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Abstract

Background: At present, there is an increased demand for accurate and personalized patient monitoring because of the various
challenges facing health care systems. For instance, rising costs and lack of physicians are two serious problems affecting the
patient’s care. Nonintrusive monitoring of vital signs is a potential solution to close current gaps in patient monitoring. As an
example, bed-embedded ballistocardiogram (BCG) sensors can help physicians identify cardiac arrhythmia and obstructive sleep
apnea (OSA) nonintrusively without interfering with the patient’s everyday activities. Detecting OSA using BCG sensors is
gaining popularity among researchers because of its simple installation and accessibility, that is, their nonwearable nature. In the
field of nonintrusive vital sign monitoring, a microbend fiber optic sensor (MFOS), among other sensors, has proven to be suitable.
Nevertheless, few studies have examined apnea detection.

Objective: This study aims to assess the capabilities of an MFOS for nonintrusive vital signs and sleep apnea detection during
an in-lab sleep study. Data were collected from patients with sleep apnea in the sleep laboratory at Khoo Teck Puat Hospital.

Methods: In total, 10 participants underwent full polysomnography (PSG), and the MFOS was placed under the patient’s
mattress for BCG data collection. The apneic event detection algorithm was evaluated against the manually scored events obtained
from the PSG study on a minute-by-minute basis. Furthermore, normalized mean absolute error (NMAE), normalized root mean
square error (NRMSE), and mean absolute percentage error (MAPE) were employed to evaluate the sensor capabilities for vital
sign detection, comprising heart rate (HR) and respiratory rate (RR). Vital signs were evaluated based on a 30-second time
window, with an overlap of 15 seconds. In this study, electrocardiogram and thoracic effort signals were used as references to
estimate the performance of the proposed vital sign detection algorithms.

Results: For the 10 patients recruited for the study, the proposed system achieved reasonable results compared with PSG for
sleep apnea detection, such as an accuracy of 49.96% (SD 6.39), a sensitivity of 57.07% (SD 12.63), and a specificity of 45.26%
(SD 9.51). In addition, the system achieved close results for HR and RR estimation, such as an NMAE of 5.42% (SD 0.57), an
NRMSE of 6.54% (SD 0.56), and an MAPE of 5.41% (SD 0.58) for HR, whereas an NMAE of 11.42% (SD 2.62), an NRMSE
of 13.85% (SD 2.78), and an MAPE of 11.60% (SD 2.84) for RR.

Conclusions: Overall, the recommended system produced reasonably good results for apneic event detection, considering the
fact that we are using a single-channel BCG sensor. Conversely, satisfactory results were obtained for vital sign detection when
compared with the PSG outcomes. These results provide preliminary support for the potential use of the MFOS for sleep apnea
detection.
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Introduction

Monitoring of Contactless Patients
At present, there are many hurdles confronting health care
providers and decision makers, such as the sizable aging patient
population, the rising prevalence of chronic diseases, the
ever-growing health care spending, and the shortage of clinicians
[1,2]. To emphasize, the Association of American Medical
Colleges anticipates that the United States could face a shortage
of 122,000 physicians by 2032 as the need for physicians
outpaces supply [3]. Thus, physicians may not achieve close
and continuous monitoring of chronically ill patients on time,
thereby increasing their rate of mortality [4]. Apart from ongoing
challenges, the existing modalities used to monitor patients at
the hospital are too intrusive. They require attaching sensors to
the skin or strapping devices to the body. As a result, they will
have limited benefits outside hospital rooms. In other words,
patients are not monitored before and after being admitted to
the hospital. 

By comparison, remote and continuous monitoring of patients
through contactless sensors can effectively assist physicians in
keeping track of their patients’ health status while they are at
home. More importantly, monitoring and managing patient
populations with chronic diseases in a contactless way is
essential to avoid additional distress. Contactless monitoring
can be achieved largely because of the miniaturization of
microprocessors, which allows researchers to integrate sensors
into familiar objects, for example, home appliances and mobile
devices [5]. Infrared motion sensors, for instance, can capture
patients’ indoor activities such as being still/moving and moving
across rooms. Similarly, contact sensors can capture room,
cupboards, and fridge door opening and/or closing.
Bed-embedded sensors, also known as ballistocardiogram (BCG)
sensors, can deliver noteworthy information about the patient’s
vital signs, that is, heart rate (HR), breathing, body movements,
and quality of sleep [6]. In all, researchers, through contactless
sensors, are ultimately trying to predict changes in a patient’s
health status that can prevent or delay the progression of diseases
[7,8]. The hypothesis is that the health status of patients admitted
to hospitals is not suddenly deteriorating. Monitoring vital sign
trends over time can provide early diagnosis and allow
physicians or caregivers to make timely decisions [9]. In this
study, we introduce a new approach using a contactless system
that is based on the ballistocardiographic principle for detecting
abnormal breathing events (ie, apneas and hypopneas) in an
effort to address one of today’s health care issues.

Sleep Apnea Facts and Diagnoses
The most common form of sleep-disordered breathing is
obstructive sleep apnea (OSA). It occurs when a complete or
partial closure of the upper airway triggers apnea and hypopnea
during sleep [10]. An apnea is a cessation of breathing for at
least 10 seconds. Hypopnea is a reduction in airflow for at least
10 seconds by at least 30% accompanied by a drop in oxygen
saturation and/or arousal from sleep [11]. Among the general

public, OSA affects both men (34%) and women (17%).
Nonetheless, it is believed that the prevalence of this syndrome
might be underrated. To illustrate, in the United States, estimates
showed that 82% of men and 93% of women are underdiagnosed
[12].

OSA severity is determined in reference to the apnea-hypopnea
index (AHI), that is, the average number of apnea and hypopnea
episodes observed per hour of sleep. The severity of OSA is
classified as follows: normal (no OSA; AHI <5 events per hour),
mild sleep apnea (AHI ≥5 and <15 events per hour), moderate
sleep apnea (AHI ≥15 and <30 events per hour), and severe
sleep apnea (AHI ≥30 events per hour) [13]. In this regard,
patients with moderate or severe apnea are at a higher risk of
complications, such as stroke, hypertension, congestive heart
failure, and depression. Overall, the late diagnosis of OSA has
been shown to double the mortality risk for patients diagnosed
with heart failure [14]. The gold standard for evaluating the
severity of OSA is polysomnography (PSG). PSG is an
overnight controlled sleep study in a specialist sleep laboratory
that follows established scoring guidelines for OSA-associated
respiratory events.

Through PSG testing, physicians can record different bodily
functions. These functions involve HR and rhythms, brain
waves, eye movements, leg movements, nasal-oral airflow,
thoracoabdominal effort, oxygen saturation, snoring, and body
position. The PSG test provides physicians with information
about body functions, and therefore, they can diagnose various
sleep disorders. However, there are some cons related to the
test, for example, high cost, labor intensive, complex, and
insufficient privacy. Furthermore, it is not possible to emulate
the usual sleep environment in a sleep laboratory. As a
consequence, home sleep apnea tests (HSATs) have become
alternative possibilities for patients who want to circumvent the
in-laboratory PSG. These kinds of tests do not record the full
range of signals similar to the PSG. However, they can record
up to 7 parameters, including airflow (thermal and nasal
pressure), effort (inductive plethysmography), and oximetry
[12]. Although such testing is not as reliable as PSG, its
portability, affordability, and long-term data collection make it
a preferred choice for patients. Recently, off-the-shelf BCG
sensors have been investigated by researchers to detect apneic
events under the HSAT category. Although the results were
encouraging, much work is still needed to reach agreeable results
compared with PSG [15]. In this regard, we will discuss later,
in brief, the concept of BCG and how it has been employed in
the scientific literature to identify apneic events.

Ballistocardiography and Contactless Apnea
Detection–Related Work
Ballistocardiography reflects the movement of the center of
mass of the body because of cardiovascular activity. The concept
of BCG is not new, and there has been a resurgence because of
recent improvements in digital electronics reaching the era of
microprocessors. Formerly, BCG systems (ie, tables employed
by Starr et al [16]) were bulky, heavy, and complicated,
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demanding professional mechanical maintenance. Consequently,
these systems were principally intended for a single-snapshot
recording instead of a long-term data recording [17]. At present,
BCG signals are seamlessly being recorded using different
sensing modalities, particularly bed-embedded sensors (eg,
microbend fiber optic sensors [MFOSs], piezoelectric
polyvinylidene sensors, electromechanical film sensors,
pneumatic sensors, strain gauges, and hydraulic sensors) [6,18],
accelerometers [17,19], and Doppler radar-based sensors
[20,21], smart beds [22]. Bed-based sensors, along with
accelerometers, can be integrated with everyday objects such
as pillows, mattresses, chairs or even installed on the seat of a
standard toilet [23]. Moreover, attempts have been made to
measure BCG signals via video recording by tracking the motion
of facial features [24,25]. Video-based approaches can be
practical for surveillance; however, they can impose privacy
issues for in-home patient monitoring. Typically, BCG sensors
are positioned under the patient’s mattress covering the upper
half of the body, which allows capturing heart movements,
breathing movements, and overall body movements.

Several publications in the literature highlight the extensive use
of BCG sensors for both HR and respiratory rate (RR) detection
[6,18], which, in turn, attracted researchers to investigate the
benefits of BCG signals for more complicated health issues,
namely, cardiovascular functions [26] as well as sleep quality
[15]. Regarding sleep quality health issues, efforts have been
made in the literature to automate the detection of both sleep
staging [27,28] and sleep apnea. So far, there have been a few
studies that targeted sleep apnea detection through BCG sensors.
In this section, we will focus on sleep apnea detection–related
work. The study by Sadek et al [6] has more research on HR
detection and/or RR detection.

Tenhunen et al [29] investigated the potential of an
electromechanical film-based sensor for diagnosing OSA.
Although a high sensitivity was reached for detecting apneic
events, breathing patterns were analyzed manually by 2
independent scorers, and no contributions were made to
computerize the detection process. Hwang et al [30] proposed
the use of a polyvinylidene film-based sensor for detecting
apneic events. A rule-based framework was implemented to
detect apneic events by considering the SD of the sensor signals.
Beattie et al [31] tested the effectiveness of using load cells
placed under the support of a bed for apnea detection. Although
satisfactory results were achieved, the detection process was
performed manually by an expert. Waltisberg et al [32] deployed
a sensor system that consisted of an array of strain gauges to
detect apnea and periodic limb movement events. A supervised
learning framework comprising a decision fusion method and
a measurement fusion method was applied for the classification
process. Similarly, Wang et al [33] used a supervised learning
framework to detect apneic events via a micromovement
sensitive mattress. Multiple time-domain and frequency-domain
features were extracted, which were then fed to different
classifiers, that is, k-nearest neighbor, random forest, and
support vector machine. Hsu et al [34] sought to detect apneic
events by integrating 2 fiber optic–based sensors within a pillow
as well as a bed mattress. Apnea detection was achieved by
applying 2 methods, that is, a drop degree from the baseline

and linear regression models through the percentage of the total
duration of the respiratory declination. To compute the model
parameters, the empirical mode decomposition (EMD) algorithm
was used. However, this signal analysis method is time
consuming and precisely for computing the corresponding
intrinsic mode functions. Moreover, it is sensitive to the
mode-mixing problem [35].

The supervised learning-based approaches (used in the studies
mentioned earlier) require a considerable amount of accurately
annotated data, which can become quite restrictive for
noncontrolled settings [36]. Manual annotation can be
considered as an issue because the morphology of BCG signals
is highly dependent on the measurement device. BCG signals
can differ significantly between studies; besides, they differ
within and between subjects. Comparatively, Huysmans et al
[37] tested a commercial BCG sensor, that is, Emfit QS, for
sleep apnea screening. Unlike the work proposed by Tenhunen
et al [29], the authors automated the apnea detection process as
follows: 2 Emfit sensors were employed, that is, one sensor was
placed below the thorax of the patient and the second was placed
under the topper. The detection was then completed via an
unsupervised clustering method. The assumption was that during
abnormal breathing events, there will always be substantial
variations in the signal due to chest motions; thus, by locating
these artifacts, they could detect apneic events. This approach
avoided the limitation of supervised learning. Nevertheless, the
sensor locations were compared to achieve an optimal agreement
with PSG. In other words, the sensor that was very close to the
thorax achieved more favorable results than the other sensor.
In our study, we considered an MFOS for detecting vital signs.
Fiber optic sensors (FOSs) are usually used as transducers to
detect various environmental changes, such as pressure,
temperature, and acceleration [38]. Owing to their
electromechanical field immunity and high sensitivity to
variations in environmental properties such as the strain, FOSs
have been adopted to monitor important physiological
parameters, for example, pulse rate and RR, which in turn can
help detect cardiovascular diseases and respiratory anomalies
[39,40]. Among other sensors, MFOSs have proven to be
efficient in detecting ballistic forces correlated with heart
movements. They are also moderately small, lightweight, and
economical. Hence, they become popular in contactless
monitoring of vital signs [41].

The contribution of our study is two-fold. First, we analyzed
the robustness of the MFOSs for the simultaneous detection of
HR and breathing rate (BR). Second, we examined the capacities
of an MFOS for contactless detection of sleep apneic events
versus the gold standard overnight in-laboratory PSG.

Methods

Recruitment
This study is approved by the National Healthcare Group
Domain-Specific Review Board (NHG DSRB Ref: 2017/01117).
A written informed consent form was obtained from all patients
before data collection. We completed all the processes, as stated
in the guidelines and regulations of the NHG DSRB. We
recruited 10 patients diagnosed with OSA and scheduled to
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undergo a full night PSG in the sleep laboratory at Khoo Teck
Puat Hospital. Patient demographics and related medical history
are presented in Table 1. The MFOS was placed under the
patient’s mattress, and the sensor mat’s data were collected in
parallel with the overnight PSG data. We imposed no restriction
on the exact location of the sensor mat. However, we notified
the nurses to locate the mat in the upper part of the bed so that
we could acquire cardiac signals as well as respiratory effort

signals. The sensor mat does not add any complications to
standard PSG protocols because the mat has its own data storage
unit. In addition, it does not add any complexity to the patient
being monitored. In addition, data analysis was executed offline
to align with the ethics approval for the study. To preserve the
anonymity of the patients, acquired data were registered with
a unique identifier linked to each patient.

Table 1. Demographics and past medical history of recruited patients.

SmokingApnea-hypopnea indexAge (years)Past medical historyBMI (kg/m2)GenderPatients

No36.851Nil32.8Female1

Yes33.728Nil34Male2

No32.823Nil25.5Male3

Unknown58.327Nil23Male4

Unknown2642Nil25.5Male5

No2933Nil24.8Male6

Yes76.649Hypertension27.5Male7

No78.243Hypertension and dyslipidemia33.3Male8

No54.861Dyslipidemia34Male9

No93.229Nil31.2Male10

Microbend Fiber Optic Sensor
The proposed monitoring system incorporates a sensor mat and
transmission unit. The sensor mat is assembled to a dimension
of 20 cm×50 cm×0.5 cm, which promotes its portability and
inclusion into cushions, pillows, chairs, and beds. The
transmission unit has a built-in microstorage device card for
data storage, digital electronics for signal handling, and a Wi-Fi
signal transmission module for sending the data to a cloud-based

platform. The deployed sensor employs light-intensity
modulation caused by the microbending effect in multimode
optical fibers, which can be used as a transduction mechanism
for detecting pressure. Further information about the sensor’s
working principle can be found in Multimedia Appendix 1. The
system was set to collect data at a sampling frequency of 50 Hz.
Figure 1 (top) shows a longitudinal cross-section of the deployed
MFOS, and Figure 1 (bottom) presents a schematic diagram of
the deployed sensor mat.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e18297 | p. 4http://www.jmir.org/2020/9/e18297/
(page number not for citation purposes)

Sadek et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Longitudinal cross-section of the microbend fiber optic sensor along with a schematic diagram of the deployed sensor mat.

Data Analysis
For real-time applications, acquired data are deposited in 5-min
chunks on a microstorage device card (4 GB internal storage)
consolidated with the transmission unit, and then the chunks
are dispatched to a cloud server to extract correlated vital signs.
Data chunks are encrypted binary files (BIN), and each file
consumes 206 KB. Against this background, data are
indecipherable without a proper interpreter. In our application,
data chunks were gathered directly from the card. Further
information about the structure of the data can be found in
Multimedia Appendix 1. The data analysis consisted of 2 stages:
(1) vital sign detection and (2) apneic event detection. Ensuing,
we describe each stage separately.

Vital Sign Detection
The force applied to the sensor mat is the summation of the 3
sources. This force is caused by gross body movements and
chest wall movement because of the respiration and
cardioballistic effect (BCG) [42]. The BCG signal delivers
information about HR and HR variability. Similarly, respiratory
signals can report on the RR. Extracting both signals can be
completed in different ways, for example, via band-pass
filtering, wavelet analysis, or other decomposition methods,
namely, EMD. To obtain a successful decomposition, motion
artifacts must be suppressed from the raw data. Although they

are important indicators of sleep quality, information about vital
signs cannot be extracted, as the shape of a typical physiological
signal is demolished.

Motion artifacts in our approach were suppressed by applying
an adaptive threshold method that employed the SD of the raw
data [41]. We defined 2 thresholds to remove motion artifacts,
that is, out-of-bed artifact and motion artifact. We divided the
raw data stream into equal chunks of 30 seconds, with an overlap
of 15 seconds. For each 30-second chunk, we computed the SD
and stored all SD values in a single array. Following that, we
computed the median absolute deviation (MAD) for the SD
array. If the SD of a 30-second chunk was 4 times greater than
the MAD, we considered this chunk as a motion artifact. In this
step, we can control the extent to which the motion artifacts
need to be suppressed. When we suppress data chunks with an
SD value that is 4 times greater than the MAD, we allow the
algorithm to preserve portions of the data with moderately high
variation in the signal amplitude (Figure 2). A further increase
in this value will allow the algorithm to retain portions of the
data with an extremely high variation in the signal amplitude.
By selecting this threshold value, we were able to achieve a
signal coverage of 79.79%, 81.33%, 78.58%, 84.83%, 86.36%,
87.51%, 81.82%, 51.24%, 75.58%, and 70.59% for all patients,
respectively. The coverage is the ratio between the duration of
artifact-free signal and raw signal. Ultimately, there should be
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a balance between the number of recovered signals and the
algorithm performance to measure vital signs of interest. If the
SD was lower than a predetermined threshold (5 mV), we
considered this chunk as an out-of-bed activity. This implies
that there were no variations in the amplitude of the acquired

data. We only calculated HR and RR for data chunks with SD
values between these 2 thresholds. HR and RR were detected
according to Sadek et al [41], and further information can be
found in Multimedia Appendix 1.

Figure 2. Illustration of isolated motion artifacts. Data chunks were suppressed if they were 4 times greater than the median absolute deviation of the
SD array. MAD: median absolute deviation.

HRs were measured using a sliding time window of 30 seconds,
with an overlap of 15 seconds. The electrocardiogram (ECG)
signal was used as a reference to detect interbeat intervals
(Figure 3). To achieve this objective, we selected the
well-known Pan and Tompkins algorithm because of its
reasonable results [43]. RRs were calculated using a sliding

time window of 30 seconds, with an overlap of 15 seconds
(Figure 4). The effort signal obtained from the thoracic belt was
used as a reference to detect respiratory cycles. Compared with
abdominal effort and airflow (ie, pressure and thermistor)
signals, the effort thoracic signal was highly correlated with the
signal acquired from the MFOS.
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Figure 3. The first row displays a 30-second ballistocardiogram signal and the fourth-level smooth coefficient. The second row displays the equivalent
electrocardiogram signal. ECG: electrocardiogram.

Figure 4. The first row displays a 30-second raw signal and the respiratory effort signal. The second row displays the equivalent thoracic belt signal.

Apneic Event Detection
As we quoted earlier, most of the existing methods use
supervised learning algorithms to identify apneic events from
BCG signals. Although such methods yield favorable results,
they impose restrictions because of the morphological variations
of the acquired signals. As such, we implemented an adaptive
histogram-based thresholding approach for apnea detection.

Pauses in breathing must last at least 10 seconds to be counted
as apneic events and can last longer depending on the severity
of the disease.

These pauses in breathing are accompanied by an increase in
the body and breathing movements and snoring. After matching
the scored apneic events (ie, PSG manual scoring) with derived
breathing signals, we found that most of the apneic events fell
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during motion artifact–labeled slices. Thus, motion artifacts
were not removed during apnea detection. In our approach, we
aimed to differentiate between apneic and nonapneic events via
derived breathing signals. To meet this target for each patient,
we constructed a histogram from the average absolute deviation
(AAD) of the extracted respiratory signal time windows. The
time windows were obtained by slicing the signal into equal
slices of 30 seconds, with 50% overlapping; afterward, the
histogram (ie, the gray bars in Figure 5) was sorted in
descending order. In other words, the first histogram value
represented the location of the mode of the AAD values (ie, the
AAD value that occurred the most often). The hypothesis was
that the most frequent histogram values would correspond to
normal breathing events. In this regard, we designated the AAD
value equivalent to the 6th histogram value as a threshold to

detect apneas, that is, AAD values greater than the selected
threshold were assumed to represent apneic events (Figure 5).
This histogram value was selected (see the Parameters Selection
section) based on the proposed method’s ability to discriminate
between normal and apneic events. This value shows consistent
results across all patients. After detecting the threshold, we split
the breathing signal into equal slices of 60 seconds, with 50%
overlapping. Then, every 60-second slice was further split into
three 20-second slices. Next, for each 60-second slice, we
computed the AAD of the three 20-second slices and stored
them in ascending order. If the difference between the third and
second elements was greater than 45% (see the Parameters
Selection section) of the histogram threshold, we marked the
60-second slice as an apneic event; otherwise, we labeled it as
a nonapneic event (Figure 6).

Figure 5. Histogram of the average absolute deviation values for a breathing signal; the gray bars count the average absolute deviation values that fall
into each bin. The selected threshold is represented as a red dashed line. The values between 0 and 400 are only displayed to visualize the histogram
bins better. AAD: average absolute deviation.
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Figure 6. Flowchart of apneic event detection. AAD: average absolute deviation.

Parameter Selection
The proposed method requires the optimization of 2 parameters:
a histogram value and a threshold value. A
leave-one-out-cross-validation (LOOCV) was implemented to
complete this task. The effect of the 2 parameters for apneic
event detection was examined in each iteration (ie, 10 iterations
in our case) using 9 distinct patient data rather than recording
the system’s performance for the held-out patient. A system’s
performance via the LOOCV is usually carried out based on
the outcome of a held-out point (ie, a patient in our case). Then,
the overall performance is computed by taking the average of
the evaluation metrics across all iterations. For our study, we
capitalized on this approach to choose the optimal values for
the 2 specified parameters. First, we aimed to determine the
optimal kth histogram value for an arbitrary threshold value.
Various threshold values were exploited (range 0.2-0.95, with
a step size of 0.05). Similarly, several histograms (2nd histogram
to 16th histogram) were tested against each individual threshold.
In other words, for a single threshold value, 3 evaluation metrics
(ie, sensitivity, specificity, and accuracy) were measured in
accordance with 15 histogram values. This process was repeated
10 times using 9 distinct patient data, and in each iteration, the

mean of each metric was recorded. The objective of this process
was to find an optimal histogram value applicable to any
arbitrary threshold.

For any threshold value, the sensitivity was inversely
proportional to the histogram values. However, the specificity
and accuracy were directly proportional to the histogram values.
Thus, the 6th histogram value can be considered as a critical
point. As shown in Figure 7, there was a rapid change in the
sensitivity and specificity between the 5th and 7th histograms.
The sensitivity keeps decreasing with small fluctuations beyond
the 6th histogram value, whereas the opposite occurred for
specificity and accuracy. The same behavior occurred for all
arbitrary threshold values. As a result, the 6th histogram value
was selected as the optimal value for apneic event detection.
Second, we aimed to determine the optimal threshold value
compatible with the 6th histogram value. To achieve this task,
we computed the overall mean area under the curve (AUC),
also called balanced accuracy across the 10 iterations for each
individual threshold value. The threshold yielding the highest
AUC was selected as the optimal value. As shown in Figure 8,
the highest AUC occurred at a 45% threshold value, that is,
51.67%. As a result, the 45% threshold value was selected as
the optimal value for apneic event detection.
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Figure 7. Optimal histogram selection at a 45% threshold value. The 1st row represents the mean sensitivity in each iteration versus different histogram
values. The second and third rows represent the specificity and accuracy, respectively.

Figure 8. Optimal threshold selection corresponding to the 6th histogram value. The overall mean area under the curve was computed across the 10
iterations and plotted against different threshold values. AUC: area under the curve.

Statistical Analysis
For apneic event detection, we compared the apneic events
provided by the PSG with those recovered from the advised
sensor mat. Different metrics were adopted in performing the

appraisal, that is, sensitivity, specificity, and accuracy. On the
other hand, HR and RR were assessed in beats per minute and
breaths per minute, respectively. To quantify the performance
of the proposed sensor mat for HR and BR estimates compared
with the reference ECG signal and effort belt signal, the
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Bland-Altman plot, Pearson correlation coefficient, normalized
root mean square error (NRMSE), normalized mean absolute
error (NMAE), and mean absolute percentage error (MAPE)
were adopted. These metrics are commonly employed to
determine the difference between medical instruments [44-48].
Further information about these error metrics can be found in
Multimedia Appendix 1. High-quality PNG images of all figures
presented in the study can be found in Multimedia Appendix
2.

Results

Heart and Respiratory Measurements
On average, the NMAE, NRMSE, and MAPE were 5.42% (SD
0.57), 6.54% (SD 0.56), and 5.41% (SD 0.58) for HR estimation,
respectively (Table 2). In addition, the NMAE, NRMSE, and
MAPE were 11.42% (SD 2.62), 13.85% (SD 2.78), and 11.60%
(SD 2.84), for RR estimation, respectively (Table 3).

Table 2. Normalized mean absolute error, normalized root mean square error, and mean absolute percentage error for heart rate estimation.

Mean absolute percentage error (%)Normalized root mean square error (%)Normalized mean absolute error (%)Patients

4.165.304.201

5.696.915.742

6.027.155.963

5.276.455.284

5.036.195.085

5.206.335.226

5.736.845.667

6.207.196.268

5.296.395.329

5.406.575.4510

5.41 (0.58)6.54 (0.56)5.42 (0.57)Mean (SD)

Table 3. Normalized mean absolute error, normalized root mean square error, and mean absolute percentage error for respiratory rate estimation.

Mean absolute percentage error (%)Normalized root mean square error (%)Normalized mean absolute error (%)Patients

8.8011.348.841

8.5410.918.432

12.6615.0412.763

15.0016.9314.444

14.8616.8814.335

15.2217.6414.696

8.1410.288.207

10.2812.0910.228

9.6712.209.749

12.8415.2112.5110

11.60 (2.84)13.85 (2.78)11.42 (2.62)Mean (SD)

Tables 4 and 5 summarize the limits of agreement (LoA) of the
Bland-Altman plot, r value, and P value for HRs and RRs,
respectively. To provide some examples, we provided the
Bland-Altman plots and Pearson correlation coefficient plots
of the HRs for patients 1, 2, 6, and 10 in Figure 9 (top left, top
right, bottom left, and bottom right, respectively) and Figure

10 (top left, top right, bottom left, and bottom right,
respectively). In addition, we presented the Bland-Altman plots
and the Pearson correlation coefficient plots of the BRs for
patients 3, 4, 5, and 9 in Figure 11 (top left, top right, bottom
left, and bottom right, respectively) and Figure 12 (top left, top
right, bottom left, and bottom right, respectively).
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Table 4. Limits of agreement of the Bland-Altman plots, Pearson correlation coefficient, and P value for heart rate detection.

Heart ratePatients

P valuerSD of differenceLimits of agreement

UpperLower

<.0010.622.957.89−3.681

<.0010.743.949.94−5.522

<.0010.684.307.41−9.463

<.0010.773.948.06−7.384

<.0010.313.678.59−5.805

<.0010.633.777.92−6.856

<.0010.703.866.44−8.687

<.0010.633.8011.10−3.778

<.0010.643.938.28−7.139

<.0010.453.769.53−5.2210

Table 5. Limits of agreement of the Bland-Altman plots, Pearson correlation coefficient, and P value for respiratory rate detection.

Respiratory ratePatients

P valuerSD of differenceLimits of agreement

UpperLower

<.0010.431.913.71−3.771

<.0010.581.863.43−3.872

<.0010.382.586.40−3.713

<.0010.462.775.50−5.344

<.0010.462.483.95−5.795

<.0010.432.614.95−5.286

<.0010.392.014.56−3.327

<.0010.422.425.26−4.228

<.0010.232.154.32−4.109

<.0010.362.494.21−5.5710
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Figure 9. Bland-Altman plots of the heart rates for patients 1, 2, 6, and 10 (ie, top left, top right, bottom left, and bottom right, respectively). ECG:
electrocardiogram; HR: heart rate; MFOS: microbend fiber optic sensor; RR: respiratory rate.
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Figure 10. Pearson correlation plots of the heart rates for patients 1, 2, 6, and 10 (ie, top left, top right, bottom left, and bottom right, respectively).
The blue circles represent reference heart rate against the estimated heart rate, and the blue line represents the fitted line. ECG: electrocardiogram;
MFOS: microbend fiber optic sensor.
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Figure 11. Bland-Altman plots of the respiratory rates for patients 3, 4, 5, and 9 (ie, top left, top right, bottom left, and bottom right, respectively).
ECG: electrocardiogram; HR: heart rate; MFOS: microbend fiber optic sensor; RR: respiratory rate; THO: thoracic belt.
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Figure 12. Pearson correlation plots of the respiratory rates for patients 3, 4, 5, and 9 (ie, top left, top right, bottom left, and bottom right, respectively).
The blue circles represent reference RR against the estimated respiratory rate, and the blue line represents the fitted line. MFOS: microbend fiber optic
sensor.

Apneic Event Detection
The apneic events were detected from the derived respiratory
signals via windowing with overlapping. The assessment was
made against the manually scored apneic events. Each sliding
window was classified as either an apneic breathing event or a
normal breathing event. Apneic events consisted of obstructive
apneas, hypopnea, central apneas, and mixed apneas. For
detection, we tested a sliding time window of 2 different sizes,
that is, a sliding time window of 60 seconds with an overlap of
30 seconds as well as a sliding time window of 30 seconds with
an overlap of 15 seconds. For the former, if any 20-second slice
satisfied the apneic threshold condition, we considered the entire
60-second window as an apneic event. Similarly, for the latter,

if any 10-second slice satisfied the apneic threshold condition,
we considered the complete 30-second window as an apneic
condition.

As presented in Table 6, for the 60-second time window, on
average, the proposed system achieved an accuracy of 49.96%
(SD 6.39), a sensitivity of 57.07% (SD 12.63), and specificity
of 45.26% (SD 9.51). In addition, for the 30-second time
window, on average, the proposed system achieved an accuracy
of 54.33% (SD 5.72), a sensitivity of 48.93% (SD 11.72), and
a specificity of 53.76% (SD 9.12). Figure 13 displays bar charts
with error bars for the reported accuracy, sensitivity, and
specificity related to apneic events’ detection of the 60-second
and 30-second time windows.
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Table 6. Accuracy, sensitivity, specificity, and P value of apneic event detection; the two-tailed test was used to determine the P value.

PatientsCharacteristics

10987654321

Sliding time window of 60 seconds

46.0246.5650.857.0163.246.5346.2939.2653.9349.95Accuracy (%)

51.6165.8262.478.4834.7246.5545.651.9462.0271.57Sensitivity (%)

4141.2838.8633.969.5446.5246.4237.5652.2645.24Specificity (%)

<.001<.001.03<.001<.001<.001<.001<.001<.001<.001P value

Sliding time window of 30 seconds

49.4449.2453.1356.8866.8256.3551.0547.1958.0555.18Accuracy (%)

51.2454.3956.7769.4431.3932.1940.9846.349.9956.64Sensitivity (%)

47.8347.8349.3943.3874.7159.6252.9447.3159.754.86Specificity (%)

.12<.001<.001<.001<.001<.001<.001<.001<.001<.001P value

Figure 13. Bar charts with error bars for accuracy, sensitivity, and specificity regarding apneic events detection (60-second and 30-second time
windows). The bars represent the mean of each measure, and the cap-tipped lines represent the uncertainty (SD) in each measure.

Discussion

Principal Findings
In this study, we aimed to estimate the potential of using a
single-channel monitoring device (ie, a bed-embedded FOS)
for contactless monitoring of vital signs (ie, HRs and RRs) and
apneic breathing events during an overnight sleep study. For
HR estimation, the devised method achieved reasonably accurate
results compared with the reference ECG signals. For the first
patient, the system achieved the lowest NMAE, NRMSE, and
MAPE, such as 4.20%, 5.30%, and 4.16%, respectively, whereas
the highest NMAE, NRMSE, and MAPE were 6.26%, 7.19%,
and 6.20%, respectively, for the eighth patient (Figure 14). The
signal coverage for patients with severe OSA (eg, patients 8
and 10) was small compared with patients with moderate OSA

(eg, patients 5 and 6). The signal coverage was the lowest for
the eighth patient (ie, 51.24%), and the error in beats per minute
was the highest among other patients. It is not necessarily true
that patients with higher signal coverage will have the lowest
error; however, the signal quality is the main factor affecting
the outcomes. For instance, the first patient did not have the
highest signal coverage (79.79%) but had the lowest error. This
situation occurred because this patient had a small number of
apneas (ie, 14) and a large number of hypopneas (ie, 191). The
fifth patient had the highest coverage (87.51%); however, the
error was slightly larger compared with the first patient. This
situation occurred because this patient had a large number of
apneas (ie, 203) and a small number of hypopneas (ie, 20).
Overall, it may be said that the error in beats per minute is likely
to increase for patients with a large number of apneas. This is
because the amount of motion artifacts progresses for patients
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with severe apnea. In addition, the morphology of the BCG is
significantly affected by cardiovascular complications of sleep
apnea. It should also be recalled that the designated threshold
value to eliminate motion artifacts had an effect on the
estimation process. To explain, in our method, we rejected time
windows that had an SD value 4 times greater than the MAD.
Decreasing the threshold value would have allowed us to reject
a large number of motion artifacts and consequently obtain

lower errors. Nonetheless, the signal coverage could have been
much lower. As a result, we balanced between achieving
reasonable errors and retaining reasonable signal coverage. HR
results were also supported by the Pearson correlation
coefficients and LoA of the Bland-Altman plot. The system
achieved the highest correlation coefficient for the fourth patient
(r=0.77; P<.001) and the lowest correlation for the fifth patient
(r=0.31; P<.001).

Figure 14. Bar plots of the normalized mean absolute error, normalized root mean square error, and mean absolute percentage error between reference
device (electrocardiogram) and the microbend fiber optic sensor for heart rate estimation. HR: heart rate; MAPE: mean absolute percentage error;
NMAE: normalized mean absolute error; NRMSE: normalized root mean square error.

RR findings, on the other hand, were slightly inferior to HR
results. By way of illustration, the lowest NMAE, NRMSE, and
MAPE were 8.20%, 10.28%, and 8.14%, respectively, for the
seventh patient, whereas the highest NMAE, NRMSE, and
MAPE were 14.69%, 17.64%, and 15.22%, respectively, for
the sixth patient (Figure 15). In general, detecting RRs in healthy
subjects is simpler than detecting HRs. This is because
respiratory cycles, that is, inhalation and exhalation, can be
located through a peak detector. However, the situation is more
challenging for patients with sleep apnea for different reasons.
To illustrate, in our approach, RRs represent the movement of
the chest and abdominal wall; however, because of the recurrent
decrease and increase in breathing effort, detecting respiratory
cycles has become a challenging task. These variations in

breathing efforts affected the accuracy of the peak detector and
consequently contributed to increasing the error between the
devised sensor and the reference thoracic belt. Compared with
HR detection, the lowest correlation coefficient was (r=0.23;
P<.001) for the ninth patient, whereas the highest correlation
was (r=0.58; P<.001) for the second patient. In general, patients
with very severe OSA (ie, patients 7, 8, and 10) presented
slightly worse correlation coefficients than patients with less
severe OSA (ie, patients 1, 2, 4, 5, and 6). The value of the
correlation coefficient depended to no small extent on the types
of apneas and also the duration of apneic events presented in
each patient. These parameters significantly influenced the
respiratory signal’s typical shape, and thus, the respiratory cycles
were more difficult to detect.
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Figure 15. Bar plots of the normalized mean absolute error, normalized root mean square error, and mean absolute percentage error between reference
device (thoracic belt) and the microbend fiber optic sensor for respiratory rate estimation. MAPE: mean absolute percentage error; NMAE: normalized
mean absolute error; NRMSE: normalized root mean square error; RR: respiratory rate.

This highest error occurred in the sixth patient, most likely
because of poor contact between the sensor mat and patient.
The structure of both BCG and respiratory signals was highly
different compared with that of other patients. Furthermore, the
amplitude of the acquired raw data was very low. These issues
contributed to a large discrepancy between the true peaks and
detected peaks, as presented in Figure 16. Sleep apnea detection,
from a different angle, demands multiple sensors and wires
fixed to the patient’s body throughout one night, including, for
example, airflow, respiratory effort, and oximetry;
notwithstanding, in this study, we only employed a
single-channel BCG sensor. The conceived sensor delivered
reasonably good results considering the fact that we were using
a single-channel BCG sensor. The detection evaluation metrics
(ie, accuracy, sensitivity, and specificity) were measured
according to the overlapping between manually scored events

and events obtained by the deployed sensor mat. Across all
recruited patients, the 60-second sliding moving window slightly
outperformed the 30-second moving window. As shown in
Table 6, the average sensitivity of the former window was
57.07% (SD 12.63) compared with 48.93% (SD 11.72) for the
second window. Although the accuracy and specificity of the
30-second window were slightly better than those of the
60-second window, the P value of the last patient was .12. In
contrast, the 60-second window reached a P value of <.001 for
all patients but the eighth patient (P=.03). In addition, the lowest
sensitivity for the 30-second window was 31.39%; however, it
was 34.72% for the 60-second window. Both time windows
achieved the highest sensitivity for the seventh patient, such as
78.48% and 69.44% in a row. Figure 17 presents an example
of an apneic event annotation related to the first patient
throughout the night.
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Figure 16. The first row displays a 30-second raw signal plus the respiratory effort signal for patient 6. The second row shows the equivalent thoracic
belt signal.

Figure 17. Annotation of apneic events for the first patient. The first row describes the reference events (apnea-hypopnea index is 36.8 events per
hour), whereas the second row describes the estimated events (apnea-hypopnea index is 23 events per hour).

Owing to the reasons mentioned earlier, the 60-second window
was selected for apneic event detection. As discussed in the
Parameter Selection section, a threshold of 0.45 was selected
because it contributed to a balanced result between sensitivity
and specificity. Selecting a smaller threshold value (eg, 0.2)
would have resulted in a very high sensitivity across all patients;
however, the opposite would have happened for both specificity
and accuracy. Regarding the 0.45 threshold, the sensitivity

tended to increase exponentially for patients with less severe
OSA (ie, patient 5: AHI=26; patient 3: AHI=32.8; patient 2:
AHI=33.7; and patient 1: AHI=36.8) in the order of 46.55%,
51.94%, 62.02%, and 71.57%, respectively. Nonetheless, the
sixth patient (AHI=29 and sensitivity=34.72%) did not follow
this order because of the presence of central apnea events (ie,
13 events). These events were more challenging to detect. On
the other hand, the sensitivity tended to decrease exponentially
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in patients with very severe OSA (ie, patient 7: AHI=76.6%;
patient 8: AHI=78.2; and patient 10: AHI=93.2) in the order of
78.48%, 62.40%, and 51.61%, respectively. This particular
behavior was because of the apnea/hypopnea ratio. In other
words, patients with a large number of hypopneas tended to
have higher sensitivity when compared with other patients
(Table 7). The designated threshold undoubtedly contributed

to this outcome, and we could say that the proposed system was
more appropriate for patients with less severe OSA. Such a
configuration can be helpful in detecting OSA early and
avoiding further complications. Table 7 presents the number of
apneic events (obstructive apneas, hypopneas, central apneas,
and mixed apneas) for each patient versus the proposed system’s
sensitivity and the manually scored AHI.

Table 7. The counts of the different apneic events for each patient versus achieved sensitivity and the manually scored apnea-hypopnea index.

Apnea-hypopnea indexSensitivityMixed ap-
neas

Central ap-
neas

Hypopneas (n)Obstructive apneas (n)Patients

36.871.5700189121

33.762.02013168232

32.851.940092113

58.345.600182014

2646.550050475

2934.7201364906

76.678.4891474997

78.262.4343213948

54.865.82011271329

93.251.61022457710

Limitations
The limitation of this study is the small sample size; despite
that, our ultimate goal was to quantify the predictive outcomes
of the fiber optic mat for vital signs and sleep apnea detection
in a real-life sleep study. For HR and RR, the findings of the
study have shown that the proposed system can provide results
close to those of reference devices used in the PSG study. For
sleep apnea detection, the designed system provided favorable
results for patients with less severe OSA compared with patients
with very severe OSA. This issue can be investigated in the
future by adding another sensor, for example, an accelerometer,
as a noise reference to eliminate body movements [49]. It should
be pointed out that the suggested method for apnea detection
did not follow the supervised learning models, and hence, we
avoided labeling sensor data. The manually scored apneic events
could have been used as a guide to label sensor data; however,
the labeling process will be a restricted property, given
large-scale deployment at users’ homes. Another issue to
consider is data availability; BCG signals are not benchmarked;
as a result, a training model can only be limited to specific
sensor data. This problem occurs because the outcome of BCG
sensors is not necessarily similar, which restricts testing across
different data sets. As stated by Inan et al [18] in a recent review
article, there should be a comprehensive and open database of
BCG signals. Such databases will allow researchers to employ
them in their environments and improve the field into an
accepted technique appropriate for clinical studies [18].

Comparison With Prior Work
We attempted to detect apneic events in a previous study [41],
where the trial was performed during a drug-induced sleep
endoscopy, and the optical fiber mat was compared with the
ApneaLink device (ResMed). In a previous clinical study, the

system delivered very low sensitivity because of the short
evaluation period, that is, around 120 min per study. In addition,
the ApneaLink device is not as accurate as the gold-standard
PSG. Moreover, the employed algorithm did not consider the
fact that there will always be a significant variation in the signal
amplitude because of the chest movement. Therefore, a smaller
threshold was selected to achieve realistic results. In this study,
to mitigate these issues, the analysis was completed during a
realistic overnight sleep study with the PSG as a gold standard
for comparison. In addition, we improved the apneic detection
algorithm to cope with real-life scenarios.

Conclusions
In this study, we evaluated a single-channel monitoring device
for detecting vital signs, namely, HR and RR, as well as sleep
apnea events. The monitoring device consisted of a mat
embedded with a microbending multimode fiber. We
consolidated data from 10 patients diagnosed with OSA, in
which the devised sensor mat was placed underneath the
patient’s mattress, and raw data were collected without altering
any typical configuration for the overnight sleep study. A
wavelet-based analysis method was implemented for HR
estimation, and satisfactory results were obtained in comparison
with the reference ECG. RRs were detected from the derived
effort respiratory signal after removing the nonlinear trend.
Furthermore, the proposed method delivered results close to
those of the reference piezoelectric thoracic belt. Both HR and
RR were computed via a sliding time window of 30 seconds
with an overlap of 15 seconds. The apneic events were detected
on a minute-by-minute basis through an adaptive
histogram-based thresholding approach. The suggested method
provided average results for the distinction between normal
breathing and apneic breathing events. Nevertheless, the results
are encouraging considering the relative complexity of
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diagnosing sleep apnea via PSG. Indeed, the proposed sensor
is not designed to substitute the gold-standard method. However,
it can be seen as an assistive tool capable of providing
longitudinal data without interfering with the subject’s everyday
activities. Longitudinal data enable monitoring trends in vital
signs that, in turn, can help to predict clinical deterioration in

patients diagnosed with sleep-disordered breathing or
cardiovascular diseases. In future work, we plan to integrate
pulse oximetry with the proposed sensor mat to investigate the
impact of adding another sensing modality for apneic event
detection.
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