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Abstract

Background: Subtle abnormal motor signs are indications of serious neurological diseases. Although neurological deficits
require fast initiation of treatment in a restricted time, it is difficult for nonspecialists to detect and objectively assess the symptoms.
In the clinical environment, diagnoses and decisions are based on clinical grading methods, including the National Institutes of
Health Stroke Scale (NIHSS) score or the Medical Research Council (MRC) score, which have been used to measure motor
weakness. Objective grading in various environments is necessitated for consistent agreement among patients, caregivers,
paramedics, and medical staff to facilitate rapid diagnoses and dispatches to appropriate medical centers.

Objective: In this study, we aimed to develop an autonomous grading system for stroke patients. We investigated the feasibility
of our new system to assess motor weakness and grade NIHSS and MRC scores of 4 limbs, similar to the clinical examinations
performed by medical staff.

Methods: We implemented an automatic grading system composed of a measuring unit with wearable sensors and a grading
unit with optimized machine learning. Inertial sensors were attached to measure subtle weaknesses caused by paralysis of upper
and lower limbs. We collected 60 instances of data with kinematic features of motor disorders from neurological examination
and demographic information of stroke patients with NIHSS 0 or 1 and MRC 7, 8, or 9 grades in a stroke unit. Training data with
240 instances were generated using a synthetic minority oversampling technique to complement the imbalanced number of data
between classes and low number of training data. We trained 2 representative machine learning algorithms, an ensemble and a
support vector machine (SVM), to implement auto-NIHSS and auto-MRC grading. The optimized algorithms performed a 5-fold
cross-validation and were searched by Bayes optimization in 30 trials. The trained model was tested with the 60 original hold-out
instances for performance evaluation in accuracy, sensitivity, specificity, and area under the receiver operating characteristics
curve (AUC).

Results: The proposed system can grade NIHSS scores with an accuracy of 83.3% and an AUC of 0.912 using an optimized
ensemble algorithm, and it can grade with an accuracy of 80.0% and an AUC of 0.860 using an optimized SVM algorithm. The
auto-MRC grading achieved an accuracy of 76.7% and a mean AUC of 0.870 in SVM classification and an accuracy of 78.3%
and a mean AUC of 0.877 in ensemble classification.

Conclusions: The automatic grading system quantifies proximal weakness in real time and assesses symptoms through automatic
grading. The pilot outcomes demonstrated the feasibility of remote monitoring of motor weakness caused by stroke. The system
can facilitate consistent grading with instant assessment and expedite dispatches to appropriate hospitals and treatment initiation
by sharing auto-MRC and auto-NIHSS scores between prehospital and hospital responses as an objective observation.
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Introduction

Motor weakness is a typical manifestation in various
neurological disorders, including stroke, spinal cord injury, and
traumatic brain injury. In addition, it is a major obstacle to
functional recovery after the treatment of those diseases. As an
example of motor weakness, unintentional drift is an indication
of arm weakness; this is mainly caused by subtle damages in
the motor pathway from the brain to the spinal cord [1]. If the
supinator muscles in the upper limb are weaker than the pronator
muscles in the presence of upper motor neuron lesion, the arm
drifts downward and the palm turns toward the floor. The
pathological response is for one of the arms to drift (up, down,
or out). Therefore, motor weakness is a major sign in the FAST
(face drooping, arm weakness, speech slurring, and time to call)
protocol for stroke patients [2].

Rapid detection of such motor weakness is critical because acute
treatments, including thrombolysis or thrombectomy, are
performed in a constrained time window. More importantly,
diagnosis can be established through bedside examination by
specialists because it is a qualitative measurement. If the
symptom occurs outside a hospital, a substantial time delay can
cause poor outcomes for acute stroke patients [3-5]. In addition,
the objective and accurate neurological assessments are not
possible by mere visual examination because the examiner
cannot easily trace the movement using the conventional
neurological examination when there are subtle weaknesses.
Therefore, systems need to automatically detect motor deficits
using sensor data in real time.

However, operating such systems in a real environment requires
a significant effort in integrating new systems into an emergency
protocol. This is because interruptions caused by the attachment
of sensors on patients’bodies and the initiation of the recording
process can affect the streamlined structure of emergency
protocols. However, evaluation methods are still required to
identify stroke patients, as they can be instantly used in the
communication among patients or caregivers, emergency call
centers, and hospitals. In addition to a sensor-based
measurement tool that was demonstrated useful in detecting
subtle motor weakness in our previous study [6], the grading
of stroke severity can be informed remotely and used in the
emergency medical service (EMS) and hospital system.

In the field and in clinical environments, various grading
methods exist for identifying ischemic stroke patients with
motor weakness [7-10]. The National Institutes of Health Stroke
Scale (NIHSS) score [11,12] and Medical Research Council
(MRC) score [13,14] have been used as typical assessment
indicators for stroke in the clinical environment. The rapid
arterial occlusion evaluation scale, the Cincinnati stroke triage
assessment tool, and the prehospital acute stroke severity scale
are grading methods in the field environment. In this study, we
implemented auto-NIHSS and auto-MRC systems to grade the
NIHSS and modified MRC scores to assess patients in the
clinical environment. We used subdivided MRC scores
(10-grade MRC) instead of a 6-grade MRC to define subtle
differences, as shown in Table 1.
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Table 1. NIHSS and MRC grades for muscle power assessment.

DescriptionScale and grade

NIHSSa

No drift; limb holds 90° (or 45°) angle for full 10 seconds0

Drift; limb holds 90° (or 45°) angle, but drifts down before full 10 seconds; does not hit bed or other support1

Some effort against gravity; limb cannot reach or maintain (if cued) 90° (or 45°) angle; drifts down to bed, but has some effort
against gravity

2

No effort against gravity; limb falls3

No movement4

MRCb

No movement0 (0)

A flicker of movement is observed or felt in the muscle1 (1)

Muscle moves the joint when gravity is eliminated2 (1+)

Muscle moves the joint against gravity, but not through full mechanical range of motion3 (2)

Muscle cannot hold the joint against resistance, but moves the joint fully against gravity4 (2+)

Muscle moves the joint fully against gravity and is capable of transient resistance, but collapses abruptly5 (3)

Same as grade 4 (on 6-point scale) but muscle holds the joint only against minimal resistance6 (3+)

Muscle holds the joint against a combination of gravity and moderate resistance7 (4)

Same as grade 4 (on 6-point scale) but muscle holds the joint against moderate to maximal resistance8 (4+)

Normal strength9 (5)

aNIHSS: National Institutes of Health Stroke Scale.
bMRC: Medical Research Council.

Methods

Participants and Data
A total of 17 participants were recruited; 15 participants (10
male and 5 female participants) were finally enrolled and
completed 4-limb drift test trials. To estimate the scores of
patients with severity, we performed the assessment shortly
after admission to a stroke unit. The ages of the participants
ranged from 44 to 92 years, with a mean of 68.6 years (SD
16.11). Exclusion criteria were patients (1) who had a substantial

weakness that prevented arm or leg raising against gravity, (2)
who were not able to sit and who had bilateral arm weakness
or preexisting chronic arm weakness, and (3) who had aphasia,
neglect, peripheral neuropathy, myopathy, or joint deformity.
This study was approved by the Severance Hospital Institutional
Review Board, and informed consent was obtained from all
participants.

Figure 1 shows patient enrollment and data preparation for
auto-NIHSS and auto-MRC grading. Description of data
composition for training, validation and testing is detailed in
the section on system design.
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Figure 1. Patient enrollment and data set for automatic grading system. MRC: Medical Research Council; NIHSS: National Institutes of Health Stroke
Scale; SMOTE: synthetic minority oversampling technique.

System Design
The entire process of the system is shown in Figure 2. The
system is composed of 2 parts, the measurement and the grading
units. The measurement unit sets up sensors and Bluetooth
connection with the primary information of patients.

We measured the upper left and upper right limb movements
using sensors on both wrists of patients, who were asked to
stretch and hold their arms for 20 seconds, as shown in Figure
3. For the lower left and lower right limb drift tests, patients
were asked to lift and stretch their left or right leg for 20
seconds.

Figure 2. Automatic grading process. MRC: Medical Research Council; NIHSS: National Institutes of Health Stroke Scale.

Figure 3. Schematic of upper and lower limb sensors and corresponding segment axes.
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The pseudo-code of the measurement unit is shown in
Multimedia Appendix 1. For each time frame i, the rotational
transformation from the limb into the reference frame xyz is

denoted as . The corresponding rotation matrices R for each

angle are defined using the of the accelerometer signals for
the ith frame. Subsequently, the degree of drift, θdrift, is
calculated and used in key features of machine learning
classification.

After collecting the series of 4-limb movements during the test
time, the grading unit analyzes the kinematic features.
Subsequently, the machine learning algorithm is trained to
estimate the NIHSS and MRC scores of each limb. Algorithm
2 (in Multimedia Appendix 2) shows the process of feature
extraction, data generation, and model training for the optimized
classification of auto-NIHSS and auto-MRC.

In the feature extraction process, features as predictors of limb
paralysis were extracted using a series of measured data. In this
study, the duration of the drift test (ttest) was set to 20 seconds;
however, analysis started 10 seconds after the examination
started (tstart) to exclude the initial dip. The average, maximum,
and oscillation of drift caused by paralysis for each limb and
demographic features were fed to train the machine learning
algorithms.

In the data generation process, we adopted the synthetic minority
oversampling technique (SMOTE) [15], leveraging the K-nearest
neighbor (K-NN), to solve the imbalanced problem that is
typical in machine learning studies in medicine [16-18]. The
SMOTE with K-NN generated ng samples for each grade.

Therefore, ngc records were used to construct a grading model
with c classes. In this study, ng was set to 120 for auto-NIHSS
(c=2) and 80 for auto-MRC (c=3) to compose the training data
with 240 (ttrain) instances. Apart from the training data, the
original data set with 60 records remained for the test data, as
shown in Figure 1.

In the training process, 5-fold cross-validation was applied to
reduce overfitting and generalize the model [19]. In the
optimization process, the fitted support vector machine (SVM),
as well as ensemble models among various SVM kernels and
boosting algorithms with tuned hyperparameters, were searched
via Bayes optimization in 30 trials for each model [20]. The
grading models were implemented and evaluated
in MATLAB R2020a (MathWorks Inc) [21].

Results

Sensor Data Characteristics
The system measured the drift of 4 limbs and extracted the
kinematic features, as shown in Multimedia Appendix 3. The
characteristics of the patients and test data are summarized in
Table 2. The grade distribution of clinical scores was not
regularized between limbs, as shown in Figure 4. For example,
the upper left MRC group had 10 patients graded as MRC 9, 2
patients graded as MRC 8, and 3 patients graded as MRC 7.
Among 13 MRC 8 instances, 7 were evaluated as NIHSS 1,
whereas 6 were evaluated NIHSS 0. We constructed auto-MRC,
which discriminated instances of grades with a data ratio of
13:13:34, whereas auto-NIHSS performed binary classification
with a data ratio of 40:20.

Figure 4. Grade distribution of NIHSS and MRC. MRC: Medical Research Council; NIHSS: National Institutes of Health Stroke Scale.
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Table 2. Summary of patients and test data.

NIHSSa grade

(MRCb grade)

MeasurementDiagnosis

LRLLLLURLULLLRLfLLLeURLdULLc

OscMaxMeanOscMaxMeanOscMaxMeanOschMaxgMean

1

(8)

0

(9)

0

(8)

0

(9)

30.817.411.8125.12.1–1.1915.3–1.9–314.42.70.82Lti internal capsule infarc-
tion

1

(7)

0

(8)

1

(7)

0

(8)

13.627.730.2643.510.718.711.7–9.2–6.4715.9–12–9.33Lt MCAj infarction

1

(7)

0

(9)

0

(9)

0

(9)

61.5–1.69.9124.902.9613.81.44.06700.86Lt MCA infarction

0

(8)

0

(9)

0

(9)

0

(9)

21.78.44.2612.91.60.2619.13.22.314.54.23.16Lt MCA infarction

0

(9)

0

(9)

0

(9)

0

(9)

19.62.90.7539.55.71.8414.54.23.1414.63.61.92Lt MCA infarction

1

(8)

1

(7)

0

(8)

1

(7)

17.3–2.1–4.9316.7–10.3–11.9312.91.3–1.3719.50.6–0.67Lt pontine infarction

1

(8)

0

(9)

1

(7)

0

(9)

37.76.81.9831.38.84.7712.511.48.9122.83.52.05Lt thalamic infarction

0

(9)

1

(8)

0

(9)

1

(7)

16.55.33.18401.2–318.520.8139.11.5–1.57Pontine ICHk

0

(9)

1

(7)

0

(9)

1

(7)

17.2–0.3–1.9918.50.4–2.7119–0.6–1.9317.9–7.5–9.96Rtl MCA infarction

0

(9)

0

(8)

0

(9)

0

(9)

38.56.51118.60.81.811.6–2–0.814–7.9–6Lt internal capsule infarction

0

(9)

0

(9)

0

(9)

0

(9)

240.7–1.1424.11.2–1.2311.70.1–0.5618.62.91.3Myelitis (no weakness)

0

(9)

1

(7)

0

(9)

0

(9)

34.32.36.3149.3713.913.100.719.2–6.4–4.97Rt MCA infarction

0

(9)

0

(9)

0

(9)

0

(9)

22.62.7–0.6418.50–1.9714.42.71.119.21.3–0.64Myasthenia gravis

1

(7)

0

(9)

1

(7)

0

(9)

46.20.65.326.12.26.3541223.541.15.415.5Lt pontine infarction

1

(7)

1

(8)

1

(8)

1

(8)

54.5–0.8–7.5213.63.31.6926.61.3–2.72191.1–0.83Pontine hemorrhage

aNIHSS: National Institutes of Health Stroke Scale.
bMRC: Medical Research Council.
cULL: upper left limb.
dURL: upper right limb.
eLLL: lower left limb.
fLRL: lower right limb.
gMax: maximum.
hOsc: oscillation.
iLt: left.
jMCA: middle cerebral artery.
kICH: intracerebral hemorrhage.
lRt: right.
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Evaluation Outcomes
We evaluated the performance of the system in terms of the
accuracy, sensitivity, specificity, precision, F1 score, and area
under the receiver operating characteristics curve (AUC) with
a confusion matrix.

The statistical plots in Figure 5 show the patterns of the average,
maximum, and oscillation of the 4-limb features of each NIHSS
grade. Auto-NIHSS discriminated those features, as shown in
the confusion matrices in Figure 6. The result shows that the
proposed autonomous grading achieved an accuracy of at least
80% and that the overall accuracy was 81.7%, as shown in the

summary of performance in Table 3. The AUC of auto-NIHSS
reached 0.912, as depicted in the receiver operating
characteristics curves in Figure 6. The sensitivity of the NIHSS
grading reached 0.825 with the SVM and 0.875 with the
ensemble. The specificity was 0.750 for both models.

Auto-MRC discriminates instances into 3 MRC grades, and the
statistical plots of movement features are depicted in Figure 7.
The mean AUC was 0.870 for the SVM and 0.877 for the
ensemble, as shown in Figure 8. Table 4 shows the summarized
performance of auto-MRC; the average accuracy, sensitivity,
and specificity for the MRC grading were 0.775, 0.717, and
0.876, respectively.

Figure 5. Statistical plots of 4-limb features of NIHSS grades. NIHSS: National Institutes of Health Stroke Scale.
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Figure 6. Confusion matrix and receiver operating characteristic of auto-NIHSS grading using (A) support vector machine and (B) ensemble learning.
AUC: area under the receiver operating characteristics curve; NIHSS: National Institutes of Health Stroke Scale.

Figure 7. Statistical plots of 4-limb features of MRC grades. MRC: Medical Research Council.
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Figure 8. Confusion matrix and receiver operating characteristic of auto-MRC grading using (A) support vector machine and (B) ensemble learning.
AUC: area under the receiver operating characteristics curve; MRC: Medical Research Council.

Table 3. Performance of auto-NIHSS grading.

F1 scorePrecisionSpecificitySensitivityAccuracyAuto-NIHSSa grading

0.8460.8680.7500.8250.800SVMb

0.8750.8750.7500.8750.833Ensemble

aNIHSS: National Institutes of Health Stroke Scale.
bSVM: support vector machine.

Table 4. Performance of auto-MRC grading.

F1 scorePrecisionSpecificitySensitivityAccuracyAuto-MRCa grading

0.7260.7190.8780.7360.767SVMb

0.7130.7350.8730.6980.783Ensemble

aMRC: Medical Research Council.
bSVM: support vector machine.

Discussion

Importance of Objective and Fast Assessment of Stroke
Severity
The notion “time is brain” is valid in treating stroke patients.
Intravenous tissue plasminogen activator (IV tPA) within 4.5
hours of stroke onset is the only therapy for acute ischemic
stroke [22]. Subsequently, endovascular thrombectomy (EVT)
has been a standard of care for patients with acute ischemic
stroke caused by large artery occlusion within 6 to 24 hours of
onset, based on successful large randomized clinical trials
[23]. Reperfusion therapy, including IV tPA and EVT, for acute
ischemic stroke is time sensitive (ie, an earlier treatment yields
a better outcome). As the onset-to-intervention time is composed

of prehospital and in-hospital phases, patients who arrive early
have more chances of appropriate treatment [24-27]. Delays in
hospital admission and the preparation before treatment affect
the prognosis of patients [28]. In Goyal et al [24], the authors
reported that the most significant issue was getting the correct
patient to the correct hospital quickly. In Sukumaran et al [27],
strategies for stroke patient workflow optimization were
suggested by analyzing and solving prehospital and
preprocedural bottlenecks. The interhospital transfer is directly
associated with delays in onset to reperfusion time, which results
in the poor outcome of stroke patients; therefore, the timely
triage of patients is a significant bottleneck [27].

The importance of accurate and objective assessments of stroke
severity in telemedicine and telestroke strategies has been
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discussed in numerous studies [29]. In particular, the timing
constraint in performing reperfusion therapy, which has been
shown to significantly reduce mortality, invokes the
development of efficient systems and protocols in prehospital
care or emergency medical systems. Researchers have addressed
the fact that the rapid and accurate evaluation of stroke severity
can aid in identifying patients for treatments and accelerate an
urgent streamlined process. In the study by Andsberg et al [30],
a prehospital ambulance stroke test was performed to score the
severity of stroke through commands, answers, and observations.
The remote assessment of stroke using smartphones was
proposed and compared with bedside examination in calculating
the NIHSS score [31]. However, most assessments in those
systems used conservative observation or campaigns that were
subjective and unreliable between testers. Modern
communication, sensor technology, and machine learning can
solve this problem through accurate measurements and the fast
determination of assessment in a prehospital or remote
environment [29,32,33]. A previous study evaluated arm
function in activities using kinematic exposure variation analysis
and inertial sensors [34]. A mobile-based walk test was
developed to report patients’ walking ability [35], and upper
limb impairments in stroke patients were measured using inertial
sensors in the home environment [33]. Such sensor-based testing
enables objective evaluation regardless of the testers or place.

Utility of Consistent Grading Method as an Agreement
Between Prehospital and Hospital Environment
The necessity of a controlled test is revealed in the results of
previous studies for monitoring daily living. Motor recovery
was monitored using accelerometers, and the NIHSS motor
index was estimated in the study by Gubbi et al [36]. However,
the movement in daily living limited the accuracy of estimation
to 56% for the low index. Activity monitoring in most
sensor-based studies involved trials that were not approved by
clinical protocols. Those systems limited extensibility as a
standard of remote monitoring systems, although they were
efficient in tracking the progress or the treatment outcome.

In addition to rapid and accurate measurements, we aimed to
increase the utility of the assessment system in the prehospital
and hospital environments. At every phase of the prehospital
process, consistent methods to conduct assessments can reduce
errors and delays in communication among the participants of
a community’s emergency group. Therefore, automatic scoring
can facilitate agreement in assessments among patients,
caregivers, paramedics, and medical staff. With regard to
bottleneck analysis in acute stroke treatment, the rapid
identification of neurological deficits and assessment of motor
grading will aid EMS personnel in transporting patients to a
comprehensive stroke center because hospitals may be limited
in terms of stroke unit availability and resources. In Berglund
et al [26], the importance of stroke identification without
meeting the patient or without neurological examination was
asserted; the time to treatment can be decreased with the
high-priority dispatch of ambulances through early identification
of stroke from emergency calls. In the hyper acute stroke alarm
study [25], researchers observed that higher prehospital priority
levels of stroke improved thrombolysis frequency and time to
stroke unit. The stroke identification by EMS dispatchers during

emergency calls varied between 31% and 57%, as identifying
stroke can be a challenge without examination [26].

Therefore, we developed an automatic grading system,
leveraging multiclassification of machine learning using
typically performed tests and grading in clinics. Our proposed
solution uses controlled observations of drift tests in clinics and
can estimate the assessment by neurologists. Therefore, the
scores by the automatic grading system can be instantly used
for communication in an objective manner.

Data and Techniques for Clinical Scoring by Machine
Learning
A considerable number of studies have used artificial
intelligence, including machine learning, to estimate clinical
scores and assess patients or provide warnings regarding adverse
events [37-40]. In those studies, a series of various techniques
were used according to the scale of scores, the capacity of
collected data, and the skewness of data. Following the
significant development of enhanced algorithms, data with
significant meaning have gained importance. However, as
addressed in Li et al [41], real-world data have a long-tail pattern
with a significant imbalance in quality and quantity. Many
algorithms have used public big data to develop new algorithms
and build models; however, real-world applications have
completely different data quality and quantity and cannot
directly apply those models. This situation is particularly severe
in medicine, as discussed in Hulsen et al [42]. The availability
of qualified data differs by disease, severity of disease in
patients, and difficulty of collection [43]. Big data from
electronic medical records that are already facilitated in hospital
information systems can be used in comparatively easy tasks
for medical artificial intelligence. The recent success of medical
artificial intelligence requires significant effort and cost in
collecting and labeling data [44,45]. In addition, machine
learning for sporadic events in emergencies or patients with rare
diseases is affected by data deficiency. This is because
interventions for collecting data can affect the prognosis of
treatment due to the possible delay in the rapid streamlining of
treatment processes. Previous feasibility studies have stated that
the difficulty in real-time capturing of acute neurological
disorders was the main limitation in the research [33,46].

The learning models with imbalanced data were affected by
low precision or recall in the validation and test phases, although
they achieved high accuracy for a large number of data in the
majority groups [47]. Recently, techniques to solve this data
skewness, including data augmentation, transfer learning, and
deep imbalanced learning, were emphasized [48-51]. Studies
on deep learning that extract filtered features derived from raw
data have attempted to solve the problem by knowledge transfer
from pretrained models [52,53] or with data augmentation
[54,55]. Machine learning with records can cope with the
imbalance problem through sampling, cost-sensitive learning,
boosting algorithms, and skew-related performance metrics
[47,56]. We used the SMOTE to balance between classes in the
training phase and applied techniques, including RUSBoost, in
optimized ensemble machine learning. To compare different
models according to their precision on each class, the F measure
is typically used as a performance metric [57]; additionally, we
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validated the performance of the proposed solution using the
AUC and F1 scores. Consequently, the performances of
auto-NIHSS and auto-MRC indicated the acceptable AUC,
sensitivity, specificity, and F1 score as real-world applications
with data skewness.

Conclusion
Accurate monitoring and grading of motor weakness are critical
for the appropriate assessment of stroke severity, particularly

for reliable and consistent evaluations. We developed an
automatic grading system to assess proximal motor weakness
using the kinematic features of unintended drift of 4 limbs. We
trained optimized machine learning models and obtained
promising results in scoring NIHSS and MRC. The objective
scoring of neurological deficits can be used to identify stroke
patients, dispatch patients to the appropriate medical center,
and expedite treatment preparation.
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