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Abstract

Background: Supervised machine learning (ML) is being featured in the health care literature with study results frequently
reported using metrics such as accuracy, sensitivity, specificity, recall, or F1 score. Although each metric provides a different
perspective on the performance, they remain to be overall measures for the whole sample, discounting the uniqueness of each
case or patient. Intuitively, we know that all cases are not equal, but the present evaluative approaches do not take case difficulty
into account.

Objective: A more case-based, comprehensive approach is warranted to assess supervised ML outcomes and forms the rationale
for this study. This study aims to demonstrate how the item response theory (IRT) can be used to stratify the data based on how
difficult each case is to classify, independent of the outcome measure of interest (eg, accuracy). This stratification allows the
evaluation of ML classifiers to take the form of a distribution rather than a single scalar value.

Methods: Two large, public intensive care unit data sets, Medical Information Mart for Intensive Care III and electronic intensive
care unit, were used to showcase this method in predicting mortality. For each data set, a balanced sample (n=8078 and n=21,940,
respectively) and an imbalanced sample (n=12,117 and n=32,910, respectively) were drawn. A 2-parameter logistic model was
used to provide scores for each case. Several ML algorithms were used in the demonstration to classify cases based on their
health-related features: logistic regression, linear discriminant analysis, K-nearest neighbors, decision tree, naive Bayes, and a
neural network. Generalized linear mixed model analyses were used to assess the effects of case difficulty strata, ML algorithm,
and the interaction between them in predicting accuracy.

Results: The results showed significant effects (P<.001) for case difficulty strata, ML algorithm, and their interaction in predicting
accuracy and illustrated that all classifiers performed better with easier-to-classify cases and that overall the neural network
performed best. Significant interactions suggest that cases that fall in the most arduous strata should be handled by logistic
regression, linear discriminant analysis, decision tree, or neural network but not by naive Bayes or K-nearest neighbors. Conventional
metrics for ML classification have been reported for methodological comparison.

Conclusions: This demonstration shows that using the IRT is a viable method for understanding the data that are provided to
ML algorithms, independent of outcome measures, and highlights how well classifiers differentiate cases of varying difficulty.
This method explains which features are indicative of healthy states and why. It enables end users to tailor the classifier that is
appropriate to the difficulty level of the patient for personalized medicine.
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Introduction

Background
This study aims to demonstrate an approach to assess the
effectiveness of binary machine learning (ML) classification,
which is an alternative to the more traditional single scalar
measures in the literature. Our approach uses an item response
theory (IRT) model to enhance the understanding of the data
set on which ML protocols are run as well as the results of the
classification outcomes. Aspects of IRT’s utility have recently
surfaced in the ML literature, including comparisons of
collaborative filtering [1], evaluation of natural language
processing systems [2], identification of initial computer
adaptive learning items [3], assessment of the utility of ML
classifiers [4], and ML feature selection [5]. However, using
IRT in the manner proposed in this study has not yet been
undertaken.

The varied and numerous contexts (eg, business, finances,
medicine, home, government agencies) in which ML is being
used is no less than staggering [6]. Since the advent of the
development of ML classification protocols, there has been a
commensurate interest in assessing and comparing their efficacy
[7]. Evaluation techniques fall into several major categories
[8-12]. Many techniques use estimates of single scalar values
to summarize the quality of classification based on the
frequencies in a confusion matrix (true-positive, false-positive,
true-negative, and false-negative). The most common measures
include accuracy, precision, negative predictive value,
sensitivity, and specificity, although some combine sensitivity
and specificity (eg, Youden index, likelihoods, and discriminant
power) [13]. Further refinements of scalar estimates have been
introduced including reducing the amount of bias and variance
of the estimate that have enhanced their interpretability [14],
presenting statistical comparisons (eg, t test, conservative z,
McNemar test) between ML protocol scalar outcomes [15] and
assessing the invariance of estimates with changes in the
confusion matrix [16]. Graphical presentations of the confusion
matrix data at various points along a continuum include gain
and lift charts, receiver operating characteristic curves, and area
under the curve (AUC). These provide a more comprehensive
depiction of the various scalar measures [12] by contextualizing
them.

Despite the advances in metric development, there is an interest
in developing more extensive descriptions of ML classification
outcomes. For example, it has been argued that “... any single
scalar measure has significant limitations” and “that such
measures ... oversimplify complex questions and combine things
that should be kept separate” [17]. Another issue is that many
different programs, search and optimize strategies, and
evaluation approaches have populated the literature, sparking
researchers to attempt to systematize the findings for more
general consumption [18]. Some reviews have supported the
contention that ML algorithms should outperform human experts

[19], but others have found that overly complex approaches
used in some ML models are no better than simpler, more
intuitive models [20]. Studies should give readers an
understanding of the reasons why algorithms perform
differently, rather than simply providing results of differences
between 2 scalar summary values [21,22].

These comments are consistent with general calls for a fuller
explanation regarding the interpretability of ML studies [23],
particularly in the biomedical and health fields that have been
slower to exploit this technology. Overreliance on text-based
information rather than contextual elements and the inherent
uncertainty in medical decision making have been cited as
problems in applying ML findings [24]. The associations within
data sets that are theory-free offer little guidance with regard
to improving clinical care [25]. Medical professionals are not
well trained in how ML works and thus are not able to critically
evaluate the utility of the reported findings [26].

The ML criticism of the lack of attention to the unique
characteristics of the individual cases is the focus of this study.
We propose to address this challenge using a more
comprehensive, case-nuanced approach. Although there has
been some work in this regard, such as the now accepted wisdom
that standard classifiers do not work well with imbalanced data
[27], a focus on the individual cases that fall into the miss or
false-positive categories has only rarely been investigated as a
point of interest [28].

This lack of attention is highlighted in the assessment study of
various ML models; they often result in comparable outcomes
as similar percentages of cases are misclassified regardless of
the model used [29]. Some insight into this phenomenon was
brought to light in a study on benchmarking data sets, where
some sets had more difficult-to-classify cases and other sets
contained largely easy-to-classify cases, providing similar results
at the aggregate level regardless of the ML approach used [30].
It has been argued that cleaning up the data by eliminating some
cases in the training data set is an appropriate tactic to improve
classification accuracy [31]. We disagree with this approach
and instead argue that hard-to-classify cases should be examined
in a more systematic manner. This study shifts the focus from
the level of utility of an ML only at the aggregate sample level
toward pinpointing where that model falls short and, more
importantly, why the model falls short. The process described
identifies, a priori, which cases in the data set (balanced or
imbalanced) will be more or less difficult to classify. The
evaluation of ML algorithms across these cases will help to
understand why these cases are difficult to classify. Examining
this phenomenon in detail is as important as the classification
accuracy index of the data set as a whole.

There are 2 fundamental building blocks to any ML system: the
features of interest and the cases in the data set. To investigate
the research question in this study, methods derived from IRT
were employed as they simultaneously estimate the
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characteristics of both features and cases. Understanding this
phenomenon allows medical professionals to tailor the classifier
to the patient.

Similarities Between ML and Test Taking
Following an examination, there are discussions by students
about the test items; often they remark “that question was hard,
what did you put?” or “that was as easy question.” Such
comments reflect the purposeful construction of the test items.
Some items are designed to be relatively easy to pass whereas
others are designed to be more difficult such that only a few
can pass. Similarly, students talk about the test takers—“she
always gets the highest score in the class” or “I think I have a
50-50 chance of passing.” Test takers are quite cognizant of the
fact that not all test items are created equal and that not all test
takers have the same ability. These fundamental assumptions
give rise to IRT, where the characteristics of the items and of
the students are modeled together, providing a clearer picture
about which items discriminate between which test takers.

A parallel can be drawn between a set of students passing or
failing a test based on their performance on a set of items with
a set of patients being classified into 1 of 2 categories (alive or
not alive) based on their scores on a set of health-related
features. Using the test item information, an ML classifier should
be able to predict which students will pass or fail the test, and
using the feature information, an ML classifier should be able
to predict which patients will be alive or not alive. There is
likely to be a base level at which it correctly classifies cases as
belonging to 1 group or another by chance alone, and additional
case information on each feature should enhance the prediction.
Some cases can be easily partitioned into the pass the test (ie,
they pass all the items) or fail the test (ie, they fail all the items).
Cases with more moderate levels of mastery however would be
expected to pass some and fail some items (features in ML
terms). It is these difficult cases where classifiers would be less
likely to successfully predict their probability of passing or
failing the test. One option to enhance prediction is to add more
features to help classify these more difficult cases, but doing
so results in high dimensionality, overfitting models,
difficult-to-interpret findings, and nongeneralizing results. This
quandary is a classic optimization problem in the ML literature.

As not all test takers score 100% or 0% on an examination,
some combination of right and wrong answers to questions
provides an index of individual test-taker ability in completing
the test. The term ability (symbolized by the term theta, θ) is
used in the psychometric literature where IRT evolved and is
used to describe any latent construct of interest being measured.
In this study, within-range or out-of-range laboratory values
and vital signs as well as demographic information comprise
the features in our data sets. Thus, we can ascertain a case’s
placement with respect to the underlying distribution of
unhealthiness. These individual case-based indices create a
distribution of unhealthiness across all features (or in our case
laboratory values, vital signs, and demographic information).
Depending on where individual patients fall on the distribution,
the ease with which ML classifiers correctly predict the outcome
(mortality) is expected to be affected—those concentrated in
the central area of the distribution will be more challenging to

correctly classify relative to those cases lying more at the tails
of the distribution. Thus, rather than labeling case scores as
being on a healthy-unhealthy continuum, suggesting these scores
might only be useful in a health context, we use the classification
difficulty index (CDI) because of their ease or difficulty in being
able to be correctly classified using supervised ML.

The process of generating CDIs on the unhealthiness continuum
will be carried out without using the outcome variable of
mortality itself, that is, IRT provides case-based scores (CDIs)
that can be examined before the data as a collective is subjected
to an ML protocol.

Specific Study Hypotheses and Research Questions
The IRT analysis provides case-based CDIs using a set of feature
characteristics that do not use the information on the outcome
classification variable. CDIs for the sample are generated along
the normal distribution, with a mean 0.0 (SD 1.0). It is
hypothesized that cases with more centrally located CDIs will
be less likely to be classified correctly, whereas cases with more
peripherally located CDIs will be more likely to be classified
correctly. One research question is as follows: Will some ML
classifiers be more accurate in classifying cases at all CDIs?
Another research question is as follows: Will some ML
classifiers be more accurate than others in classifying cases at
different CDIs? Identifying these cases a priori provides an
alternative manner to evaluate different ML protocols or
classification methods and will advance our understanding of
ML findings and the data they are being fed with.

Methods

Data Sets
Data were obtained through 2 large, freely available data sets.
One was the MIMIC-III (Medical Information Mart for Intensive
Care III) database housing health data of >40,000 critical care
unit patients at the Beth Israel Deaconess Medical Center
admitted between 2001 and 2012 [32,33]. The other was the
electronic intensive care unit (eICU) Collaborative Research
Database that houses data from critical care unit patients from
across the continental United States admitted between 2014 and
2015 [34].

Case Inclusion
Databases were queried using the SQL plug-in for Python
(Python Software Foundation). Case inclusion criteria were as
follows: (1) age 16 years, (2) at least three-fourth of the features
of interest were available for a select case (patient), leading to
subsequent imputation, and (3) first hospital visit in the case of
repeated patients. Features of predictive interest were selected
based on 2 common severity of illness scores: Simplified Acute
Physiology Score II and Acute Physiology and Chronic Health
Evaluation IV for MIMIC-III and eICU, respectively. To test
the hypothesis with both balanced and imbalanced data sets,
the number of death cases in both data sets (coded 1) was noted
and the same number of cases of no death was then randomly
selected and incorporated into the balanced data sets. Imbalanced
data sets were created by randomly sampling twice as many no
death cases compared with death cases. We used the 1/3:2/3
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imbalance ratio to detect any change in results using a somewhat
mildly imbalanced than an extremely imbalanced set.

For the MIMIC-III data set, there were 4039 cases that
experienced death in hospital, resulting in a final and balanced
sample size of 8078 and imbalanced sample size of 12,117. In
the eICU data set, there were 10,970 death in hospital cases.
Employing the same methodology resulted in a balanced sample
size of 21,940 and an imbalanced sample size of 32,910.

Features
The features included demographic, procedural, pre-existing
conditions, and laboratory values (Tables 1 and 2). Normal
values were presented and were obtained from the Medical
Council of Canada [35] unless otherwise noted. Laboratory

values represent the worst values taken during the intensive care
unit (ICU) stay in both data sets in the first 24 hours. In the IRT
component of the analyses, variables were dichotomized into
disease-promoting states (1) akin to failing the item on the test
or disease-protective states (0; passing the item). Values that
fell outside the normal laboratory ranges were coded as 1 (too
low or too high). Pre-existing conditions were coded as 1
(present) or 0 (absent). Age was demarcated at 65 years, with
those aged >65 years coded 1 and those aged ≤65 years coded
0 [36-39]. For the sex variable, men were assigned 1 and women
were assigned 0 [40]. Imputation of missing data was performed
using a multiple imputation chained equations technique using
the impyute library in Python 3.7.7 to preserve the pre-existing
distribution of features.

Table 1. Medical Information Mart for Intensive Care III variables based on Simplified Acute Physiology Score II.

Normal values, unitsDescriptionFeature name

Absent: 0, 0 or 1Pre-existing diagnosisAIDS

Absent: 0, 0 or 1Pre-existing diagnosisHeme malignancy

Absent: 0, 0 or 1Pre-existing diagnosisMetastatic cancer

15b, 1-15Glasgow Coma ScaleMinimum GCSa

4-10, 109Lowest white blood cellWBCc minimum

4-10, 109Highest white blood cellWBC maximum

135-145, mmol/LSodium minimumNa minimum

135-145, mmol/LSodium maximumNa maximum

3.5-5, mmol/LPotassium minimumK minimum

3.5-5, mmol/LPotassium maximumK maximum

≤1.52, mg/dLBilirubin maximumBilirubin maximum

24-30, mmol/LBicarbonate minimumHCO3 minimum

24-30, mmol/LBicarbonate maximumHCO3 maximum

7-22, mg/dLBlood urea nitrogen minimumBUNd minimum

7-22, mg/dLBlood urea nitrogen maximumBUN maximum

85-105, mm HgPartial pressure of oxygenPO2

21, %Fraction of inspired oxygenFiO2

60-100, bpmMean heart rateHeart rate mean

95-145, mm HgMean systolic blood pressureBP mean

36.5-37.5, ℃Maximum temperatureMax temp

800-2000e, mL/24hUrine outputUrine output

Male: 1, Female: 0, Male or femaleMale or femaleSex

≤65: 0, yearsAge in yearsAge

Emergency: 1; else: 0, N/AfEmergency or electiveAdmission type

aGCA: Glasgow Coma Scale.
bTeasdale and Jennett, 1974 [41]; Teasdale and Jennett, 1976 [42].
cWBC: white blood cell.
dBUN: blood urea nitrogen.
eMedical CMP, 2011 [43].
fN/A: not applicable.
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Table 2. Electronic intensive care unit data set variables based on Acute Physiology and Chronic Health Evaluation IV.

Normal values, UnitsDescriptionFeature name

15b, 1-15Glasgow Coma ScaleGCSa

800-2000c, mL/24 hourUrine output in 24 hoursUrine output

4-10, 109White blood cell countWBCd

135-145, mmol/LSerum sodiumNa

36.5-37.5e, ℃Temperature in CelsiusTemperature

12-20f, breaths/minHighest white blood cellRespiration rate

60-100f, bpmHeart rate/minHeart rate

70-100g, mm HgMean arterial pressureMean blood pressure

0.57-1.02 (Fh); 0.79-1.36 (Mi), mEq/LSerum creatinineCreatinine

7.35-7.45, N/AjArterial pHpH

37-46 (F); 38-50 (M), %Red blood cell volumeHematocrit

3.5-5.0, g/dLSerum albuminAlbumin

85-105, mm HgPartial pressure of oxygenPO2

35-45, mm HgPartial pressure carbon dioxidePCO2

7-22, mg/dLBlood urea nitrogen maximumBUNk

68-200, mL/dLBlood sugar levelGlucose

≤1.52, md/dLSerum bilirubinBili

21l, %Fraction of inspired oxygenFiO2

Male: 1; female: 0, M or FMale or femaleSex

≤65: 0, yearsAge in yearsAge

Absent: 0, 0 or 1Pre-existing diagnosisLeukemia

Absent: 0, 0 or 1Pre-existing diagnosisLymphoma

Absent: 0, 0 or 1Pre-existing diagnosisCirrhosis

Absent: 0, 0 or 1Pre-existing diagnosisHepatic failure

Absent: 0, 0 or 1Pre-existing diagnosisMetastatic cancer

Absent: 0, 0 or 1Pre-existing diagnosisAIDS

Absent: 0, 0 or 1Medical interventionThrombolytics

Absent: 0, 0 or 1Medical interventionVentilator

Absent: 0, 0 or 1Medical interventionDialysis

Absent: 0, 0 or 1Medical interventionImmunosuppressed

Absent: 0, 0 or 1Medical interventionElective surgery

aGCS: Glasgow Coma Scale.
bTeasdale and Jennett, 1974 [41]; Teasdale and Jennett, 1976 [42].
cMedical CMP, 2011 [43].
dWBC: white blood cell.
eLapum et al. 2018 [44].
fMDCalc [45].
gHealthline [46].
hF: female.
iM: male.
jN/A: not applicable.
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kBUN: blood urea nitrogen.
leICU Collaborative Research Database [47].

IRT Analyses
Using the IRTPRO (Scientific Software International) program,
a 2-parameter logistic model (2PL) was run on the dichotomous
data. The program uses a marginal maximum likelihood
estimation procedure to calculate feature and case parameters
[48] and assumes that respondents belong to a population that
can be characterized by their placement on a latent normal
probability distribution—unhealthiness in this study with the
left and right sides of the distribution indicating better and worse
health, respectively [49]. Although higher scores on the latent
distribution in IRT usually indicate better outcomes (eg, students
have passed more items on a test), in this context, higher scores
mean more of the patients’ features were out of range and are
thus associated with worse outcomes (ie, higher likelihood of

death). The output generates logistic item characteristic curves
that describe each feature’s relationship to the underlying
distribution. For each feature, 2 characteristics were estimated,
slope and location.

Equation 1 shows a 2PL model in IRT; slope (ai) captures the
discriminability capacity of the feature. Feature functions with
flat slopes indicate that they are not very discriminatory, whereas
those with steep slopes are highly discriminatory, particularly
at the inflection point. The location (bi) denotes where along
the function the inflection point occurs. As the functions are set
along the standard normal distribution (mean 0.0, SD 1.0), this
point indicates where along the unhealthiness continuum the
feature is most likely to differentiate cases. An example is
presented in Figure 1.

Figure 1. Characteristic curve using a 2-parameter logistic model.

CDI estimation in a 2PL model is calculated based on equation
2, where the probability of obtaining the correct answer is based
on the scores on the items’ ui weighted by ai.

Equation 3, where ui ∈ (0, 1) is the score on item i, is called the
likelihood function. It is the probability of a response pattern
given the CDIs and the item parameters across cases. There is
1 likelihood function for each response pattern, and the sum of
all such functions equals 1 at any value of the distribution. On
the basis of the pattern of each case’s values on the features,
the program uses a Bayesian estimation process that provides
a CDI on the unhealthiness continuum for each case in the data
set.

CDIs are reported on the standard normal distribution and
typically range between −2.50 and +2.50. Each case’s CDI has
its own individual SE around it based on the individual’s pattern
of results across all features and their unique characteristics.
Using the results from the 2PL model, it was possible to identify
which of the cases were more centrally or more peripherally
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located on the distribution and thus would be less or more likely
to be accurately classified into their respective categories (no
death or death).

To allow for easy visualization and testing of effects, several
strata bins were created into which continuous IRT CDIs could
be assigned. These bins were separated at every 0.5 difficulty
change in the distribution of the data. The first bin was centered
over the 0.0 mark to denote the most difficult cases and
subsequent bins were demarcated at 0.5 levels toward each
periphery. This process of bin allocation continued until all
observed CDIs for the cases were accounted for.

ML Analyses
Multiple ML algorithms were tested using the original feature
values for both MIMIC-III and eICU data sets. These included
logistic regression, linear discriminant analysis, K-nearest
neighbors, decision tree, naive Bayes, and neural network. Both
the K-nearest neighbors and neural network had their
hyperparameters optimized by a grid search. In the case of the
K-nearest neighbors, the search grid included K from 1 to 40
and distance methods of Minkowski, Hamming, and Manhattan.
The grid investigated for the neural network included activation
functions such as softmax, softplus, softsign, relu, Tanh,
sigmoid, and hard sigmoid; learning rates such as 0.001, 0.01,
0.1, 0.2, and 0.3; and hidden neurons in a single hidden layer
of 1, 5, 10, 15, 20, 25, and 30. In each of these methods, a
10-fold cross-validation was performed, and the numerical
prediction was extracted for each case and then reassociated
with its subject ID number for graphical plotting. The evaluation
methods, accuracy, precision, recall, F1, and AUC metrics were
calculated. Accuracy was used to assess the hypotheses and
research questions.

Comparison Analyses
To test the main effects of CDI and the repeated measure of the
ML classifier as well as their interaction on each case’s accuracy
score (0,1), generalized linear mixed model (GLMM) [50]
analyses were conducted using the GENLINMIX program of

SPSS 23 [51]. GENLINMIX uses the penalized quasi-likelihood
estimation method for fixed effects. Separate analyses for each
of the balanced and imbalanced data sets were conducted. The
standard form of the GLMM is shown in equations 4 and 5. y
is a response vector, and b is the random effects vector. Distr
is a conditional distribution of y given b. µ is the conditional
mean, and is the dispersion parameter.

In equation 5, g(µ) is the logit link function that defines the
relationship between the mean response µ and the linear
combination of predictors. X represents the fixed effects matrix,
and Z is a random effects matrix, where is simply an offset to
the model.

The models specified that (1) all effects are fixed, (2) the
dependent variable follows a binomial distribution, and thus
the predictors and criterion are linked via a logit function, (3)
the residual covariance matrix for the repeated measure (ML
classifier) is diagonal, and (4) the reference category was set to
0. Follow-up paired-comparison tests on the estimated marginal
and cell means used a P level of<.001 to protect against a type
I error.

Results

IRT 2PL Model Results
Descriptive results of case CDIs are shown in Table 3, and
frequency distributions are shown in Figures 2 and 3
(MIMIC-III) and Figures 4 and 5 (eICU).

It should be noted that the 2 data sets have different
distributions, and this fingerprint is inherently unique to the
data set processed.

Table 3. Item response theory case classification difficulty index results.

Two-tailed t valuecDeath, mean
(SD)

No death,
mean (SD)

Point-biserial correlationsbOverall, mean (SD)CDIa rangeData set

P valuet test (df)P valuer value

<.00135.76 (8077)0.32 (0.80)−0.32 (0.79)<.0010.370.00 (0.85)−1.81 to
+2.16

MIMIC-IIId bal-
anced

<.00140.88
(12116)

0.42 (0.80)−0.21 (0.80)<.0010.350.00 (0.85)−1.70 to
+2.27

MIMIC-III imbal-
anced

<.00186.18
(21939)

0.40 (0.64)−0.40 (0.73)<.0010.500.00 (0.80)−2.63 to
+2.83

eICUe balanced

<.001109.09
(32909)

0.59 (0.61)−0.29 (0.73)<.0010.510.00 (0.81)−2.55 to
+2.93

eICU imbalanced

aCDI: classification difficulty index.
bBetween CDI and outcome (no death or death).
cDifference between no death and death means.
dMIMIC III: Medical Information Mart for Intensive Care.
eeICU: electronic intensive care unit.
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Figure 2. Classification Difficulty Indexes in MIMIC-III (A) balanced and (B) imbalanced data. CDI: classification difficulty index; MIMIC: Medical
Information Mart for Intensive Care.

Figure 3. Classification Difficulty Indexes in eICU (A) balanced and (B) imbalanced data. eICU: electronic Intensive Care Unit; DT: decision tree;
KNN: K-nearest neighbors; LDA: linear discriminant analysis; LR: logistic regression; NB: naive Bayes; NN: neural network.

Using the feature parameter estimates and case CDI, the unique
differentiating capacity for each feature can be depicted by
calculating the probability of each case falling into the 0 (no
death) or 1 (death) categories. For example, the slope and
location parameters for the blood urea nitrogen (BUN) minimum

and urine output for the 2 MIMIC-III data sets are shown in
Table 4. The higher slope of the BUN minimum feature is
contrasted with the very low slope of the urine output feature.
These differences highlight the importance of some features
over others in terms of being useful in categorizing cases.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e20268 | p. 8http://www.jmir.org/2020/9/e20268/
(page number not for citation purposes)

Kline et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Medical Information Mart for Intensive Care III feature parameters.

LocationSlopeFeature parameters

Balanced

0.095.64Blood urea nitrogen (minimum)

−2.230.15Urine output

Imbalanced

0.025.22Blood urea nitrogen (minimum)

−3.590.09Urine output

Similar to the MIMIC-III results, the IRT analyses of the eICU
showed that BUN was a highly discriminating feature whereas
urine output was not (Table 5). In fact, many of the features for

both MIMIC-III and eICU were not discriminatory (slopes of
<0.35 [52]).

Table 5. Electronic intensive care unit feature parameters.

LocationSlopeFeature parameter

Balanced

−0.331.55Blood urea nitrogen (minimum)

−1.190.04Urine output

Imbalanced

−0.11.49Blood urea nitrogen (minimum)

−1.390.03Urine output

ML Classification Results
Checking the K-nearest neighbors grid warranted using
Manhattan distancing and 27 nearest neighbors for MIMIC-III
and Manhattan distancing with 19 neighbors for eICU. The

neural network grid search results returned an optimum learning
rate of 0.001, activation function softmax, and a number of
hidden nodes, 15 for MIMIC-III and 17 for eICU.

Traditional metrics of accuracy, precision, recall, F1, and AUC
are presented for MIMIC-III in Table 6.
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Table 6. Medical Information Mart for Intensive Care III classification performance in traditional metrics.

NNf (%)NBe (%)DTd (%)KNNc (%)LDAb (%)LRa (%)Metric

Balanced

76.170.470.967.275.075.3Accuracy

75.679.571.169.375.675.8Precision

77.254.970.661.873.874.3Recall

76.464.970.865.374.775.0F1

76.570.470.967.275.075.3AUCg

Imbalanced

80.575.373.772.877.978.3Accuracy

72.767.760.663.173.873.3Precision

66.649.660.644.452.154.8Recall

69.557.360.652.261.162.7F1

76.968.970.965.771.472.4AUC

aLR: logistic regression.
bLDA: linear discriminant analysis.
cKNN: K-nearest neighbor.
dDT: decision tree.
eNB: naive Bayes.
fNN: neural network.
gAUC: area under the curve.

In both the balanced and imbalanced MIMIC-III data sets, the
neural network outperformed the other classifiers (balanced:
accuracy was 76.1% and imbalanced: accuracy was 80.5%)
using traditional metrics. It is worth highlighting the role an
imbalanced data set has on an increased accuracy and a
reduction in precision, recall, and F1.

Table 7 shows our proposed method of demonstrating accuracy
as a function of CDI. The metric used in Table 7 is accuracy as
F1, recall, and precision were undefined in the extreme negative
(where features were predominantly 0), and no cases of death
existed by which to divide. A parabolic relationship existed in
the accuracy level and the strata values, where those more distant
from the strata bin=0 were more likely to be classified correctly.
ML researchers should be most interested in the problematic
cases CDI bin 0.0 and where we observe that all classifiers

struggle with prediction. These results suggest that even if a
classifier outperforms its counterparts as shown in the traditional
metrics of Table 6 (eg, neural network), it may be surpassed in
the more fine-grained approach shown in Table 7 (eg, naive
Bayes algorithm within the +1.5 CDI bin of the balanced data
set).

In both the balanced and the imbalanced eICU data sets (Table
8), the neural network outperformed the other classifiers using
traditional metrics. Similar to the MIMIC-III findings, the
imbalanced data set resulted in increased accuracy and decreased
precision, recall, and F1.

Table 9 shows our alternative method of demonstrating accuracy
as a function of CDI. Cases that were more distant from the
strata bin=0 were more likely to be classified correctly.
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Table 7. Item response theory–based Medical Information Mart for Intensive Care III mortality prediction accuracy stratified by classification difficulty
index.

NNg (%)NBf (%)DTe (%)KNNd (%)LDAc (%)LRb (%)CDIaNumber of cases

Balanced

100.0100.0100.0100.0100.0100.02.51

92.392.392.384.692.392.32.013

88.389.280.480.488.290.21.5316

77.068.468.868.274.975.61.01884

71.165.465.963.570.670.50.51321

73.966.268.862.872.472.00.0952

72.163.767.160.470.670.9−0.51346

78.375.275.470.977.177.0−1.01955

94.595.591.083.394.894.8−1.5288

100.0100.0100.0100.0100.0100.0−2.03

Imbalanced

100.0100.0100.0100.0100.0100.02.51

93.393.373.376.793.393.32.030

78.377.471.164.175.777.41.5571

73.364.665.063.970.370.61.01886

79.772.771.267.375.576.30.51537

80.376.874.575.678.078.70.01251

78.472.372.171.074.575.0−0.52794

89.187.183.385.088.388.3−1.02722

98.899.198.296.699.199.1−1.5325

aCDI: classification difficulty index.
bLR: logistic regression.
cLDA: linear discriminant analysis.
dKNN: K-nearest neighbor.
eDT: decision tree.
fNB: naive Bayes.
gNN: neural network.
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Table 8. Electronic intensive care unit classification performance in traditional metrics.

NNf (%)NBe (%)DTd (%)KNNc (%)LDAb (%)LRa (%)Metric

Balanced

84.766.676.767.277.477.9Accuracy

84.573.776.767.978.177.9Precision

84.951.676.865.376.377.9Recall

84.760.776.766.677.277.8F1

85.966.677.167.277.477.9AUCg

Imbalanced

89.573.381.673.680.178.0Accuracy

84.762.072.164.175.173.6Precision

83.551.572.947.260.262.1Recall

84.156.372.554.466.867.4F1

87.867.979.367.075.175.5AUC

aLR: logistic regression.
bLDA: linear discriminant analysis.
cKNN: K-nearest neighbor.
dDT: decision tree.
eNB: naive Bayes.
fNN: neural network.
gAUC: area under the curve.
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Table 9. Item response theory–based electronic intensive care unit mortality prediction accuracy stratified by classification difficulty index.

NNg (%)NBf (%)DTe (%)KNNd (%)LDAc (%)LRb (%)CDIaNumber of cases

Balanced

100.0100.050.0100.0100.0100.03.02

85.286.978.775.482.082.02.561

83.481.976.375.082.581.32.0160

87.983.779.274.586.886.21.5621

85.466.378.372.182.983.71.03167

80.955.273.164.772.774.00.54998

80.057.371.558.570.170.90.04776

84.367.474.463.374.573.8−0.53864

91.883.184.874.485.585.4−1.02858

96.491.991.784.392.692.5−1.51183

97.996.395.891.797.197.1−2.0240

100.0100.0100.0100.0100.0100.0−2.510

Imbalanced

83.366.666.683.383.366.73.06

84.587.975.969.081.082.82.558

82.376.372.667.078.679.12.0215 

85.772.875.265.479.079.81.51369

83.958.474.861.672.472.21.04776

83.157.357.372.167.067.30.56657

88.570.378.870.076.976.40.07068

93.783.487.383.287.387.1−0.56396

97.792.794.392.095.094.8−1.04265

99.497.397.997.198.098.0-1.51763

99.198.498.498.499.199.1-2.0317

100.0100.0100.0100.0100.0100.0-2.520

aCDI: classification difficulty index.
bLR: logistic regression.
cLDA: linear discriminant analysis.
dKNN: K-nearest neighbor.
eDT: decision tree.
fNB: naive Bayes.
gNN: neural network.

Effect Testing
The CDI group sizes at the extreme ends were too small and
were collapsed into the next level down for each data set. Tests
of the effects of MIMIC-III are reported in Table 10 and Figure
4.

The MIMIC-III balanced data showed significantly better
accuracies for the more peripheral than central CDI bins.
K-nearest neighbors and decision tree were the poorest
classifiers. Although there was a small significant interaction
effect, by and large, the main effects were borne out.
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Table 10. Tests of the effects of classification difficulty index, classifier, and their interaction for the Medical Information Mart for Intensive Care III
data set.

Significant paired comparisons (P<.001; higher accuracies
listed first)

SignificanceEffect

P valueF test (df)

Balanced

<.001123 (6,48456)CDIa • −1.5 vs −1.0, −0.5, 0.0
• −1.0 vs −.05, 0.0
• +1.0 vs +0.5, 0.0
• +1.5 vs +1.0, +0.5, 0.0

<.00152 (5,48456)MLb classifier • LRc, LDAd, NBe, NNf vs KNNg, DTh

• DT vs KNN

<.0012 (30,48456)CDI×ML classifier • −1.5: LR, LDA, NB, NN, DT vs KNN
• −1.0: LR, LDA, NB, NN, DT vs KNN
• −0.5: LR, LDA, DT, NN vs NB, KNN
• 0.0: LR, LDA, DT, NN vs NB, KNN
• +0.5: LR, LDA, NN vs NB, KNN, DT
• +1.0: LR, LDA, NN vs NB, KNN, DT
• +1.5: LR, LDA, NB, NN vs KNN DT

Imbalanced

<.001314 (6,72660)CDI • −1.5 vs −1.0, −0.5, 0.0
• −1.0 vs −.05, 0.0
• 0.0 vs −0.5, +0.5, +1.0
• +0.5 vs +1.0
• +1.5 vs +1.0

<.00112 (5,72660)ML classifier • LR, LDA, NB, NN vs KNN, DT

.0042 (30,72660)CDI×ML classifier • −1.5: no differences
• −1.0: LR, LDA, NB, NN vs KNN, DT
• −0.5: LR, LDA, NN vs NB, KNN, DT
• 0.0: NN vs DT

aCDI: classification difficulty index.
bML: machine learning.
cLR: logistic regression.
dLDA: linear discriminant analysis.
eNB: naive Bayes.
fNN: neural network.
gKNN: K-nearest neighbor.
hDT: decision tree.
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Figure 4. Medical Information Mart for Intensive Care (MIMIC) III generalized linear mixed model (GLMM) accuracy results; machine learning
classifier against CDI for (A) balanced and (B) imbalanced data. DT: decision tree; KNN: K-nearest neighbors; LDA: linear discriminant analysis; LR:
logistic regression; NB: naive Bayes; NN: neural network.

The MIMIC-III imbalanced data set showed that at the healthier
end of the CDI continuum, more peripheral cases were
accurately classified. This was not the case at the central and
unhealthier end of the continuum. Like the balanced data set,
K-nearest neighbors and decision tree were the poorest

classifiers. Although the interaction was significant, most of
the paired comparisons supported the main effect findings.

Tests of the effects from eICU are reported in Table 11 and
Figure 5.
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Table 11. Tests of the effects of classification, classifier, and their interaction for the electronic intensive care unit data set.

Significant paired comparisons (P<.001; higher accuracies
listed first)

SignificanceEffect

P valueF test (df)

Balanced

<.001382 (8,131586)CDIa • −2.0 vs −1.5, −1.0, −0.5, 0.0
• −1.5 vs −1.0, −0.5, 0.0
• −1.0 vs −.05, 0.0
• +1.0 vs +0.5, 0.0
• +1.5 vs +1.0, +0.5, 0.0
• +2.0 vs +0.5, 0.0

<.00158 (5,131586)MLb classifier • NNc vs LRd, LDAe, DTf vs NBg vs KNNh

<.0019 (40,131586)CDI×ML classifier • −2.0: NN vs KNN
• −1.5: NN vs LR, LDA, NB, DT vs KNN
• −1.0: NN vs LR, LDA, NB, DT vs KNN
• −0.5: NN vs LR, LDA, DT vs NB vs KNN
• 0.0: NN vs LR, LDA, DT vs NB vs KNN
• +0.5: NN vs LR, LDA, DT vs KNN vs NB
• +1.0: NN vs LR, LDA vs DT vs KNN vs NB
• +1.5: NN, LR, LDA vs NB vs DT vs KNN
• −2.0: NN vs KNN

Imbalanced

<.0011138 (8,197406)Difficulty CDI • −2.0 vs −1.0, −0.5, 0.0
• −1.5 vs −1.0, −0.5, 0.0
• −1.0 vs −.05, 0.0
• −0.5 vs 0.0
• 0.0 vs +0.5, +1.0
• +1.0 vs +0.5
• +1.5 vs +0.5, +1.0
• +2.0 vs +1.0, +0.5

<.00128 (5,197406)ML classifier • NN vs LR, LDA vs DT vs NB, KNN

<.0014 (40,197406)CDI×ML classifier • −2.0: no differences
• −1.5: NN vs LR, LDA, NB, KNN, DT
• −1.0: NN vs LR, LDA, DT vs KNN, NB
• −0.5: NN vs LR, LDA, DT vs KNN, NB
• 0.0: NN vs LR, LDA vs DT vs KNN, NB
• +0.5: NN vs LR, LDA vs DT vs KNN, NB
• +1.0: NN vs LR, LDA, DT vs KNN, NB
• +1.5: NN, LR vs LDA vs DT, NB vs KNN
• +2.0: NN, LR vs KNN

aCDI: classification difficulty index.
bML: machine learning.
cNN: neural network.
dLR: logistic regression.
eLDA: linear discriminant analysis.
fDT: decision tree.
gNB: naive Bayes.
hKNN: K-nearest neighbor.
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Figure 5. Electronic intensive care unit (eICU) generalized linear mixed model (GLMM) accuracy results; machine learning classifier against CDI for
(A) balanced and (B) imbalanced data. DT: decision tree; KNN: K-nearest neighbors; LDA: linear discriminant analysis; LR: logistic regression; NB:
naive Bayes; NN: neural network.

For the eICU balanced data set, moving away from the central
bin showed significantly better accuracy, except at the +2.0
level, which was similar to the +1.5 ML classifier estimated
means showed that the neural network had significantly better
accuracy than all other classifiers. The overall interaction effect
was significant, but the paired comparisons were similar to the
main effects.

For the eICU imbalanced data set, more peripheral cases were
accurately classified at the healthier end of the distribution,
whereas there was only a slight improvement at the unhealthier
end. Similar to the other analyses, the neural network showed
the best classification accuracy. Although the overall interaction
was significant, the neural network continued to be the best
classifier.

Discussion

Principal Findings
The results generally supported the hypothesis that cases with
more extreme IRT-based CDI values are more likely to be
correctly classified than cases with more central CDI values.
This provides a unique manner to evaluate the utility of ML
classifiers in a health context. We were able to demonstrate that
ML classifiers performed similarly for the extreme cases,
whereas for the centrally located cases, there were more
differences between classifiers. Thus, ML classifiers can be
evaluated based on their relative performance with cases of
varying difficulty.

Although these were the general results, there were several
specific findings that are worth noting. First, the neural network
classifier was the best across all situations. The logistic
regression and linear discriminant analysis classifiers were close
to the second-best classifiers, whereas K-nearest neighbors
almost always performed the worst. It is possible, as found in

this study, that classifiers may turn out to be consistent over all
levels of difficulty. However, owing to the unique characteristics
of both data sets and classifiers selected, some algorithms may
yield better results at various levels of case difficulty in other
samples.

It was also clear that the peripheral-central trend of correct
classification was most closely adhered to for cases with
negative CDI values (ie, at the healthier end of the CDI
distribution), and this trend was particularly pronounced with
the imbalanced (2/3 nondeath) data sets. We adopted this modest
imbalance in this research to detect trends such as these. This
finding is pertinent to ML training protocols in that it is best to
train them on balanced data sets before running them on
imbalanced ones. There is a clear training effect toward negative
CDI or the majority class in our case.

On the basis of the IRT analysis results, easier- and
harder-to-classify cases were identified. This has implications
for research and clinical practice. Once the cases have been
identified, other information gathered from their patient-specific
data may provide clues about why they are easier or harder to
classify, diagnose, or treat. The features themselves that have
varying weighted importance in the indexing process can be
examined to assess for any differences in a patient’s CDI, that
is, not just how many they got wrong but which they got wrong
or correct to justify their position in eluding an ML classifier.

As an example of how one could examine more closely the
problematic patients, we selected the neural network accuracies
for each case in the 0 CDI bin in the MIMIC-III balanced data
set. This provided 952 cases, 704 (73.9%) were correctly
classified and 248 (26.1%) were not. A series of chi-square
analyses were conducted using the in and out-of-range coding
for each of the features crossed with accuracy. Not surprisingly,
these cases did not differ on most of the features; the only ones

with differences were WBC max (χ2
1=5.6; P=.02), where those
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who were more accurately classified had out-of-range scores;

bilirubin max (χ2
1=4.2; P=.04), where those who were more

accurately classified had normal scores; and mean heart rate

(χ2
1=7.1; P=.008, where those who were more accurately

classified had normal scores. Using an approach like this can
assist in determining which features in more problematic cases
may be differentiated.

Relationship With Previous Work
An IRT analysis can assist in providing a better understanding
of why the classification process works well or falls short on
the set of features and cases under investigation. This moves
the field closer to having interpretable and explainable results
[53,54]. Recent research with another ICU data set also argues
about the importance of explainable processes as well as results
[55]. Early research into ML focused on knowledge as an
outcome and adopted an informal approach to evaluation. As
the field has progressed, the focus shifted to large data sets,
mathematical formulae, single evaluation metrics, and statistics,
which has impoverished the discipline [22]. “Choosing
performance metrics and confidence estimation methods blindly
and applying them without any regard for their meaning and
the conditions governing them, is not a particularly interesting
endeavor and can result in dangerously misleading conclusions”
[9].

Limitations and Future Research
Limitations of this research include the fact that classifiers
showcased here were not exhaustive, only ICU data sets were
used, and converting an out-of-range laboratory value as either
in range=0 or out of range=1 is reductive. Although this is true,
the purpose of this study is to demonstrate a new evaluation
metric using a basic 2PL model with binary data.

There are several ways to extend this work. Future research
calls for (1) applying this method to other data sets to generalize
its use, (2) using polytomous IRT models (eg, 0=in range,
1=somewhat out of range, and 2=very out of range) for more
fine-grained case CDI scoring, (3) using multidimensional IRT
models to obtain CDIs on >1 underlying dimension, and (4)
using this approach to compare human versus machine
classification accuracy across case difficulty. We can extend
the intersection of ML with clinical medicine if we liken a

physician to an ML classifier using feature data. It would be
particularly interesting to compare case accuracies based on
traditional ML versus clinical classifiers for cases of varying
difficulty using an approach similar to that demonstrated in this
study. Identifying which cases clinical classifiers are better
suited to address, and which cases should be offloaded to an
automated system allows for the optimal use of scarce resources.
As clinical expertise is developed over time, the use of ML
algorithms to assist any single individual would be a moving
target and would also serve as a source of future research.

Another way to improve the veracity of the findings would be
to address the issue of extraneous features. Several of the
features in MIMIC-III and eICU had very low (<0.35)
discrimination (slope) parameters, suggesting that there was a
lot of noise in the cases’ CDIs as well as in the ML
classifications. It would be a useful exercise to a priori
determine the most useful features [5] and then run the analyses
outlined in this study using a more refined feature set.

Conclusions
As more ML methods are investigated in the health care sphere,
concerns have risen because of a lack of understanding regarding
why they are successful, especially when compared with
physician counterparts. This study has suggested an IRT-based
methodology as one way to address this issue by examining the
case difficulty in a data set that allows for follow-up into
possible reasons why cases are or are not classified correctly.

Using the methods described in this study would signal a change
in the way we evaluate supervised ML. Adopting them would
move the field toward more of an evaluation system that
characterizes the entire data set on which the classifiers are
being trained and tested. Doing so circumvents the pitfalls
associated with 1 classifier being cited as more accurate or more
precise and generates a more tailored approach to ML classifier
comparisons. In addition, this methodology lends itself well to
post hoc inspections of the data as to what makes difficult cases
challenging.

The method here presents an intersection of personalized
medicine and ML that maintains its explainability and
transparency in both feature selection and modeled accuracy,
both of which are pivotal to their uptake in the health sphere.
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ML: machine learning

Edited by G Eysenbach; submitted 14.05.20; peer-reviewed by J Lalor, M Sokolova; comments to author 22.06.20; revised version
received 02.07.20; accepted 08.08.20; published 25.09.20

Please cite as:
Kline A, Kline T, Shakeri Hossein Abad Z, Lee J
Using Item Response Theory for Explainable Machine Learning in Predicting Mortality in the Intensive Care Unit: Case-Based
Approach
J Med Internet Res 2020;22(9):e20268
URL: http://www.jmir.org/2020/9/e20268/
doi: 10.2196/20268
PMID: 32975523

©Adrienne Kline, Theresa Kline, Zahra Shakeri Hossein Abad, Joon Lee. Originally published in the Journal of Medical Internet
Research (http://www.jmir.org), 25.09.2020. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The
complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license
information must be included.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e20268 | p. 21http://www.jmir.org/2020/9/e20268/
(page number not for citation purposes)

Kline et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.1016/s2589-7500(20)30018-2
http://www.jmir.org/2020/9/e20268/
http://dx.doi.org/10.2196/20268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32975523&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

