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Abstract

Background: Supervised machine learning (ML) is being featured in the health care literature with study results frequently
reported using metrics such as accuracy, sensitivity, specificity, recall, or F1 score. Although each metric provides a different
perspective on the performance, they remain to be overall measures for the whole sample, discounting the uniqueness of each
case or patient. Intuitively, we know that all cases are not equal, but the present eval uative approaches do not take case difficulty
into account.

Objective: A more case-based, comprehensive approach iswarranted to assess supervised ML outcomes and formstherationale
for this study. This study aims to demonstrate how the item response theory (IRT) can be used to stratify the data based on how
difficult each case is to classify, independent of the outcome measure of interest (eg, accuracy). This stratification allows the
evaluation of ML classifiersto take the form of a distribution rather than asingle scalar value.

Methods: Twolarge, publicintensive care unit datasets, Medical Information Mart for Intensive Care |11 and el ectronic intensive
care unit, were used to showcase this method in predicting mortality. For each data set, abalanced sample (n=8078 and n=21,940,
respectively) and an imbalanced sample (n=12,117 and n=32,910, respectively) were drawn. A 2-parameter logistic model was
used to provide scores for each case. Several ML algorithms were used in the demonstration to classify cases based on their
health-related features: logistic regression, linear discriminant analysis, K-nearest neighbors, decision tree, naive Bayes, and a
neural network. Generalized linear mixed model analyses were used to assess the effects of case difficulty strata, ML agorithm,
and the interaction between them in predicting accuracy.

Results: Theresults showed significant effects (P<.001) for case difficulty strata, ML a gorithm, and their interaction in predicting
accuracy and illustrated that all classifiers performed better with easier-to-classify cases and that overall the neura network
performed best. Significant interactions suggest that cases that fall in the most arduous strata should be handled by logistic
regression, linear discriminant analysis, decision tree, or neural network but not by naive Bayes or K-nearest neighbors. Conventional
metrics for ML classification have been reported for methodological comparison.

Conclusions: This demonstration shows that using the IRT is a viable method for understanding the data that are provided to
ML agorithms, independent of outcome measures, and highlights how well classifiers differentiate cases of varying difficulty.
This method explains which features are indicative of healthy states and why. It enables end users to tailor the classifier that is
appropriate to the difficulty level of the patient for personalized medicine.
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Introduction

Background

This study aims to demonstrate an approach to assess the
effectiveness of binary machine learning (ML) classification,
which is an alternative to the more traditional single scalar
measures in the literature. Our approach uses an item response
theory (IRT) model to enhance the understanding of the data
set on which ML protocols are run as well as the results of the
classification outcomes. Aspects of IRT’s utility have recently
surfaced in the ML literature, including comparisons of
collaborative filtering [1], evaluation of natura language
processing systems [2], identification of initial computer
adaptive learning items [3], assessment of the utility of ML
classifiers [4], and ML feature selection [5]. However, using
IRT in the manner proposed in this study has not yet been
undertaken.

The varied and numerous contexts (eg, business, finances,
medicine, home, government agencies) in which ML is being
used is no less than staggering [6]. Since the advent of the
development of ML classification protocols, there has been a
commensurateinterest in ng and comparing their efficacy
[7]. Evaluation techniques fall into several major categories
[8-12]. Many techniques use estimates of single scalar values
to summarize the quality of classification based on the
frequenciesin aconfusion matrix (true-positive, false-positive,
true-negative, and false-negative). The most common measures
include accuracy, precision, negative predictive value,
sensitivity, and specificity, although some combine sensitivity
and specificity (eg, Youden index, likelihoods, and discriminant
power) [13]. Further refinements of scalar estimates have been
introduced including reducing the amount of bias and variance
of the estimate that have enhanced their interpretability [14],
presenting statistical comparisons (eg, t test, conservative z,
McNemar test) between ML protocol scalar outcomes[15] and
assessing the invariance of estimates with changes in the
confusion matrix [16]. Graphical presentations of the confusion
matrix data at various points along a continuum include gain
and lift charts, receiver operating characteristic curves, and area
under the curve (AUC). These provide a more comprehensive
depiction of the various scalar measures[12] by contextualizing
them.

Despite the advancesin metric development, thereisan interest
in devel oping more extensive descriptions of ML classification
outcomes. For example, it has been argued that “... any single
scalar measure has significant limitations’ and “that such
mesasures ... oversimplify complex questions and combine things
that should be kept separate” [17]. Another issue is that many
different programs, search and optimize strategies, and
evaluation approaches have populated the literature, sparking
researchers to attempt to systematize the findings for more
general consumption [18]. Some reviews have supported the
contention that ML a gorithms should outperform human experts
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[19], but others have found that overly complex approaches
used in some ML models are no better than simpler, more
intuitive models [20]. Studies should give readers an
understanding of the reasons why algorithms perform
differently, rather than simply providing results of differences
between 2 scalar summary values [21,22].

These comments are consistent with general calls for a fuller
explanation regarding the interpretability of ML studies [23],
particularly in the biomedical and health fields that have been
dower to exploit this technology. Overreliance on text-based
information rather than contextual elements and the inherent
uncertainty in medical decision making have been cited as
problemsin applying ML findings[24]. The associationswithin
data sets that are theory-free offer little guidance with regard
to improving clinical care [25]. Medical professionals are not
well trained in how ML worksand thus are not ableto critically
evaluate the utility of the reported findings [26].

The ML criticism of the lack of attention to the unique
characteristics of theindividual casesisthe focus of this study.
We propose to address this challenge using a more
comprehensive, case-nuanced approach. Although there has
been somework in thisregard, such asthe now accepted wisdom
that standard classifiers do not work well with imbalanced data
[27], afocus on the individual cases that fall into the miss or
fal se-positive categories has only rarely been investigated as a
point of interest [28].

Thislack of attention is highlighted in the assessment study of
various ML models; they often result in comparable outcomes
as similar percentages of cases are misclassified regardless of
the model used [29]. Some insight into this phenomenon was
brought to light in a study on benchmarking data sets, where
some sets had more difficult-to-classify cases and other sets
contained largely easy-to-classify cases, providing similar results
at the aggregate level regardless of the ML approach used [30].
It has been argued that cleaning up the data by eliminating some
casesin the training data set is an appropriate tactic to improve
classification accuracy [31]. We disagree with this approach
and instead argue that hard-to-classify cases should be examined
in amore systematic manner. This study shifts the focus from
the level of utility of an ML only at the aggregate sample level
toward pinpointing where that model falls short and, more
importantly, why the model falls short. The process described
identifies, a priori, which cases in the data set (balanced or
imbalanced) will be more or less difficult to classify. The
evaluation of ML algorithms across these cases will help to
understand why these cases are difficult to classify. Examining
this phenomenon in detail is as important as the classification
accuracy index of the data set as awhole.

Thereare 2 fundamental building blocksto any ML system: the
features of interest and the casesin the data set. To investigate
the research question in this study, methods derived from IRT
were employed as they simultaneoudy estimate the
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characteristics of both features and cases. Understanding this
phenomenon allows medical professionalsto tailor the classifier
to the patient.

Similarities Between ML and Test Taking

Following an examination, there are discussions by students
about the test items; often they remark “that question was hard,
what did you put?’ or “that was as easy question.” Such
comments reflect the purposeful construction of the test items.
Some items are designed to be relatively easy to pass whereas
others are designed to be more difficult such that only a few
can pass. Similarly, students talk about the test takers—"she
always gets the highest score in the class’ or “I think | have a
50-50 chance of passing.” Test takers are quite cognizant of the
fact that not all test items are created equal and that not all test
takers have the same ahility. These fundamental assumptions
give rise to IRT, where the characteristics of the items and of
the students are modeled together, providing a clearer picture
about which items discriminate between which test takers.

A parallel can be drawn between a set of students passing or
failing atest based on their performance on a set of itemswith
aset of patients being classified into 1 of 2 categories (alive or
not alive) based on their scores on a set of health-related
features. Using thetest item information, an ML classifier should
be able to predict which students will pass or fail the test, and
using the feature information, an ML classifier should be able
to predict which patients will be alive or not aive. There is
likely to be abase level at which it correctly classifies cases as
belonging to 1 group or another by chance aone, and additional
caseinformation on each feature should enhance the prediction.
Some cases can be easily partitioned into the pass the test (ie,
they passall theitems) or fail thetest (ie, they fail al theitems).
Cases with more moderate level s of mastery however would be
expected to pass some and fail some items (features in ML
terms). It isthese difficult cases where classifierswould be less
likely to successfully predict their probability of passing or
failing the test. One option to enhance predictionisto add more
features to help classify these more difficult cases, but doing
so results in high dimensiondity, overfitting models,
difficult-to-interpret findings, and nongeneralizing results. This
guandary isaclassic optimization probleminthe ML literature.

As not al test takers score 100% or 0% on an examination,
some combination of right and wrong answers to questions
provides an index of individual test-taker ability in completing
the test. The term ability (symbolized by the term theta, ) is
used in the psychometric literature where IRT evolved and is
used to describe any latent construct of interest being measured.
In this study, within-range or out-of-range laboratory values
and vital signs as well as demographic information comprise
the features in our data sets. Thus, we can ascertain a case’'s
placement with respect to the underlying distribution of
unhealthiness. These individual case-based indices create a
distribution of unhealthiness across all features (or in our case
laboratory values, vital signs, and demographic information).
Depending on whereindividual patientsfall onthedistribution,
the easewithwhich ML classifierscorrectly predict the outcome
(mortality) is expected to be affected—those concentrated in
the central area of the distribution will be more challenging to
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correctly classify relative to those cases lying more at the tails
of the distribution. Thus, rather than labeling case scores as
being on a healthy-unheal thy continuum, suggesting these scores
might only be useful in ahealth context, we usethe classification
difficulty index (CDI) because of their ease or difficulty in being
able to be correctly classified using supervised ML.

The process of generating CDIs on the unhealthiness continuum
will be carried out without using the outcome variable of
mortality itself, that is, IRT provides case-based scores (CDIs)
that can be examined before the data as a collectiveis subjected
to an ML protocol.

Specific Study Hypotheses and Resear ch Questions

The|RT analysis provides case-based CDIsusing aset of feature
characteristics that do not use the information on the outcome
classification variable. CDIsfor the sample are generated along
the normal distribution, with a mean 0.0 (SD 1.0). It is
hypothesized that cases with more centrally located CDIs will
belesslikely to be classified correctly, whereas caseswith more
peripherally located CDIs will be more likely to be classified
correctly. One research question is as follows. Will some ML
classifiers be more accurate in classifying cases at al CDIs?
Another research question is as follows: Will some ML
classifiers be more accurate than others in classifying cases at
different CDIs? Identifying these cases a priori provides an
aternative manner to evaluate different ML protocols or
classification methods and will advance our understanding of
ML findings and the data they are being fed with.

Methods

Data Sets

Data were obtained through 2 large, freely available data sets.
Onewasthe MIMIC-111 (Medicd Information Mart for Intensive
Care 1) database housing health data of >40,000 critical care
unit patients at the Beth Israel Deaconess Medical Center
admitted between 2001 and 2012 [32,33]. The other was the
electronic intensive care unit (elCU) Collaborative Research
Database that houses data from critical care unit patients from
acrossthe continental United States admitted between 2014 and
2015 [34].

Caselnclusion

Databases were queried using the SQL plug-in for Python
(Python Software Foundation). Case inclusion criteriawere as
follows: (1) age 16 years, (2) at least three-fourth of thefeatures
of interest were available for a select case (patient), leading to
subsequent imputation, and (3) first hospital visit in the case of
repeated patients. Features of predictive interest were selected
based on 2 common severity of illness scores: Simplified Acute
Physiology Score Il and Acute Physiology and Chronic Health
Evaluation 1V for MIMIC-I1I and elCU, respectively. To test
the hypothesis with both balanced and imbalanced data sets,
the number of death casesin both data sets (coded 1) was noted
and the same number of cases of no death was then randomly
selected and incorporated into the balanced data sets. Imbalanced
data sets were created by randomly sampling twice as many no
death cases compared with death cases. We used the 1/3:2/3
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imbalanceratio to detect any changein results using asomewhat
mildly imbalanced than an extremely imbalanced set.

For the MIMIC-IlI data set, there were 4039 cases that
experienced death in hospital, resulting in afinal and balanced
sample size of 8078 and imbalanced sample size of 12,117. In
the el CU data set, there were 10,970 death in hospital cases.
Empl oying the same methodol ogy resulted in abalanced sample
size of 21,940 and an imbalanced sample size of 32,910.

Features

The features included demographic, procedural, pre-existing
conditions, and laboratory values (Tables 1 and 2). Normal
values were presented and were obtained from the Medical
Council of Canada [35] unless otherwise noted. Laboratory
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valuesrepresent the worst values taken during the intensive care
unit (ICU) stay in both data setsin thefirst 24 hours. Inthe IRT
component of the analyses, variables were dichotomized into
disease-promoting states (1) akin to failing the item on the test
or disease-protective states (0; passing the item). Values that
fell outside the normal laboratory ranges were coded as 1 (too
low or too high). Pre-existing conditions were coded as 1
(present) or O (absent). Age was demarcated at 65 years, with
those aged >65 years coded 1 and those aged <65 years coded
0[36-39]. For the sex variable, men were assigned 1 and women
wereassigned 0[40]. Imputation of missing datawas performed
using amultiple imputation chained equations technique using
the impyute library in Python 3.7.7 to preserve the pre-existing
distribution of features.

Table 1. Medical Information Mart for Intensive Care |11 variables based on Simplified Acute Physiology Score ll.

Feature name Description Normal values, units
AIDS Pre-existing diagnosis Absent: 0,00r 1
Heme malignancy Pre-existing diagnosis Absent: 0,00r 1

M etastatic cancer Pre-existing diagnosis Absent: 0,00r 1
Minimum GCS? Glasgow Coma Scale 15°,1-15

WBC® minimum Lowest white blood cell 410, 10°

WBC maximum

Naminimum
Na maximum
K minimum

K maximum

Bilirubin maximum

HCO3 minimum
HCO3 maximum
BUNY minimum
BUN maximum
PO,

FiO,

Heart rate mean
BP mean

Max temp

Urine output

Highest white blood cell

Sodium minimum
Sodium maximum
Potassium minimum
Potassium maximum
Bilirubin maximum
Bicarbonate minimum
Bicarbonate maximum

Blood urea nitrogen minimum

Blood urea nitrogen maximum
Partial pressure of oxygen
Fraction of inspired oxygen
Mean heart rate

Mean systolic blood pressure
Maximum temperature

Urine output

4-10, 10°
135-145, mmol/L
135-145, mmol/L
3.5-5, mmol/L
3.5-5, mmol/L
<1.52, mg/dL
24-30, mmol/L
24-30, mmol/L
7-22, mg/dL
7-22, mg/dL
85-105, mm Hg
21, %

60-100, bpm
95-145, mm Hg
36.5-37.5,°C

800-2000%, mL/24h

Sex Male or female Male: 1, Femae: 0, Male or female
Age Ageinyears <65: 0, years
Admission type Emergency or elective Emergency: 1; else: 0, N/Af

8GCA: Glasgow Coma Scale.

bTeasdale and Jennett, 1974 [41]; Teasdale and Jennett, 1976 [42].
“WBC: white blood cell.

9BUN: blood urea nitrogen.

®Medical CMP, 2011 [43].

'N/A: not applicable.
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Table 2. Electronic intensive care unit data set variables based on Acute Physiology and Chronic Health Evaluation IV.

Feature name Description Normal values, Units
GCS? Glasgow Coma Scale 15b’ 1-15

Urine output Urine output in 24 hours 800-2000°, mL/24 hour
wacd White blood cell count 4-10, 10°

Na Serum sodium 135-145, mmol/L
Temperature Temperaturein Celsius 36.5-37.5% °C
Respiration rate Highest white blood cell 12-20" breaths/min
Heart rate Heart rate/min

Mean blood pressure
Creatinine

pH

Hematocrit

Albumin

Age

Leukemia
Lymphoma
Cirrhosis
Hepatic failure

M etastatic cancer
AIDS
Thrombolytics
Ventilator
Dialysis
Immunosuppressed
Elective surgery

Mean arterial pressure

Serum crestinine

Arterial pH

Red blood cell volume

Serum albumin

Partial pressure of oxygen
Partial pressure carbon dioxide
Blood urea nitrogen maximum

Blood sugar level
Serum bilirubin

Fraction of inspired oxygen

Male or female
Ageinyears
Pre-existing diagnosis
Pre-existing diagnosis
Pre-existing diagnosis
Pre-existing diagnosis
Pre-existing diagnosis
Pre-existing diagnosis
Medical intervention
Medical intervention
Medical intervention
Medical intervention
Medical intervention

60-100', bpm

70-100%, mm Hg

0.57-1.02 (F"); 0.79-1.36 (M), mEq/L

7.35-7.45, N/AI

37-46 (F); 38-50 (M), %
3.5-5.0, g/dL

85-105, mm Hg

35-45, mm Hg

7-22, mg/dL

68-200, mL/dL
<1.52, md/dL

21 %

Made: 1; female: 0, M or F

<65: 0, years

Absent:
Absent:
Absent:
Absent:
Absent:
Absent:
Absent:
Absent:
Absent:
Absent:
Absent:

0,0o0r1
0,0or1
0,0o0r1
0,0or1
0,0o0r1
0,0or1
0,0o0r1
0,0or1
0,0o0r1
0,0or1
0,0o0r1

8GCS: Glasgow Coma Scale.

PTeasdale and Jennett, 1974 [41]; Teasdale and Jennett, 1976 [42].

®Medical CMP, 2011 [43].
dwBC: white blood cell.
€L apum et al. 2018 [44].
fMDCalc[45].
9Healthline [46].

PE: female.

iM: mae.

IN/A: not applicable.
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KBUN: blood urea nitrogen.
lelCU Collaborative Research Database [47].

IRT Analyses

Using the IRTPRO (Scientific Software International) program,
a2-parameter logistic model (2PL) was run on the dichotomous
data. The program uses a margina maximum likelihood
estimation procedure to calculate feature and case parameters
[48] and assumes that respondents belong to a population that
can be characterized by their placement on a latent normal
probability distribution—unhealthiness in this study with the
left and right sides of the distribution indi cating better and worse
health, respectively [49]. Although higher scores on the latent
distributionin IRT usually indicate better outcomes (eg, students
have passed moreitems on atest), in this context, higher scores
mean more of the patients' features were out of range and are
thus associated with worse outcomes (ie, higher likelihood of

Figure 1. Characteristic curve using a 2-parameter logistic model.

Klineet a

death). The output generateslogistic item characteristic curves
that describe each feature's relationship to the underlying
distribution. For each feature, 2 characteristics were estimated,
dope and location.

Equation 1 shows a 2PL model in IRT; slope (&) captures the
discriminability capacity of the feature. Feature functions with
flat dopesindicate that they are not very discriminatory, whereas
those with steep slopes are highly discriminatory, particularly
at the inflection point. The location (b;) denotes where along
the function theinflection point occurs. Asthe functions are set
along the standard normal distribution (mean 0.0, SD 1.0), this
point indicates where along the unhealthiness continuum the
feature is most likely to differentiate cases. An example is
presented in Figure 1.

Feature Characteristic Curve
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CDI estimationin a2PL model is calcul ated based on equation
2, where the probability of obtaining the correct answer isbased
on the scores on the items' u; weighted by a.

ZaiP(g,bi,ai) = Zaiui @
i

i

L(e) = npi(e,ai’bi)uiQi(B, ail bi)l_uiz (3)

http://www.jmir.org/2020/9/e20268/

Equation 3, wherey, O (0, 1) isthe scoreonitemi, iscalled the
likelihood function. It is the probability of a response pattern
given the CDIs and the item parameters across cases. Thereis
1 likelihood function for each response pattern, and the sum of
all such functions equals 1 at any value of the distribution. On
the basis of the pattern of each case's values on the features,
the program uses a Bayesian estimation process that provides
aCDI on the unhealthiness continuum for each case in the data
set.

CDlIs are reported on the standard normal distribution and
typically range between —2.50 and +2.50. Each case’s CDI has
itsownindividual SE around it based on theindividual’s pattern
of results across al features and their unique characteristics.
Using theresultsfrom the 2PL model, it was possibleto identify
which of the cases were more centrally or more peripherally
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located on the distribution and thuswould belessor morelikely
to be accurately classified into their respective categories (no
death or death).

To allow for easy visualization and testing of effects, severa
strata binswere created into which continuous IRT CDIs could
be assigned. These bins were separated at every 0.5 difficulty
changein thedistribution of the data. Thefirst bin was centered
over the 0.0 mark to denote the most difficult cases and
subsequent bins were demarcated at 0.5 levels toward each
periphery. This process of bin alocation continued until all
observed CDIsfor the cases were accounted for.

ML Analyses

Multiple ML algorithms were tested using the original feature
values for both MIMIC-I11 and el CU data sets. These included
logistic regression, linear discriminant analysis, K-nearest
neighbors, decision tree, naive Bayes, and neural network. Both
the K-nearest neighbors and neural network had their
hyperparameters optimized by a grid search. In the case of the
K-nearest neighbors, the search grid included K from 1 to 40
and distance methods of Minkowski, Hamming, and Manhattan.
Thegridinvestigated for the neural network included activation
functions such as softmax, softplus, softsign, relu, Tanh,
sigmoid, and hard sigmoid; learning rates such as 0.001, 0.01,
0.1, 0.2, and 0.3; and hidden neurons in a single hidden layer
of 1, 5, 10, 15, 20, 25, and 30. In each of these methods, a
10-fold cross-validation was performed, and the numerical
prediction was extracted for each case and then reassociated
with itssubject 1D number for graphical plotting. The evaluation
methods, accuracy, precision, recal, F1, and AUC metricswere
calculated. Accuracy was used to assess the hypotheses and
research questions.

Comparison Analyses

To test the main effects of CDI and the repeated measure of the
ML classifier aswell astheir interaction on each case’saccuracy
score (0,1), generalized linear mixed model (GLMM) [50]
analyses were conducted using the GENLINMIX program of

Table 3. Item response theory case classification difficulty index results.

Klineet a

SPSS23[51]. GENLINMIX usesthe penalized quasi-likelihood
estimation method for fixed effects. Separate analyses for each
of the balanced and imbalanced data sets were conducted. The
standard form of the GLMM is shown in equations 4 and 5. y
is a response vector, and b is the random effects vector. Distr
is a conditional distribution of y given b. | is the conditional
mean, and is the dispersion parameter.

In equation 5, g(u) is the logit link function that defines the
relationship between the mean response p and the linear
combination of predictors. X representsthe fixed effects matrix,
and Z is a random effects matrix, where is smply an offset to
the model.

o2
yileDth(“i:;) @

4

guw) =XB+Zb+45 ©

The models specified that (1) all effects are fixed, (2) the
dependent variable follows a binomia distribution, and thus
the predictors and criterion are linked via a logit function, (3)
the residual covariance matrix for the repeated measure (ML
classifier) isdiagonal, and (4) the reference category was set to
0. Follow-up paired-comparison tests on the estimated marginal
and cell means used a P level of<.001 to protect against atype
| error.

Results

IRT 2PL Model Results

Descriptive results of case CDIs are shown in Table 3, and
frequency distributions are shown in Figures 2 and 3
(MIMIC-III) and Figures 4 and 5 (el CU).

It should be noted that the 2 data sets have different
distributions, and this fingerprint is inherently unique to the
data set processed.

Data set CDI%range Overal, mean (SD)  pyint-biserial correlations® Nodeath,  Death, mean  yo-tajled t value®
mean (SD)  (SD)
r value P value t test (df) P value
MIMICAI9pa.  -18lto 0,00 (0.85) 0.37 <.001 -032(0.79) 032(0.80) 35.76(8077) <.001
anced +2.16
MIMIC-Il imba-  -1.70to 0.0 (0.85) 0.35 <.001 ~021(0.80) 042(0.80) 40.88 <001
anced +2.27 (12116)
oCUbadanced  -26310  0.00(0.80) 050 <001 -0.40(0.73) 040(0.64) 8618 <001
+2.83 (21939)
elCUimbaanced  -255t0  0.00(0.81) 0.51 <.001 ~0.29(0.73) 059(0.61) 109.09 <001
+2.93 (32909)

8CDI: classification difficulty index.

bBetween CDI and outcome (no desath or death).
CDifference between no death and death means.

dMIMIC 111; Medical Information Mart for Intensive Care.
el CU: electronic intensive care unit.

http://www.jmir.org/2020/9/e20268/
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Figure2. Classification Difficulty Indexesin MIMIC-111 (A) balanced and (B) imbalanced data. CDI: classification difficulty index; MIMIC: Medical

Information Mart for Intensive Care.

A

2000 4 MIMIC balanced CDI Distribution

1750 4
1500
1250 4

1000 4

Number eof patients

750 A

500 A

250 ~

-2.0 -1.5 -1L0 -05 0.0 0.5 1.0 1.5 2.0
Classlification Difficulty Index

3000 MIMIC Imbalanced CDI Distribution
2500 |

2000 ~

1500 4

Number of patients

1000 4

500 -

-1.5 -1L.0 -05 0.0 0.5 1.0 1.5 2.0 2.5
Classlfication Difficulty Index

Figure 3. Classification Difficulty Indexes in elCU (A) balanced and (B) imbalanced data. el CU: electronic Intensive Care Unit; DT: decision tree;
KNN: K-nearest neighbors; LDA: linear discriminant analysis; LR: logistic regression; NB: naive Bayes; NN: neural network.
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Using the feature parameter estimates and case CDI, the unique
differentiating capacity for each feature can be depicted by
calculating the probability of each case faling into the 0 (no
death) or 1 (death) categories. For example, the slope and
location parametersfor the blood ureanitrogen (BUN) minimum
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and urine output for the 2 MIMIC-111 data sets are shown in
Table 4. The higher dope of the BUN minimum feature is
contrasted with the very low slope of the urine output feature.
These differences highlight the importance of some features
over othersin terms of being useful in categorizing cases.
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Table4. Medica Information Mart for Intensive Care |11 feature parameters.

Feature parameters Slope Location
Balanced
Blood urea nitrogen (minimum) 5.64 0.09
Urine output 0.15 -2.23
Imbalanced
Blood urea nitrogen (minimum) 5.22 0.02
Urine output 0.09 -3.59

Similar to the MIMIC-I11 results, the IRT analyses of theelCU  both MIMIC-I11 and el CU were not discriminatory (slopes of
showed that BUN was a highly discriminating feature whereas  <0.35[52]).
urine output was not (Table 5). In fact, many of the featuresfor

Table5. Electronic intensive care unit feature parameters.

Feature parameter Slope Location
Balanced
Blood urea nitrogen (minimum) 155 -0.33
Urine output 0.04 -1.19
Imbalanced
Blood urea nitrogen (minimum) 1.49 -0.1
Urine output 0.03 -1.39

ML Classification Results neural network grid search resultsreturned an optimum learning
rate of 0.001, activation function softmax, and a number of

Checking the K-nearest neighbors grid warranted using hidden nodes, 15 for MIMIC-I1I and 17 for el CU.

Manhattan distancing and 27 nearest neighbors for MIMIC-I11

and Manhattan distancing with 19 neighbors for elCU. The Traditiona metrics of accuracy, precision, recall, F1, and AUC

are presented for MIMIC-111 in Table 6.
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Table 6. Medica Information Mart for Intensive Care |11 classification performance in traditional metrics.
Metric LR2 (%) LDAP (%) KNNC (%) DTY (%) NBE (%) NNF (96)
Balanced
Accuracy 75.3 75.0 67.2 70.9 704 76.1
Precision 75.8 75.6 69.3 711 795 75.6
Recall 74.3 73.8 61.8 70.6 54.9 7.2
F1 75.0 74.7 65.3 70.8 64.9 76.4
AUCY 753 75.0 67.2 709 70.4 765
Imbalanced
Accuracy 78.3 77.9 72.8 73.7 75.3 80.5
Precision 73.3 73.8 63.1 60.6 67.7 72.7
Recall 54.8 52.1 444 60.6 49.6 66.6
F1 62.7 61.1 52.2 60.6 57.3 69.5
AUC 724 714 65.7 70.9 68.9 76.9

3_R: logistic regression.

BLDA: linear discriminant analysis.
CKNN: K-nearest neighbor.

dDT: decision tree.

éNB: naive Bayes.

NN: neural network.

9AUC: areaunder the curve.

In both the balanced and imbalanced MIMIC-111 data sets, the
neural network outperformed the other classifiers (balanced:
accuracy was 76.1% and imbalanced: accuracy was 80.5%)
using traditional metrics. It is worth highlighting the role an
imbalanced data set has on an increased accuracy and a
reduction in precision, recall, and F1.

Table 7 shows our proposed method of demonstrating accuracy
asafunction of CDI. The metric used in Table 7 is accuracy as
F1, recall, and precision were undefined in the extreme negative
(where features were predominantly 0), and no cases of death
existed by which to divide. A parabolic relationship existed in
the accuracy level and the strataval ues, where those more distant
from the stratabin=0 were more likely to be classified correctly.
ML researchers should be most interested in the problematic
cases CDI bin 0.0 and where we observe that all classifiers

http://www.jmir.org/2020/9/e20268/
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struggle with prediction. These results suggest that even if a
classifier outperformsits counterparts as shown in the traditional
metrics of Table 6 (eg, neural network), it may be surpassed in
the more fine-grained approach shown in Table 7 (eg, naive
Bayes algorithm within the +1.5 CDI bin of the balanced data
Set).

In both the balanced and the imbalanced el CU data sets (Table
8), the neural network outperformed the other classifiers using
traditional metrics. Similar to the MIMIC-1I1 findings, the
imbalanced data set resulted in increased accuracy and decreased
precision, recall, and F1.

Table 9 shows our alternative method of demonstrating accuracy
as a function of CDI. Cases that were more distant from the
strata bin=0 were more likely to be classified correctly.
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Table7. Item response theory—based Medical Information Mart for Intensive Care |11 mortality prediction accuracy stratified by classification difficulty

index.

Number of cases cDI? LR (%) LDAS (%) KNNY (%) DTE (%) NB (%) NNY (%)

Balanced
1 25 100.0 100.0 100.0 100.0 100.0 100.0
13 2.0 92.3 92.3 84.6 92.3 92.3 92.3
316 15 90.2 88.2 80.4 80.4 89.2 88.3
1884 1.0 75.6 74.9 68.2 68.8 68.4 77.0
1321 05 705 70.6 635 65.9 65.4 711
952 0.0 72.0 72.4 62.8 68.8 66.2 739
1346 -05 709 70.6 60.4 67.1 63.7 721
1955 -1.0 77.0 771 709 754 752 783
288 -15 94.8 94.8 833 91.0 9.5 945
3 -20 100.0 100.0 100.0 100.0 100.0 100.0

Imbalanced
1 25 100.0 100.0 100.0 100.0 100.0 100.0
30 2.0 93.3 933 76.7 733 933 933
571 15 774 75.7 64.1 711 774 783
1886 1.0 70.6 703 63.9 65.0 64.6 733
1537 05 76.3 755 67.3 71.2 727 79.7
1251 0.0 787 78.0 756 745 76.8 80.3
2794 -05 75.0 745 71.0 721 723 784
2722 -1.0 88.3 88.3 85.0 833 87.1 89.1
325 -15 99.1 99.1 96.6 98.2 99.1 98.8

8CDI: classification difficulty index.
bLR: logistic regression.

°LDA: linear discriminant analysis.
9K NN: K-nearest neighbor.

DT: decision tree.

NB: naive Bayes.

INN: neural network.
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Table 8. Electronic intensive care unit classification performance in traditional metrics.

Metric LR2 (%) LDAP (%) KNNC (%) DTY (%) NBE (%) NNF (96)
Balanced
Accuracy 77.9 774 67.2 76.7 66.6 84.7
Precision 77.9 78.1 67.9 76.7 737 845
Recall 779 76.3 65.3 76.8 51.6 84.9
F1 778 77.2 66.6 76.7 60.7 84.7
AUCY 779 774 67.2 771 66.6 85.9
Imbalanced
Accuracy 78.0 80.1 736 816 733 895
Precision 736 75.1 64.1 721 62.0 84.7
Recall 62.1 60.2 472 72.9 515 835
F1 67.4 66.8 54.4 725 56.3 84.1
AUC 755 75.1 67.0 793 67.9 87.8

3_R: logistic regression.

BLDA: linear discriminant analysis.
CKNN: K-nearest neighbor.

dDT: decision tree.

éNB: naive Bayes.

NN: neural network.

9AUC: areaunder the curve.
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Table 9. Item response theory—based electronic intensive care unit mortality prediction accuracy stratified by classification difficulty index.

Number of cases cDI? LR (%) LDAC (%) KNNY (%) DT® (%) NB' (%) NN (%)

Balanced
2 30 100.0 100.0 100.0 50.0 100.0 100.0
61 25 82.0 82.0 75.4 787 86.9 85.2
160 2.0 81.3 825 75.0 763 81.9 83.4
621 15 86.2 86.8 745 79.2 837 87.9
3167 1.0 83.7 82.9 721 783 66.3 85.4
4998 05 74.0 72.7 64.7 73.1 55.2 80.9
4776 0.0 709 70.1 585 715 573 80.0
3864 -05 738 745 63.3 74.4 67.4 84.3
2858 -1.0 85.4 855 74.4 84.8 83.1 91.8
1183 -15 925 926 84.3 91.7 91.9 9.4
240 -20 97.1 97.1 91.7 9.8 %.3 97.9
10 -25 100.0 100.0 100.0 100.0 100.0 100.0

Imbalanced
6 3.0 66.7 833 833 66.6 66.6 833
58 25 82.8 81.0 69.0 75.9 87.9 845
215 2.0 79.1 786 67.0 726 76.3 823
1369 15 79.8 79.0 65.4 75.2 728 85.7
4776 1.0 722 724 616 74.8 58.4 83.9
6657 05 67.3 67.0 721 57.3 573 83.1
7068 0.0 76.4 76.9 70.0 788 703 885
6396 -05 87.1 87.3 83.2 87.3 83.4 937
4265 -1.0 9.8 95.0 92.0 %3 927 97.7
1763 -15 98.0 98.0 97.1 97.9 97.3 99.4
317 -2.0 99.1 90.1 98.4 98.4 98.4 99.1
20 -25 100.0 100.0 100.0 100.0 100.0 100.0

8CDI: classification difficulty index.
BLR: logistic regression.
°LDA: linear discriminant analysis.

9K NN: K-nearest neighbor.

€DT: decision tree.
NB: naive Bayes.
INN: neural network.

Effect Testing

The CDI group sizes at the extreme ends were too small and
were collapsed into the next level down for each data set. Tests
of the effects of MIMIC-I11 arereported in Table 10 and Figure
4.
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The MIMIC-III balanced data showed significantly better
accuracies for the more peripheral than centra CDI bins.
K-nearest neighbors and decision tree were the poorest
classifiers. Although there was a small significant interaction
effect, by and large, the main effects were borne out.
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Table 10. Tests of the effects of classification difficulty index, classifier, and their interaction for the Medical Information Mart for Intensive Care |11

data set.
Effect Significance Significant paired comparisons (P<.001; higher accuracies
listed first)
F test (df) P value
Balanced
cDI2 123 (6,48456) <.001 « -15vs-1.0,-05,0.0
« -10vs-.0500
« +1.0vs+0.5,00
« +15vs+1.0,+0.5,0.0
MLP classifier 52 (5,48456) <.001 * LR LDAY NB® NNfvsKNNY, DT"
« DTvsKNN
CDIxML classifier 2 (30,48456) <.001 . -1.5: LR, LDA, NB, NN, DT vs KNN
e -10:LR,LDA, NB, NN, DT vsKNN
. -0.5: LR, LDA, DT, NN vs NB, KNN
« 0.0:LR,LDA, DT, NN vsNB, KNN
. +0.5: LR, LDA, NN vsNB, KNN, DT
« +1.0:LR,LDA, NN vsNB, KNN, DT
. +1.5: LR, LDA, NB, NN vsKNN DT
Imbalanced
CDI 314 (6,72660) <.001 « -15vs-1.0,-05,00
« -10vs-.0500
. 0.0vs-0.5, +0.5, +1.0
« +05vs+10
« +15vs+10
ML classifier 12 (5,72660) <.001 « LR,LDA, NB,NNvVvsKNN, DT
CDIxML classifier 2 (30,72660) .004 « —15: nodifferences
« -10:LR,LDA, NB, NN vsKNN, DT
. -0.5: LR, LDA, NN vsNB, KNN, DT
e 00:NNvsDT
8CDI: classification difficulty index.
BML : machine learning.
°LR: logistic regression.
4LDA: linear discriminant analysis.
®NB: naive Bayes.
NN: neural network.
9K NN: K-nearest neighbor.
ADT: decision tree.
http://www.jmir.org/2020/9/€20268/ JMed Internet Res 2020 | vol. 22 | iss. 9 | €20268 | p. 14

(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Klineet a

Figure 4. Medica Information Mart for Intensive Care (MIMIC) |11 generalized linear mixed model (GLMM) accuracy results; machine learning
classifier against CDI for (A) balanced and (B) imbalanced data. DT: decision tree; KNN: K-nearest neighbors; LDA: linear discriminant analysis, LR:

logistic regression; NB: naive Bayes; NN: neura network.
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The MIMIC-I11 imbalanced data set showed that at the healthier
end of the CDI continuum, more peripheral cases were
accurately classified. This was not the case at the central and
unhealthier end of the continuum. Like the balanced data set,
K-nearest neighbors and decision tree were the poorest
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classifiers. Although the interaction was significant, most of
the paired comparisons supported the main effect findings.

Tests of the effects from elCU are reported in Table 11 and
Figure5.
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Table 11. Tests of the effects of classification, classifier, and their interaction for the electronic intensive care unit data set.

Effect Significance Significant paired comparisons (P<.001; higher accuracies
listed first)
F test (df) P value
Balanced
cDI? 382 (8,131586) <.001 e« —20vs-15,-10,-05,0.0

« -15vs-10,-05,0.0
« =-10vs-.0500
« +1.0vs+05,0.0
« +15vs+1.0,+0.5,0.0
« +20vs+05,0.0

MLP dlassifier 58 (5,131586) <.001 *  NNCvsLRY LDAE DTf vsNBY vs KNN"

CDIXML classifier 9 (40,131586) <.001 . —2.0: NN vs KNN
. -1.5:NNvsLR, LDA, NB, DT vs KNN
. -1.0: NN vsLR, LDA, NB, DT vsKNN
o -0.5: NN vsLR, LDA, DT vsNB vs KNN
. 0.0: NN vsLR, LDA, DT vsNB vsKNN
. +0.5: NN vsLR, LDA, DT vsKNN vs NB
. +1.0: NN vsLR, LDA vs DT vsKNN vsNB
. +1.5: NN, LR, LDA vsNB vs DT vs KNN
. —2.0: NN vs KNN

Imbalanced
Difficulty CDI 1138 (8,197406) <.001 « -20vs-1.0,-05,00
. -15vs-1.0,-0.5, 0.0
« =-10vs-.0500
. -0.5vs0.0
« 00vs+05,+1.0
. +1.0vs+0.5
« +15vs+05,+1.0
e +2.0vs+1.0,+0.5
ML classifier 28 (5,197406) <.001 « NNvVsSLR,LDA vsDT vsNB, KNN
CDIxML classifier 4 (40,197406) <.001 o —2.0: no differences

« -15 NNvsLR,LDA,NB, KNN, DT

« -1.0:NNvVsLR,LDA,DTvsKNN, NB

« -05 NNvsLR,LDA,DTvsKNN, NB

. 0.0: NN vsLR, LDA vsDT vsKNN, NB
. +0.5: NN vsLR, LDA vs DT vsKNN, NB
« +1.0:NNvsLR,LDA, DT vsKNN, NB

. +1.5: NN, LR vs LDA vs DT, NB vs KNN
. +2.0: NN, LR vs KNN

8CDI: classification difficulty index.
BML: machine learning.

°NIN: neural network.

IR logistic regression.

€L DA: linear discriminant analysis.
'DT: decision tree.

INB: naive Bayes.

PKNN: K-nearest neighbor.
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Figure5. Electronic intensive care unit (el CU) generalized linear mixed model (GLMM) accuracy results; machine learning classifier against CDI for
(A) balanced and (B) imbalanced data. DT: decision tree; KNN: K-nearest neighbors; LDA: linear discriminant analysis; LR: logistic regression; NB:

naive Bayes, NN: neural network.
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For the el CU balanced data set, moving away from the central
bin showed significantly better accuracy, except at the +2.0
level, which was similar to the +1.5 ML classifier estimated
means showed that the neural network had significantly better
accuracy than all other classifiers. The overall interaction effect
was significant, but the paired comparisons were similar to the
main effects.

For the el CU imbalanced data set, more peripheral cases were
accurately classified at the healthier end of the distribution,
whereas there was only aslight improvement at the unhealthier
end. Similar to the other analyses, the neural network showed
the best classification accuracy. Although the overall interaction
was significant, the neural network continued to be the best
classifier.

Discussion

Principal Findings

The results generally supported the hypothesis that cases with
more extreme IRT-based CDI values are more likely to be
correctly classified than cases with more central CDI values.
This provides a unique manner to evaluate the utility of ML
classifiersin ahealth context. We were ableto demonstrate that
ML classifiers performed similarly for the extreme cases,
whereas for the centrally located cases, there were more
differences between classifiers. Thus, ML classifiers can be
evaluated based on their relative performance with cases of
varying difficulty.

Although these were the general results, there were several
specific findingsthat are worth noting. First, the neural network
classifier was the best across al situations. The logistic
regression and linear discriminant analysis classifierswere close
to the second-best classifiers, whereas K-nearest neighbors
almost always performed the worst. It is possible, as found in
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this study, that classifiers may turn out to be consistent over all
levelsof difficulty. However, owing to the unique characteristics
of both data sets and classifiers selected, some algorithms may
yield better results at various levels of case difficulty in other
samples.

It was also clear that the peripheral-central trend of correct
classification was most closely adhered to for cases with
negative CDI values (ie, at the healthier end of the CDI
distribution), and this trend was particularly pronounced with
theimbalanced (2/3 nondeath) data sets. We adopted this modest
imbalance in this research to detect trends such as these. This
finding is pertinent to ML training protocolsin that it is best to
train them on balanced data sets before running them on
imbalanced ones. Thereisaclear training effect toward negative
CDI or the majority classin our case.

On the basis of the IRT anaysis results, easier- and
harder-to-classify cases were identified. This has implications
for research and clinical practice. Once the cases have been
identified, other information gathered from their patient-specific
data may provide clues about why they are easier or harder to
classify, diagnose, or treat. The features themselves that have
varying weighted importance in the indexing process can be
examined to assess for any differences in a patient’s CDI, that
is, not just how many they got wrong but which they got wrong
or correct to justify their position in eluding an ML classifier.

As an example of how one could examine more closely the
problematic patients, we sel ected the neural network accuracies
for each casein the 0 CDI bin in the MIMIC-111 balanced data
set. This provided 952 cases, 704 (73.9%) were correctly
classified and 248 (26.1%) were not. A series of chi-square
analyses were conducted using the in and out-of-range coding
for each of the features crossed with accuracy. Not surprisingly,
these cases did not differ on most of the features; the only ones

with differenceswere WBC max (x%,=5.6; P=.02), wherethose
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who were more accurately classified had out-of-range scores,
bilirubin max (x%,=4.2; P=.04), where those who were more
accurately classified had normal scores; and mean heart rate
(x21:7.1; P=.008, where those who were more accurately
classified had normal scores. Using an approach like this can

assist in determining which featuresin more problematic cases
may be differentiated.

Relationship With Previous Wor k

An IRT analysis can assist in providing a better understanding
of why the classification process works well or falls short on
the set of features and cases under investigation. This moves
the field closer to having interpretable and explainable results
[53,54]. Recent research with another |CU data set also argues
about theimportance of explainable processesaswell asresults
[55]. Early research into ML focused on knowledge as an
outcome and adopted an informal approach to evaluation. As
the field has progressed, the focus shifted to large data sets,
mathematical formulae, single evaluation metrics, and statistics,
which has impoverished the discipline [22]. “Choosing
performance metrics and confidence estimation methods blindly
and applying them without any regard for their meaning and
the conditions governing them, is not a particularly interesting
endeavor and can result in dangerously misleading conclusions’
[9].

Limitations and Future Research

Limitations of this research include the fact that classifiers
showcased here were not exhaustive, only ICU data sets were
used, and converting an out-of-range laboratory value as either
inrange=0 or out of range=1 isreductive. Although thisistrue,
the purpose of this study is to demonstrate a new evaluation
metric using a basic 2PL model with binary data.

There are several ways to extend this work. Future research
callsfor (1) applying thismethod to other data setsto generalize
its use, (2) using polytomous IRT models (eg, 0=in range,
1=somewhat out of range, and 2=very out of range) for more
fine-grained case CDI scoring, (3) using multidimensional IRT
models to obtain CDIs on >1 underlying dimension, and (4)
using this approach to compare human versus machine
classification accuracy across case difficulty. We can extend
the intersection of ML with clinical medicine if we liken a
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physician to an ML classifier using feature data. It would be
particularly interesting to compare case accuracies based on
traditional ML versus clinical classifiers for cases of varying
difficulty using an approach similar to that demonstrated in this
study. Identifying which cases clinical classifiers are better
suited to address, and which cases should be offloaded to an
automated system allowsfor the optimal use of scarce resources.
As clinical expertise is developed over time, the use of ML
algorithms to assist any single individual would be a moving
target and would also serve as a source of future research.

Another way to improve the veracity of the findings would be
to address the issue of extraneous features. Several of the
features in MIMIC-1I1 and elCU had very low (<0.35)
discrimination (slope) parameters, suggesting that there was a
lot of noise in the cases CDIs as well as in the ML
classifications. It would be a useful exercise to a priori
determine the most useful features[5] and then run the analyses
outlined in this study using a more refined feature set.

Conclusions

Asmore ML methodsareinvestigated in the health care sphere,
concerns have risen because of alack of understanding regarding
why they are successful, especially when compared with
physician counterparts. This study has suggested an | RT-based
methodol ogy as one way to address thisissue by examining the
case difficulty in a data set that alows for follow-up into
possible reasons why cases are or are not classified correctly.

Using the methods described in this study would signal achange
in the way we evaluate supervised ML. Adopting them would
move the field toward more of an evaluation system that
characterizes the entire data set on which the classifiers are
being trained and tested. Doing so circumvents the pitfalls
associated with 1 classifier being cited as more accurate or more
precise and generates amore tailored approach to ML classifier
comparisons. In addition, this methodology lends itself well to
post hoc inspections of the data asto what makes difficult cases
challenging.

The method here presents an intersection of personalized
medicine and ML that maintains its explainability and
transparency in both feature selection and modeled accuracy,
both of which are pivotal to their uptake in the health sphere.
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