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Abstract

Background: The COVID-19 pandemic has caused major disruptions worldwide since March 2020. The experience of the
1918 influenza pandemic demonstrated that decreases in the infection rates of COVID-19 do not guarantee continuity of the
trend.

Objective: The aim of this study was to develop a precise spread model of COVID-19 with time-dependent parameters via deep
learning to respond promptly to the dynamic situation of the outbreak and proactively minimize damage.

Methods: In this study, we investigated a mathematical model with time-dependent parameters via deep learning based on
forward-inverse problems. We used data from the Korea Centers for Disease Control and Prevention (KCDC) and the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University for Korea and the other countries, respectively. Because
the data consist of confirmed, recovered, and deceased cases, we selected the susceptible-infected-recovered (SIR) model and
found approximated solutions as well as model parameters. Specifically, we applied fully connected neural networks to the
solutions and parameters and designed suitable loss functions.

Results: We developed an entirely new SIR model with time-dependent parameters via deep learning methods. Furthermore,
we validated the model with the conventional Runge-Kutta fourth order model to confirm its convergent nature. In addition, we
evaluated our model based on the real-world situation reported from the KCDC, the Korean government, and news media. We
also crossvalidated our model using data from the CSSE for Italy, Sweden, and the United States.

Conclusions: The methodology and new model of this study could be employed for short-term prediction of COVID-19, which
could help the government prepare for a new outbreak. In addition, from the perspective of measuring medical resources, our
model has powerful strength because it assumes all the parameters as time-dependent, which reflects the exact status of viral
spread.
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Introduction

Similar to the 1918 influenza pandemic that occurred more than
100 years ago, the COVID-19 pandemic has created major
disruptions worldwide. At the end of World War I, the 1918
influenza pandemic wreaked havoc globally; it killed more than
40 million people, more than 2% of the world’s population [1].
During the outbreak, preventive measures such as social
distancing and wearing masks were recommended to curb the
spread of the virus [2]. Unfortunately, these measures were
insufficient. The 1918 influenza pandemic exhibited an unusual
bimodal or trimodal peak in the United States, lasting for almost
two years [3]. Thus, by analogy, we can infer that decreases in
infection rates of COVID-19 do not guarantee continuity of the
trend. Therefore, it is necessary to develop a precise spread
model of COVID-19 that responds promptly to the dynamic
situation of the outbreak. If the model accurately measures the
effectiveness of COVID-19–related preventative measures and
provides reasonable information about the spreading trend in
the next few days, it will be possible to proactively minimize
damage by taking effective actions against recurring outbreak
situations. Furthermore, we assessed the potential roles of a
number of public health measures acting in advance based on
the developed model to reduce contact rates and thereby reduce
transmission of the virus in the absence of a COVID-19 vaccine
[4].

Recently, there have been numerous studies on developing
models to find a mathematical description of a system and
translate it to the current situation of COVID-19. These studies
typically introduce the susceptible-infected-recovered (SIR)
model or its derivatives. In some of these studies, the model
parameters are considered as constants due to the complexity
of modeling. For instance, a previous study proposed a
conceptual model that includes individual behavioral reactions
and government actions, while another study reviewed the basic
reproduction number of COVID-19 with constant parameters
[5,6]. However, the reproduction number (R) innately assumes
time-dependent variables. R is a function of three primary
parameters; two of these are biological constants (the
infectiousness of the pathogen and the duration of
contagiousness after a person becomes infected), and the other
is a sociobehavioral and environmental variable (the contact
rate) [7]. The contact rate causes the reproduction number to
fluctuate through human-to-vector or human-to-human
interactions varying over time or space. Thus, it is more
reasonable to define mathematical parameters in a model as
time-dependent variables. However, previous representative
studies did not use this method. A previous study divided the
phase manually and considered the parameters as time-varying
piecewise constants [6]. Other studies considered the parameters
as partial functions of time and proposed methods to
approximate the time-varying parameters [8,9]. More recently,
a method to quantify the effects of quarantine control using a
neural network was proposed. Although the authors considered
the strength of quarantine control as a time-dependent parameter,
the other parameters were still considered as constants [10].
Overall, most previous studies partially adopted time-variant
parameters due to technical difficulties. In general, parameters

of the deterministic SIR model with constant parameters can
be estimated after solving the solutions of the model. However,
this approach has a limitation when the model has
time-dependent parameters. In previous studies related to
COVID-19 [11,12], it was already recognized that parameters
will change at a specific moment, such as the early phase of the
epidemic, enforcement of the quarantine policy, or supply of
medical equipment. As a result, piecewise constant parameters
emerged depending on the artificially divided time intervals. In
contrast, we suggested a new method to calculate the
time-varying parameters without any artificial setting. This
method enables us to analyze the times when unusual events
occur and to evaluate the quarantine policy. This is the starting
point of this research. We aimed to develop a model that was
more precise and sensitive than previous models by introducing
as many time-dependent parameters as possible to reflect that
the current situation is changing on a daily basis. We adopted
the SIR model with the concept of the forward-inverse problem.
Furthermore, we approximated outcome variables and
parameters in the model with neural networks to compute the
infection rate, recovery rate, and reproduction numbers more
accurately.

Methods

Methodological Overview
Mathematical modeling is a process that aims to find a
mathematical description of a system and translate it into a
relational expression. When a system (eg, an infectious disease)
continuously changes over time, differential equations, which
may include parameters, can be used to model it. The process
of finding the parameters that best fit the given data from the
system is called an inverse problem. In this study, we aimed to
analyze COVID-19 spread in South Korea using the SIR model.
We approximated each outcome variable (S, I, and R) and
parameter (β and γ) in the model using deep learning. Moreover,
to address the shortcomings of previous studies, we considered
the parameters as functions of time, which allowed us to
compute the infection rate, the recovery rate, and the
time-dependent reproduction number, RTD. This approach is
more interpretable because β(t), γ(t), and RTD can be obtained
as functions of time, and the overall dynamics of the actual data
can also be obtained. We hypothesized that RTD could be used
as a surrogate marker to indicate the pressure on health care
resources in a region. This is because the number of available
beds for patients with COVID-19 in an area decreases when the
infection rate increases or when the recovery rate stagnates or
decreases.

Additionally, unlike in other models, such as the growth model,
we do not assume any distribution type for the modeling. In the
traditional growth model, the growth rate is considered as a
piecewise constant function to compute the effective
reproduction number. However, this assumption is not realistic
in many cases, as the reproduction number can dramatically
change. In contrast, our model is an appropriate solution for
such problems due to its time-dependent nature. Furthermore,
we provide numerical simulation results that guarantee the
convergence of our deep learning approach. Finally, our
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methodology is applicable to many areas involving differential
equations, and it can be easily implemented without a deep
understanding of the model.

Terminology
The reproduction number has several variants. The basic
reproduction number (R0) is defined as the expected number of
cases directly generated by one case in a population, assuming
all individuals are susceptible to infection. Compared to R0, the
effective reproduction number (Rt) does not assume complete
susceptibility of the population [7]. Strictly speaking, all
reproduction numbers after the first date of introduction of new
pathogens should be regarded as Rt. In this study, we wanted
to develop a time-dependent effective reproduction number that
is a variant of Rt; we designated this number as RTD.

Data
We collected our data from the Korea Centers for Disease
Control and Prevention (KCDC) and the Center for Systems

Science and Engineering (CSSE) at Johns Hopkins University.
The data consisted of the cumulative numbers of tested people
(T), confirmed cases (I or Ipos), negative cases (Ineg), and
recovered or deceased cases (R) from February 7 to March 30,
2020, for South Korea and from March 5 to March 30, 2020,
for the administrative provinces of Seoul, Busan, Daegu, and
Gyeonggi. The data are available at the KCDC website [13].
Although data for South Korea are available from January 29,
the numbers of negative, recovered, and deceased cases are not
available for the first few weeks; therefore, we began our data
range on February 7, 2020. The complete data, including
numbers of negative, recovered, and deceased cases, for each
administrative province are available from March 5; therefore,
we used all data up to March 30, 2020. We set t=0 as March 5,
2020, when data for each province became available, and
February 7, 2020 corresponds to t=–26.6 (Figures 1 and 2).

Figure 1. Cumulative numbers of infected and recovered COVID-19 cases in South Korea (left) and cumulative numbers of negative cases and tested
people (right).
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Figure 2. Daily numbers of confirmed cases and cumulative numbers of recovered cases for Seoul, Busan, Daegu, and Gyeonggi-do.

This study received an exemption from informed consent by
the institutional review board committee of the Seoul National
University Bundang Hospital because we used public data
provided by the KCDC.

SIR Model
Infectious disease modeling in mathematics can capture an
epidemic of a given infectious disease and aid public health
interventions. Modeling usually requires disease-related
statistical data, calculation of model parameters, and analysis
of the epidemic. We adopted the SIR model, which is suitable

for our data (see Figure 3). For a fixed time t≥0, let S(t), I(t),
R(t), and N(t) denote the numbers of susceptible, infected, and
recovered (or removed) cases and the sum of these three
populations, respectively. Moreover, we applied a scaled SIR
model (divided by N for each outcome variable S, I, and R) and
time-varying parameters (β and γ) to the final SIR model. We
also assumed that the total number of the population is
time-invariant, that is, S(t) + I(t) + R(t) = 1. The mathematical
formula of the SIR model is provided in detail in Multimedia
Appendix 1.
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Figure 3. Illustration of the SIR model. I: infected; R: recovered; S: susceptible.

Deep Learning
We constructed five neural network models for S, I, R, β, and
γ, denoted by Snet, Inet, Rnet, βnet, and γnet, respectively. The

concrete model structures are presented in Figure 4. We applied
similar training methods to solve forward and inverse problems,
as introduced in previous studies [14,15]. The detailed deep
learning methodology is provided in Multimedia Appendix 1.
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Figure 4. Forward-Inverse SIR model networks. Each network contains 1 input node (time t), one1output node (value), 4 hidden layers, and 256 nodes
in each hidden layer. The hyperbolic tangent tanh(x) is used in the activation functions except for the last layer. The Softplus and Sigmoid functions
are used in the last hidden layer to meet the constraints S, I, R, β>0, and 0<γ<1. I: infected; R: recovered; S: susceptible.

We conducted simulations for four provinces: Seoul,
Gyeonggi-do, Busan, and Daegu. We applied five deep neural
network (DNN) models to derive the parameters Snet, Inet, Rnet,
βnet, and γnet. For a more accurate evaluation of the model
parameters, we also provided a numerical solution called
Runge-Kutta fourth order (RK4) using the estimated parameters.
RK4 is one of the most well-known and theoretically proven
algorithms that converges to analytic solutions. In contrast, the
neural network-based methodology of this study has a weak
theoretical background for convergence. Therefore, we aimed
to show how close the time-dependent parameters found by
DNN are to the actual solution through RK4.

For the RK4 method, we set a step size of h=10−3, with 26
observations used for Seoul, Busan, Daegu, and Gyeonggi and
77 observations used for South Korea. The observations are
presented in Multimedia Appendix 1.

Results

Estimating the Parameters of the SIR model with DNN
We estimated the model parameters (β and γ) and outcome
variables (S, I, and R) in the SIR model via DNNs for South
Korea, Seoul, Busan, Daegu, and Gyeonggi. The results for
South Korea are presented in Figure 5. The results for Seoul,
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Busan, Daegu, and Gyeonggi are provided in Multimedia
Appendix 1 (Figures SM1 to SM4, respectively).

We also estimated RTD for South Korea (Figure 6).

Figure 5. SIR model target values and relative errors from February 7 (t=–26.6) to March 30 (t=25.0), 2020, in South Korea. The red lines in the top

three graphs denote the Snet, Inet, and Rnet values for each graph, the green lines in the top and middle three graphs denote the observations, and the

blue lines in the middle three graphs denote the RK4 results with the parameters βnet and γnet. The population ratio is the number of people in each
group (S, I, and R) divided by the total number of people (N). Relative errors were defined as (|observed value − Network [or RK4] value|/|observed
value|) × 100 and were calculated for each parameter. I: infected; R: recovered; RK4: Runge-Kutta fourth order method; S: susceptible.

Figure 6. Suspected-infected-recovered model parameter network values and RTD values from February 7 (t=–26.6) to March 30 (t=25.0), 2020, for
South Korea. We divided the range of RTD into two parts, shown at bottom left (–26.6≤t≤–19) and bottom right (9≤t≤25.0). On February 18 (t=–15.3),
the first case was confirmed to be related to Shincheonji, which was the starting point of the outbreak in Daegu.
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We summarized the overall trend by analyzing RTD (t). First,
on February 8 (t=–25.3) in South Korea, RTD=1.0610 implies
the spread of COVID-19. Starting from February 18, RTD (t)
increased dramatically (t=–15.6), and it reached its peak (RTD

(t)=124.8454) on February 28 (t=–5.6). After March 13 (t=8.0),
RTD decreased below 1 again, signaling a decreasing trend in
the spread of COVID-19 from an epidemiological viewpoint.
However, RTD began to increase again from March 19 (t=14.0).
From February 7 to March 30, the average values of β and γ
were 0.1656 and 0.0253, respectively.

In the second case, Seoul, up to March 9 (t=4), β reached 0.2306
while γ only reached 0.0192, resulting in a maximum value of
12.0405 for RTD in this period. After March 16 (t=11), RTD

decreased to 3.1244 but then increased again, reaching 3.8255
on March 30 (t=25). This indicates that effective control of the
spread of COVID-19 was not achieved. The average values of
β and γ were 0.0705 and 0.0140, respectively. In the third case,
Busan, on March 5 (t=0), at the beginning of the observation,
β was 0.1300 (Supplementary Table), while RTD was 156.7965.
This is because R(t), the recovery group, did not change in the
initial stage, whereas γ was estimated to be 0.0008 due to the
constraint γ>0. On March 8 (t=3), RTD was 0.0908 because of
the change in R(t), reaching 0.5401 on March 30 (t=25). The
average values of β and γ were 0.0253 and 0.0670, respectively.

In the final case of Daegu, similar to Busan, RTD was 521.9075
at the beginning of the observation on March 5 (t=0). After
March 11 (t=6), the recovery rate γ began to increase faster than
the infection rate β, with RTD having its lowest value of 0.1224
on March 24 (t=19). After March 24, RTD increased, reaching
0.2409 on March 30 (t=25) (see Figure SM3 in Multimedia
Appendix 1). The average values of β and γ were 0.0191 and
0.0387, respectively. The results for other provinces are
presented in figures and tables in Multimedia Appendix 1.

Time-Dependent Effective Reproduction Number
(RTD)
Because RTD is the ratio of β(t) to γ(t), RTD can have a large
value when γ is small compared to β. This situation can be
observed in the early stage of COVID-19 spread in South Korea,
excluding Seoul and Busan (eg, the Shincheonji cult cases).
However, following the computation of the basic reproduction
number in a previous study, we obtained the effective
reproduction number Rt in the usual range found in previous
studies [16]. In the SIR model, we approximated S as 1 because
S was sufficiently large compared to I. The detailed formula is
presented in Multimedia Appendix 1. RTD responded more
sensitively than Rt to the real-world situation from t=–26 to
t=–18 (right side of Figure 7).

Figure 7. Comparison of RTD and Rt for South Korea. Rt was computed based on the growth model. Rt: effective reproduction number; RTD:
time-dependent effective reproduction number.

Characteristics of RTD
RTD is a more sensitive and responsive marker than Rt, and it
reflects subtle changes of situations over time. Especially at the
starting point of an outbreak, we can detect increasing trends
more accurately with RTD (Figure 7). Furthermore, RTD is an

indicator that precedes real-world changes. Looking at the
real-world data, there is a time delay of 4 days between the peak
of RTD and the peak of confirmed cases (Figure 8) [17]. We
also observed this pattern of time delay between the peak of
RTD and the peak of confirmed cases in other countries
(Multimedia Appendix 1, Characteristics of RTD).
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Figure 8. Comparison of RTD and real-world confirmed cases. RTD: time-dependent effective reproduction number.

Real-World Implications of RTD
The RTD we developed has important real-world implications
for measuring the current status of the viral spread and the
effectiveness of interventions. By setting the infection rate and
recovery rate as time-dependent parameters, it is possible to
accurately evaluate the pressure of depletion of health resources
on the community. Indeed, after March 5, when RTD exceeded
500, Daegu was in danger of total depletion of medical resources
[18,19]. Patients who were self-isolating at home while waiting
for hospitalization died, and a previously secured negative
pressure room became full and could not continuously accept
severely ill patients. In response to this situation, the Korean
government opened the Community Treatment Center (CTC)
to care for patients with mild illness in Daegu in early March
[20]. The CTC was staffed with seven physicians, five nurses,

and several paramedic workers who monitored and cared for
low-risk patients with COVID-19. The government would have
been able to preemptively enact drastic policies if it had
observed the changes in RTD that preceded the trend of
confirmed cases by approximately 4 days without any sacrifice
of patients (Figure 8).

Compared to Daegu, Gyeonggi-do intervened more proactively.
The RTD of Daegu at the first opening of the CTC was over 500;
however, that of Gyeonggi-do was 2.6. The local government
in Gyeonggi-do, which closely monitored the situation in Daegu,
prevented the exhaustion of medical resources by providing
optimal medical services for each risk group of patients with
COVID-19 in cooperation with the central government, along
with general policies such as public disclosure of mobile routes
of infected people, encouragement of social isolation, and
wearing of masks (Figure 9).
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Figure 9. Comparison of β(t), γ(t), and RTD in Daegu and Gyeonggi-do. Note the differences in the vertical scales of RTD. RTD: time-dependent
effective reproduction number.

Discussion

Novelty of the Model
We developed an entirely new SIR model with time-dependent
parameters via deep learning methods. Furthermore, we
validated the model with the conventional RK4 model to confirm
its convergent nature. In addition, we evaluated our model based
on real-world data reported by the KCDC, the Korean
government, and news media.

Compared to previous studies, this research has the following
three technical advantages. First, previous studies only dealt
with the infected cases under certain assumptions, such as the

cumulative number of infected cases increasing exponentially
[21]. In our method, we can compute the effective and
time-dependent reproduction numbers without any assumptions.
Moreover, we computed the entire dynamics for S, I, and R
simultaneously; therefore, the analysis is more precise.
Secondly, in another previous study, the authors manually
divided the phase of COVID-19 spread according to the
preventative and control measures to overcome the limitation
of the constant reproduction number [11]. In our method,
however, we did not need to artificially divide the phases
because the results including S, I, and R and the parameters are
naturally time-dependent. Thirdly, rather than using statistical
inference techniques as in previous research, we applied a neural
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network to solve the forward-inverse problem consisting of the
SIR model and its parameters [9]. Therefore, our method gives
deterministic and more accurate values without any statistical
uncertainty. Furthermore, by leveraging the neural network, our
method can capture richer structures in the data and SIR model
compared to the filtering techniques used in prior research [8].

Implications for Real-World Intervention
In the situation of a novel virus pandemic, it is crucial for every
central and local government to maintain appropriate medical
resources in readiness for unexpected penetration of the new
disease. South Korea saw one of the most disastrous outbreaks
of COVID-19 during the first few weeks of March 2020. In
Daegu especially, the entire local medical system was on the
brink of collapse. However, the Korean government soon
developed a preemptive policy for each local government by
learning from the situation in Daegu. The government solved
its acute hospital bed shortage by revising the triage criteria
more than seven times and implementing CTCs all over the
country. Since then, lives were saved by reserving beds for the
most acutely ill patients with COVID-19 and placing patients
with less severe disease in CTCs [22].

In a country such as Korea, where there is no interregional
blockade, the spread of the virus can be exacerbated in a few
days due to movement of the virus across regions. In fact, the
number of COVID-19 cases started increasing again from March
19 (t=14.0), indicating that the containment of COVID-19
cannot be realized without achieving herd immunity or
developing therapeutics.

Furthermore, we require a tool that can monitor virus outbreaks
simultaneously across regions in the shortest time span.

The same principle applies even if we broaden our view from
the spread of viruses between regions to the spread among

countries. In the current COVID-19 pandemic, the world must
work together to prevent the spread of the virus. This is because
the entire world is socially, culturally, and economically
intertwined through advanced transportation. Therefore, there
is an urgent need for a tool that can respond sensitively over
time, provide information about the current virus outbreak, and
evaluate the effectiveness of interventions. The methodology
and new model of this study could be employed for proactive
intervention. In addition, from the perspective of measuring
medical resources, our model has powerful strength because it
assumes all the parameters as time-dependent, which reflects
the exact status of viral spread. Furthermore, the methodology
and modeling approach are scalable and universal; therefore,
they can be applied to other new infectious disease pandemics
if real-world data are available.

Limitations
This research has several limitations. First, the time-dependent
model of this study was validated only with COVID-19 data
from South Korea. However, this model can be easily applied
to data from another outbreak because the modeling process
and methodology are disclosed fully in this article. To
crossvalidate our strategies, we provide results of similar
analyses of outbreaks in Italy, Sweden, and the United States
in Multimedia Appendix 1 (see Figures SM5 to SM10).
Secondly, because of the nature of deep learning, the results of
the model may have been overfitted to South Korean data.
However, with the new approach of this research, it is more
feasible and reasonable for every researcher to adopt the
modeling methodology and apply the model by training it with
local data that reflect local situations. In this case, an overfitted
model can be reinterpreted as a model that is appropriately fitted
to the local situation or that reflects the characteristics of the
region.
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RK4: Runge-Kutta fourth order
SIR: susceptible-infected-recovered
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