Users
should be able to identify the key factors affecting the
prediction result.

• R3.2: Reveal the contribution of the knowledge graph
to the prediction results. In particular, users want to
know what the whole knowledge graph looks like and
how the contribution of a specific medical code is
affected by its neighbors in the knowledge graph.

• R4: Provide the what-if analysis on the prediction model.
Users are curious about how changes in medical codes will
affect the outcome. In particular, the system should enable
users to add or remove specific medical codes and observe
how these updates will affect the final prediction results.

Deep Learning Model: DG-RNN
In this section, we provide a brief introduction on the basic ideas
and important concepts of our proposed DG-RNN model. For
details, please refer to the study by Yin et al [17].

Data Structure of EHRs
There is a sequence of visits in each patient’s EHR history,
where each visit consists of several medical codes. Following
previous studies (such as the study by Zhu et al [18]), the
medical events are ordered according to their time of occurrence.
The codes in both the knowledge graph and EHR data are
projected to the same embedding space. The EHR sequence of
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the patient i is denoted as and

represents the ground truth. After medical code embedding,
the patient’s medical events are represented as

, where .

DG-RNN Model
As shown in Figure 2, DG-RNN takes both the medical events
and the corresponding occurring time as inputs. For example,

at the tth DG-RNN step, the event embedding vector et and its
time encoding vector pt are inputs to the long short-term memory
network (LSTM) [19], which produces a hidden state C2t−1 and

an output vector h2t−1. Then, the subgraph adjacent to the tth

event and C2t−1 is sent to the graph attention module, which
computes the attention result gt, which is sent to the LSTM
again and another output vector h2t is generated. Note that the
unit of our model generates 2 output vectors for 1 input event,
which can help to compute the contribution rates of the initial
medical event and the potential information from the medical
knowledge graph. Next, we concatenate all the output vectors
and leverage a global pooling layer to generate a fixed-size
vector og. Finally, a fully connected layer is adopted to predict
the clinical risk. The model is trained by minimizing the

cross-entropy loss between the ground truth and the predicted
risk yi for each patient i as follows:

Figure 2. Framework of domain-knowledge–guided recurrent neural network (DG-RNN), which takes the medical event embeddings and the
corresponding time encoding vectors as inputs. For each event input, DG-RNN generates two output vectors. After all the input codes input to DG-RNN,
we concatenate the output vectors and leverage a global max pooling and a fully connected layer (FC) to predict the clinical risk. We adopt t-distributed
stochastic neighbor embedding (t-SNE) to map the global pooling layer’s output vectors to a 2D space (the Distribution View A is DG-Viz), where the
distance between patient represents their similarity. The attention results are displayed in the knowledge graph view D to show the knowledge graph’s
contribution in DG-RNN. The input medical codes and the output clinical risks are displayed in the History View C in DG-Viz, which shows the patient’s
risk changing trend. LSTM: long short-term memory; FC: fully connected layers; t-SNE: t-distributed stochastic neighbor embedding.

Knowledge Graph Attention Mechanism
To incorporate the medical domain knowledge, we propose a
dynamical graph attention mechanism.

The relations (eg, causes and is-caused-by) and entities (eg,
diseases) of the knowledge graph are projected into a

d-dimension space. Given the tth input event vt as head entity,
which has many relation edges in the knowledge graph, denoted

as , the proposed
attention mechanism is able to automatically attend to useful
related tail entities in the knowledge graph. Formally, it takes
the hidden state C2t−1 of the LSTM and the related relations Rt

as inputs and then calculates the attention weights as follows:

where are the relation and tail entity embeddings,

and are learnable parameters.
Following the study by Zhou et al [20], our attention mechanism
takes the related head node vt, relation edge rt,m, and tail node
et,m into account. Given the attention weights, we leverage soft
attention to generate the attention result vector gt, as shown in
Figure 3. Following this, gt is input to the LSTM, as shown in
Figure 2.
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Figure 3. Attention mechanism. In the knowledge graph, the yellow node means the current input medical event and the other nodes are its adjacent
nodes. Our attention mechanism takes as inputs the embeddings of the adjacent nodes and generates the graph attention vector.

Global Max Pooling Operation
RNN-based models are sometimes inefficient because of their
long-term dependency. It is possible for RNN models to forget
the earlier data if the input sequences are too long. Therefore,
we propose to concatenate the output vectors of the RNN and
introduce a global max-pooling operation to DG-RNN, which
shortens the distance between the earlier input’s medical events
and the final output risks. To the best of our knowledge, this is
the first time that a max-pooling operation is leveraged in
RNN-based models. As shown in Figure 2, the LSTM output
vectors are concatenated, followed by a global pooling
operation. The output og is sent to a fully connected layer to
predict the clinical risk for the patient i, which is defined as

where and are the learnable parameters, zi

and yi denote the clinical risk score and probability, respectively.
The global pooling operation is helpful in calculating the
contribution rates of various medical events to the final output
clinical risks. Note that the details of how to compute medical
events’contributions can be found in our conference paper [17].

Visual Analytics System: DG-Viz
In this section, we explain the visual interface and the design
rationale of the 3 components of DG-Viz.

Distribution View
The distribution view (Figure 4) provides an overview of the
entire data set, including the overall distribution of patients
(R1.1) and their demographic information (R1.2). It contains 2
components: (1) a projection chart showing the distribution of
patients and (2) the right-side panel with demographic
information.

Figure 4. Distribution view: (a) the projection scatter plot of all patients in the test data set, (b1) the race distribution chart, (b2) the gender distribution
chart, and (b3) the age distribution histogram.
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Projection View

The objective of the projection view is to position the patients
in a two-dimensional (2D) space, and their relative similarities
are reflected through their distance to help users discover
clusters. For this purpose, we created a vectorized representation
to encode the medical history information of each patient. In
particular, for a given patient p, we use DG-RNN to predict the
risk of their heart failure. The global max-pooling layer output
vector, that is og in equation (4), represents the patient’s features.
Then, we adopt the t-distributed stochastic neighbor embedding
(t-SNE) algorithm [21] to project all patients into a 2D space.
As a result, the patients are positioned in such a way that similar
patients are placed nearby, whereas dissimilar patients are placed
far away. To differentiate patients’ diagnosis results, we show
patients with positive and negative heart failure outcomes in
different colors (red: positive, blue: negative). The selected
patient of interest is highlighted in green. Section (a) in Figure
4 shows that all patients were divided into 2 groups. A zooming
interaction is also provided to explore and select target patients
who are placed together.

Demographic Panel

The demographic panel, section (b) in Figure 4 shows 3 different
charts, which visualize the distributions of patients’ race, gender,
and age. The race distribution is presented with a Nightingale
Rose Chart, where the area of each slice represents the number
of patients belonging to the corresponding race. For example,
in section (b1) in Figure 4, we can observe that most of the
patients in the data set are White. The stacked horizontal bar
chart presents the gender ratio of all patients. Users can also see
the distributions of age in the bottom age histogram.

Patient History and Prediction View
After selecting the patient of interest in the distribution view,
users can further investigate the patient’s history information
(R2.1, R2.2), see the prediction results (R2.3), and understand
how the prediction results change by updating the input data
(R3.1, R4). In the patient history view, there are 2 charts
vertically shown from top to bottom, as shown in section (a) in
Figure 5. The chart at the bottom (section a2 in Figure 5) is used
to present the visit and the medical codes, and the top chart
presents the prediction results (a1 in Figure 5).

Figure 5. Patient history view. Top: the visit view that arranges all visit records with the same distance. (a1): the prediction results involved with time,
(a2): the visits and medical codes of the patient, (a3): added or removed medical codes. Bottom: (b) the temporal view that arranges all visit records
based on their time intervals.

Visits and Medical Codes View

We sort the time stamps of all visit records. Next, we visualize
these records using the rectangular boxes and arrange them from
left to right in a chronological order, as shown in section (a1)
in Figure 5. Just as in previous studies on visualizing the
sequence models [4,22], the color of the visit box (from blue
to white to red) represents the corresponding contribution risk
(from negative to 0 to positive).

To provide an overview of all visit records while preventing
the clutter visual layout, we position the visit box in a uniform
manner, that is, the distances between all visit boxes are the
same. However, the temporal interval information serves as an
important indicator in clinical analysis. We also provide a
temporal view (section b in Figure 5) with different placement
of visit boxes. In the temporal view, users can observe the
overall distribution of the visit time and zoom in the x-axis to

explore the overlapping visits. For example, in section (b) in
Figure 5, v9 and v10 are two of the closest visits.

To identify the key medical codes that contribute to the
prediction results (R3.1), we allow users to compare the
importance of medical codes from 2 contributions: (1) the total
contribution of the medical code and (2) the contribution caused
by the neighboring codes from the knowledge graph. We
introduce a bi-encoding (position-color) method to encode these
2 contributions. First, the horizontal positions of these codes
are aligned with their corresponding visit, whereas their vertical
positions represent their total contribution risks. Users are able
to scale the y-axis to observe the codes that appear together
owing to a similar value. In terms of the knowledge graph
contribution, we map the weight of the knowledge graph (from
positive to 0 to negative) to a diverging color map (from red to
white to blue). This design enables users to easily identify the
key code with the highest contribution to the results of the
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prediction, and the code that is impacted by the knowledge
graph the most as well. For example, in section (a2) in Figure
5, we can observe that the medical code appearing in v8 presents
the highest contribution risk. The color of this code also
indicates that it is strongly influenced by the knowledge graph.

Prediction Results View

We show the prediction results involved with the time using a
line chart (section a1 in Figure 5), which is an intuitive and
straightforward approach to visualize time-series data [23,24].
In this chart, the horizontal axis is used to represent the visit
time, and each node in the line chart is synchronized with the
corresponding visit records. The vertical axis indicates the
prediction score obtained up to a certain visit. For example, the

predicted score at v3 is computed from the model with the input
visits of v1, v2, and v3.

What-If Analysis View

We also provide a set of interactions to allow the users to
conduct a what-if analysis. We provide 2 ways to edit the input
data: removing medical codes (R3.1) or adding specific drugs.
As shown in Figure 6, users can select multiple target medical
codes from a pop-up panel by clicking the code circle in the
code chart. Once the removing button is clicked, the line chart
will show an extra red line to indicate the updated prediction
results. The original prediction results will be visualized using
a gray dashed line, which enables users to observe their
difference effectively. The visit and code views will also be
updated accordingly.
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Figure 6. Code edit panel: users can see all the medical codes within a specific visit and add drug to this visit. kg: knowledge graph; cont: contribution.

To provide a what-if analysis by adding specific drugs, we
identified 9 drugs for heart failure treatment through the
literature [16]. These drugs have been discovered for more than
400,000 times in our data set. Users can select the visit box
corresponding to the time they want to add the test drugs. As
shown in section (a1) in Figure 5, users can choose the drug
and obtain updated prediction results by clicking the add code
button. The added drugs will be shown on the right side of the
code view (section a3 in Figure 5).

Patients with high heart failure risks usually take more drugs
than healthy patients. It is easy for DG-RNN to learn incorrect
knowledge that drugs may cause higher risks. Thus, we
resampled the data set when training the proposed model. First,
we built a new data set by removing all the drugs and trained a

logistic regression (LR) model to predict heart failure risks.
Given the predicted risks without drugs, in each batch data, we
selected equal numbers of case patients (who take drugs at least
once) and control patients (who never take drugs) with similar
heart failure probability. Finally, the DG-RNN was trained with
the resampled batch data.

Knowledge Graph View
The knowledge graph view aims to reveal the whole structure
of the knowledge graph used in the model and highlight the
subgraph activated by a particular visit or medical code in the
prediction. It also allows users to identify how the contribution
of a specific medical code is affected by its neighbors in the
knowledge graph (R3.2). It contains two subviews: (1) an
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overview of the whole knowledge graph network structure and
(2) a local code network showing the local relationships between
medical codes. Users can easily switch between them by clicking
on the toggle on the top.

Whole Network

To visualize the whole knowledge graph structure, we use all
the disease and drug entities and their relations to construct a
network that includes 7273 nodes and 20,491 edges. We present

this network using a force-directed graph, as shown in Figure
7. In this graph, each node is presented with a navy blue color,
and edges are presented using gray lines. Clicking on a specific
visit box or medical code point in patient history view will
highlight the corresponding nodes and their connected neighbors
in the whole network. For example, in Figure 7, we can observe
that the medical codes used in the prediction are located in the
center area of the whole network.

Figure 7. The whole knowledge graph in Knowledge Graph View.

Code Network

To reveal the relationship between the selected medical codes
and their neighbors in the knowledge graph, we place these
codes in a force-directed graph. The red node in the center
denotes the target node (ie, the selected medical node in the
patient history view), and the blue dots around it represent the
neighboring nodes in the knowledge graph. We encode the
contribution of these neighbors using size, and a large dot

represents an important node that contributes to the target node.
The edges in the graph represent the relationship between the
target nodes’ neighbors. For example, in Figure 8, we can find
that the contribution of chronic fatigue syndrome is affected by
or affects 11 other nodes in the knowledge graph. Among these
neighbors, cognitive therapy is the most important node.

In Multimedia Appendix 1, we provide a demo video of DG-Viz.
It can also be found at YouTube [25].
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Figure 8. The local network of a specific medical code and its neighbors in Knowledge Graph View.

Results

This section reports the results from 3 forms of evaluation: (1)
quantitative experiment on heart failure risk prediction tasks to
compare our model with the state-of-the-art models, (2) a case
study with a medical physician, and (3) the feedback from the
physician.

Data Sets
We conducted heart failure prediction experiments on a
real-world longitudinal EHR database, which includes 218,680

patients for over 4 years. Patients with a diagnosis of heart
failure were selected as case patients. For each case, we selected
3 control patients with the same age and sex. Each case patient’s
heart failure confirmation date is set as their operation criterion
date. The control patients’ criterion dates are the same as that
of their corresponding case patients. Finally, we trace back from
the operation criterion date and hold off the EHRs in a prediction
window. Six different hold-off windows (ie, 7, 14, 30, 60, 90,
and 120 days) were used in our experiments. The medical codes
appearing less than 10 times were removed. Table 1 lists the
statistics of the selected data sets.

Table 1. Statistics of data sets.

EHR-7EHR-14EHR-30EHR-60EHR-90EHRa-120Characteristics

554536517494462442Number of case patients

166216081551148213861326Number of control patients

176,460169,636160,584152,389140,984134,666Number of events in the data set

995989983978974967Number of unique events

79.6279.1277.6577.1176.2976.17Average of EHRs’ length

2.392.352.412.292.362.17Average number of events per visit

aEHR: electronic health record.

In addition to the initial EHR data, DG-RNN also takes medical
knowledge graphs as inputs. A publicly available knowledge

graph KnowLife [16] is leveraged in our experiments. KnowLife
has millions of entities (eg, diseases and medications) and
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dozens of relations (eg, causes and is-healed-by). We initialize
the entities’ and relations’ embeddings with TransE [26] and
fine-tune the embeddings when training the model.

Baselines
To validate the performance of the proposed DG-RNN, we
compare DG-RNN with the following baselines, including 3
traditional machine-learning methods (ie, random forest [RF],
LR, and support vector machine [SVM]) and 5 deep learning
methods (ie, gated recurrent unit [GRU]) [27], LSTM [19],
RETAIN [1], graph-based attention model (GRAM) [2], and
knowledge-based attention mode (KAME) [3]). Moreover, we
implement three versions of DG-RNN to validate the
effectiveness of the knowledge graph attention module and the
global pooling operation. DG-RNN is the main version of our
model. DG-RNN-nk does not use the medical domain
knowledge by removing the graph attention module.
DG-RNN-np predicts the heart failure risk based on the last
hidden state of the LSTM, without the global pooling operation.

Implementation Details
The traditional methods and deep learning models are
implemented with scikit-learn and PyTorch 0.4.1, respectively.
We adopted a grid search to find the best parameter for
traditional methods. For a fair comparison between DG-RNN
and knowledge-incorporated baselines (ie, GRAM and KAME),
KnowLife [16] is used as the domain knowledge for both
GRAM and KAME. Note that all the medical codes in EHRs
and KnowLife are represented as ICD-9 codes, and all the
models only accept the structured ICD-9 codes as inputs. When
training deep learning–based models, we used the Adam
optimizer with a mini-batch of 64 patients and trained using 1
graphics processing unit (TITAN XP GPU) for 50 epochs, with
a learning rate of 0.0001. The outputs of DG-RNN include the
risk probabilities and events’ contribution risks. Patients’ risk
probabilities are used to train DG-RNN, whereas the events’
contribution risks are only visualized in our DG-Viz system.
Further implementation details can be found in our conference
paper [17] and on github [28,29].

Results of Risk Prediction
The experimental results in Tables 2, 3, and 4 show that the
proposed model outperforms the baselines, which demonstrates
the effectiveness of DG-RNN. To better measure the difference
in performance between the proposed DG-RNN and the
baselines, following the study by Tang et al [30], we performed
statistical testing and calculated the P value of area under a
receiver operating characteristic (AUROC) score between the
proposed DG-RNN and various baseline models using statistical
t testing. For all the baselines, the P value results are very small
(P<.001), which demonstrates that the risk prediction
performance difference between DG-RNN and baselines is
significant.

The performance of deep learning methods is much better than
that of the 3 traditional machine-learning methods. The possible
reason may be that deep learning approaches take the embedding
of medical codes as inputs, which can capture the medical codes’
clinical meaning, whereas the traditional approaches use
high-dimensional one-hot representations, which have a
semantic gap. Moreover, RNN-based methods are better for
modeling patients’ health status and consider the order of EHR
sequences (temporal information). Among the 5 deep learning
baselines, with the help of the attention mechanism, RETAIN
performs better than GRU and LSTM. Considering the medical
knowledge graph, KAME and GRAM outperform RETAIN,
which demonstrates that medical domain knowledge does help
to improve the performance in clinical applications.

Among the proposed model’s 3 versions, our main version
DG-RNN achieves the best performance. After removing the
medical knowledge graph, there is about 2% AUROC decline
for the version DG-RNN-nk, which demonstrates that medical
domain knowledge from KnowLife is very helpful. Without the
global pooling layer, DG-RNN-np also achieves worse
performance than DG-RNN by 2%, which demonstrates the
effectiveness of the introduced global pooling operation. The
global pooling operation can shorten the distance between early
occurring medical events and the final outputs, which makes
the training process more efficient.
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Table 2. Area under a receiver operating characteristic of the heart failure prediction task.

EHR-7EHR-14EHR-30EHR-60EHR-90EHRa-120Model

0.73860.73470.71390.69320.69560.6883LRb

0.73360.72170.72120.69650.69130.6726RFc

0.63720.63230.62580.62130.63390.6173SVMd

0.76380.74380.71780.69390.66700.6504GRUe

0.76310.74590.72820.69820.67920.6628LSTMf

0.76830.75610.74370.73180.71150.6962RETAINg

0.76560.76480.75250.73780.72920.7081GRAMh

0.77170.76620.75730.73920.73190.7168KAMEi

0.76630.75830.74860.73680.73100.7158DG-RNNj-nk

0.77230.75960.74250.71820.70750.6995DG-RNN-np

0.78630.77890.76630.75100.74370.7288DG-RNN

aEHR: electronic health record.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eGRU: gated recurrent unit.
fLSTM: long short-term memory.
gRETAIN: reverse time attention model.
hGRAM: graph-based attention model.
iKAME: knowledge-based attention model.
jDG-RNN: domain-knowledge–guided recurrent neural network.
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Table 3. Sensitivity of the heart failure prediction task.

EHR-7EHR-14EHR-30EHR-60EHR-90EHRa-120Model

0.66840.65220.65120.64520.64410.6262LRb

0.67230.66360.66120.65490.64560.6235RFc

0.58620.58220.57690.57320.58350.5689SVMd

0.70010.68370.65240.63480.62270.6120GRUe

0.70060.68740.68690.65640.64070.6322LSTMf

0.70180.69380.69160.67190.66120.6556RETAINg

0.70460.70300.69140.67180.66270.6614GRAMh

0.70360.69910.68280.67590.67140.6645KAMEi

0.71320.69260.68170.67900.67120.6634DG-RNNj-nk

0.71010.69970.68010.67270.65690.6513DG-RNN-np

0.72060.71450.70120.68560.68160.6754DG-RNN

aEHR: electronic health record.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eGRU: gated recurrent unit.
fLSTM: long short-term memory.
gRETAIN: reverse time attention model.
hGRAM: graph-based attention model.
iKAME: knowledge-based attention model.
jDG-RNN: domain-knowledge–guided recurrent neural network.
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Table 4. Specificity of the heart failure prediction task.

EHR-7EHR-14EHR-30EHR-60EHR-90EHRa-120Model

0.68870.67270.65280.64290.64370.6402LRb

0.68020.67200.66740.64840.64140.6301RFc

0.60790.60620.60410.59480.59040.5897SVMd

0.70200.69470.67180.65100.64580.6231GRUe

0.65950.65630.64270.62930.62520.6106LSTMf

0.71650.70410.70160.67550.66190.6602RETAINg

0.71140.71080.70140.69010.68350.6673GRAMh

0.71310.71190.69510.68420.68060.6720KAMEi

0.71900.71580.69240.68930.68190.6773DG-RNNj-nk

0.71660.70780.70370.67910.67690.6707DG-RNN-np

0.72730.72540.71280.70220.69760.6862DG-RNN

aEHR: electronic health record.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eGRU: gated recurrent unit.
fLSTM: long short-term memory.
gRETAIN: reverse time attention model.
hGRAM: graph-based attention model.
iKAME: knowledge-based attention model.
jDG-RNN: domain-knowledge–guided recurrent neural network.

Case Study
To illustrate how a physician can explore the EHR data and
interpret the prediction results, we provide a case study. In
particular, we worked with the same medical expert in the design
state of DG-Viz using the same EHR data set mentioned
previously. We first introduced the functions and interaction
methods of the DG-Viz system to the doctor. After becoming
familiar with DG-Viz, the doctor was asked to perform a set of
tasks, such as observing the patient overview, interpreting the
prediction results, and testing their hypotheses. The doctor was
free to ask any questions about the system during the study.

Figure 4 shows an overview of 1740 patients in our data set.
As the expert pointed out, the initial overview of the patient
cohort showed that patients clustered in the bottom left quadrant
had a positive heart failure risk score ranging between 1 and 2.
The center of the graph comprised patients with heart failure
risk between 0 and a negative one. In the upper right quadrant,
heart failure risk scores varied between 0 and −3. Heart failure
risks were similar for 2 patients in close proximity to the
distribution view. He mentioned that the overview would be
particularly useful for the physician, at a quick glance, to see
which patients are at a higher risk for a given disease.

Next, the expert was interested in identifying the medical codes
that correlated with heart failure. To do this, he selected multiple
patients with heart failure for further inspection. According to
the visualization results, he mentioned that atrial fibrillation

and cardiac dysrhythmia are often shown to contribute to the
risk of heart failure. Arrhythmias are common and have a known
association with heart failure, either as a cause or as a sequela,
and increased his confidence in the heart failure prediction. Less
frequently, shortness of breath, edema, cardiomegaly, and aortic
valve disorders were shown to greatly contribute to the risk of
heart failure. Shortness of breath and edema are common
symptoms affecting patients with heart failure. Cardiomegaly
is a finding either on physical examination or on diagnostic
testing that is associated with heart failure. Aortic valve
disorders, which include aortic regurgitation and aortic stenosis,
are one of many causes of heart failure. All these nodes were
consistent with the current medical understanding of heart
failure.

The doctor was also interested in checking whether the
prediction results of the system meet their expectations. For 1
patient with a heart failure risk of 3, the physician added an
angiotensin receptor antagonist, a medication typically
prescribed in heart failure, but only a slight decrease in heart
failure risk was observed. However, adding additional
antihypertensive medications (calcium channel blockers)
lowered the risk of heart failure by a greater amount. This may
indicate that the model agrees with the known causation between
hypertension and heart failure. Not all patients showed this
behavior, possibly indicating that their medical history did not
include hypertension. For some patients, adding a loop diuretic
increased the risk of heart failure. Loop diuretics are often
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prescribed as symptomatic treatment for heart failure but are
not known to decrease mortality or prevent the onset of disease.
The need for a loop diuretic prescription in the absence of a
heart failure diagnosis may indicate the early stages of the
disease and is a good alert for clinicians.

Finally, the expert was asked to check the local knowledge
graph structure and verify the correctness of the prediction
results. He mentioned that a frequent prediction result node with
high-risk contribution and high knowledge graph contributions
was atrial fibrillation. The neighbor nodes displayed in the
knowledge graph view included definitions of atrial fibrillation
(cardiac dysrhythmia), as well as potential treatment options
(pacerone and cardiac ablation). They were all related to heart
failure. However, in another case of edema, he found that related
diseases shown in the knowledge graph, including ulcerative
colitis, cerebral abscess, and reparative closure, did not have a
strong relationship with heart failure.

Overall, the doctor believed that DG-Viz is a great tool and an
interesting way of proving to the physician that the predicted
risk is valid. In particular, the interface provides the ability to
explore the consequences of prescribing medication. The
knowledge graph allows the physician to see contributing
diagnoses to the overall risk. However, he also felt that the
current interface “while intuitive, does contain a large amount
of medical information and requires a substantial explanation
of each item before the information can be synthesized.” The
color and position used to encode the contribution of visit and
code might actually increase the cognitive load of the doctor.

Discussion

Principal Results
In this study, we present DG-Viz, an interactive clinical
prediction system, which brings together the power of deep
learning (ie, a DG-RNN–based model) and visual analytics to
predict clinical risks and visually interpret the EHR prediction
results. Experimental results and a case study on heart failure
risk prediction tasks show that our system not only outperforms
the state-of-the-art deep learning–based risk prediction models
but also associates the intuitive visualization design, thus paving
the way for interactive, interpretable, and accurate clinical risk
predictions. This study can be regarded as an initial step, and
there are many research opportunities to be further explored
and pursued. The following subsections provide an in-depth
discussion of our study in terms of technical challenges and
future research.

Issues With EHR Prediction and Visualization
Predicting the risk of certain diseases and interpreting the results
are still open questions in the health care community. One major
challenge is the false prediction made by the deep learning
model. In our case study, the domain expert was surprised that
common causes such as coronary artery disease, hypertension,
and diabetes related to heart failure were not seen. This might
be because the data set we used did not contain many of these
factors. In terms of interpreting deep learning models,
uncertainty is becoming an important concern [31,32]. As a
result, visualizing the uncertainty in the prediction model can

be highly valuable. Even if the model is proven to be accurate,
the visualization should address the false cases and present the
uncertainty to the medical doctors. For example, revealing how
the model fails to predict a specific case would deepen the
doctors’ understanding of the prediction model’s intrinsic
mechanisms.

Visualizing Patient Distribution
The projection view aims to provide an overview of patient
distribution in the data set by mapping high-dimensional patient
data into 2D space. In the present visualization results, we can
observe that the patients diagnosed as positive and negative are
well separated in the space. However, as mentioned in the
feedback from our domain expert, determining the subtypes of
the patients is also important in analyzing the patient
distribution.

What-If Analysis
One important functionality of DG-Viz is to enable domain
experts to test their hypotheses on patients through what-if
analysis. In particular, we provide what-if analysis by allowing
domain experts to add or remove specific medical codes and
compare the changes. However, this interaction still suffers
from some drawbacks such as the interaction cost. For example,
when experts want to know when and what drugs are added to
cause a significant difference in predictions, they must select
all the drugs in sequence and add them to different dates to
obtain the final result. To address the huge interaction cost, one
solution is to develop tools such as interactive lenses [33] to
present the results of each combination. In detail, users can
obtain the results by binding specific drugs with lenses and
covering the lens on a specific date. Moreover, automatically
recommending the desirable prediction results (ie, computing
all possible combinations of drugs and dates and only preserving
the significant results) can also help users to obtain the what-if
analysis results efficiently.

Generalization
DG-Viz is capable of visualizing several other EHR data sets
such as MIMIC-III [34] and HCUP [35]. It can also be converted
and used for similar RNN-based prediction models such as
RETAIN [1]. However, as a preliminary prototype, it is not
readily applicable to all EHR data sets and prediction models.
When we design, implement, and evaluate DG-Viz, we
encounter several limitations and challenges, which motivates
us to generalize DG-Viz from 2 directions in the future. The
first is to introduce adaptive mechanisms that allow the system
to accommodate different EHR data sets. Among different EHR
data sets, there is a great variety of data distributions, including
the number of visits, the number of medical codes in each visit,
and temporal intervals. For example, most patients in the data
set used in our study had 20 to 50 visits with 1 to 5 medical
codes per visit. In MIMIC-III, most patients only have 1 to 3
visits with 20 to 40 medical codes per visit. One way to address
this issue is to compute the space layout of these visual elements
automatically based on the data distribution. When the number
of visits and medical code is too large, extra work such as
aggregating and filtering (eg, only show medical code with the
highest contribution) can also be adopted. In addition,
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integrating the domain knowledge from experts with the
prediction model through visualization and interaction is an
important and interesting direction for us to investigate in the
future.

Conclusions
In this work, we present DG-Viz, an interactive clinical
prediction system, which brings together the power of deep
learning (ie, a domain knowledge–guided RNN-based model)
and visual analytics to predict clinical risks and visually interpret
the EHR prediction results. We presented a graph attention
module to dynamically attend to a subgraph of the whole

medical knowledge graph, which can provide more domain
information and thus significantly improve DG-RNN’s
performance. We introduced a global max-pooling operation
to DG-RNN to make our prediction model more accurate. We
designed, implemented, and evaluated a visual analytics tool to
present the EHR data, revealing the knowledge graph network,
and interpret the prediction results. Experimental results and a
case study on heart failure risk prediction tasks show that our
system not only outperforms the state-of-the-art
deep-learning–based risk prediction models but also associates
the intuitive visualization design, thus paving the way for
interactive, interpretable, and accurate clinical risk predictions.
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Abbreviations
2D: two-dimensional
AUROC: area under a receiver operating characteristic
DG-RNN: domain-knowledge–guided recurrent neural network
EHR: electronic health record
GRAM: graph-based attention model
GRU: gated recurrent unit
ICD-9: International Classification of Diseases, Ninth Revision
KAME: knowledge-based attention model
LR: logistic regression
LSTM: long short-term memory
RETAIN: reverse time attention model
RF: random forest
RNN: recurrent neural network
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