
Original Paper

Web-Based Technology for Remote Viewing of Radiological
Images: App Validation

Qiusha Min1*, PhD; Xin Wang1*, BSc; Bo Huang2*, MBBS; Liangzhou Xu2, MBBS
1School of Educational Information Technology, Central China Normal University, Wuhan, Hubei, China
2Department of Radiology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
*these authors contributed equally

Corresponding Author:
Qiusha Min, PhD
School of Educational Information Technology
Central China Normal University
No.152 Luoyu Road
Wuhan, Hubei, 430079
China
Phone: 86 27 67867597
Email: qiusham@mail.ccnu.edu.cn

Abstract

Background: Internet technologies can create advanced and rich web-based apps that allow radiologists to easily access
teleradiology systems and remotely view medical images. However, each technology has its own drawbacks. It is difficult to
balance the advantages and disadvantages of these internet technologies and identify an optimal solution for the development of
medical imaging apps.

Objective: This study aimed to compare different internet platform technologies for remotely viewing radiological images and
analyze their advantages and disadvantages.

Methods: Oracle Java, Adobe Flash, and HTML5 were each used to develop a comprehensive web-based medical imaging app
that connected to a medical image server and provided several required functions for radiological interpretation (eg, navigation,
magnification, windowing, and fly-through). Java-, Flash-, and HTML5-based medical imaging apps were tested on different
operating systems over a local area network and a wide area network. Three computed tomography colonography data sets and
2 ordinary personal computers were used in the experiment.

Results: The experimental results demonstrated that Java-, Flash-, and HTML5-based apps had the ability to provide real-time
2D functions. However, for 3D, performances differed between the 3 apps. The Java-based app had the highest frame rate of
volume rendering. However, it required the longest time for surface rendering and failed to run surface rendering in macOS. The
HTML5-based app had the fastest surface rendering and the highest speed for fly-through without platform dependence. Volume
rendering, surface rendering, and fly-through performances of the Flash-based app were significantly worse than those of the
other 2 apps.

Conclusions: Oracle Java, Adobe Flash, and HTML5 have individual strengths in the development of remote access medical
imaging apps. However, HTML5 is a promising technology for remote viewing of radiological images and can provide excellent
performance without requiring any plug-ins.

(J Med Internet Res 2020;22(9):e16224) doi: 10.2196/16224

KEYWORDS

internet access; medical informatics applications; computer-assisted image analyses; computer-assisted three-dimensional imaging;
medical imaging; radiology; application

Introduction

Recently, modern technology has made it possible to generate
digital images using medical equipment. Compared with

traditional film-based images, these types of images have several
advantages (eg, they are easy to share, transmit, and process)
[1]. These advantages promote the popularity of the digital
imaging systems in hospitals all over the world, and offer the

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 1http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:qiusham@mail.ccnu.edu.cn
http://dx.doi.org/10.2196/16224
http://www.w3.org/Style/XSL
http://www.renderx.com/

possibility for remote viewing and processing. However, the
successful implementation of a teleradiology system requires
a fast network and easy access [2]. If the system does not meet
these requirements, radiologists may be reluctant to use the
teleradiology system.

Internet technologies can create advanced and rich web-based
apps that allow radiologists to easily access teleradiology
systems and remotely view medical images. Compared with
picture archiving and communication systems or other imaging
workstations which require dedicated hardware and software,
a web-based app is easy to set up and has a low cost [3]. These
apps can be run on almost all personal computers without the
need for powerful equipment on the client side. There are 3
major internet technologies, Oracle Java [4], Adobe Flash [5],
and HTML5 [6], to create these apps. In the past few decades,
these 3 technologies have been used in the field of medical
imaging [7-16]; however, each technology has its own
drawbacks. For example, plug-ins are required by Java and
Flash. Regarding HTML5, the level of support and expected
performance vary depending on the browser. Thus, it is difficult
to balance the advantages and disadvantages of these internet
technologies and identify an optimal solution for the
development of medical imaging apps. Owing to the significant
growth of teleradiology and web-based radiology subspecialty
training, there is a need for quantitative and qualitative
evaluations of different internet technologies in the field of
medical imaging [17,18].

In this study, we used different technologies—Java (version 8;
Oracle Corporation), Adobe Flash (version 32; Adobe Inc), and
HTML5 (version 5.3; World Wide Web Consortium)—to
develop web-based medical imaging apps. Subsequently,
experiments were conducted to demonstrate the performance
of these apps. Accordingly, the primary aim of this study was
the evaluation of the performance of medical imaging apps
developed with Oracle Java, Adobe Flash, and HTML5 in
various scenarios. We also aimed to analyze the advantages and
disadvantages of these technologies in the field of medical
imaging. We believe these performance comparisons can guide
developers in their efforts to identify suitable technologies to
create web-based medical imaging apps, thus allowing
radiologists to visualize and interpret images remotely, quickly,
and effortlessly.

Methods

App Design
Medical imaging apps have several basic functions. First, the
app needs to interact directly with the local file system to avoid
network latency. The user can then use various 2D image
processing tools, such as zooming and windowing, to identify
useful information contained in the 2D image. In addition, the
interpretation may be supported by 3D functions so that the
volumetric data set can provide additional information on the
anatomy or pathology of the patient [19]. Consequently,
comprehensive medical imaging apps should meet the following
requirements: (1) interact with local file systems, (2) have basic
2D image processing functions, and (3) allow 3D visualization
of selected regions of interest in the data sets.

In this study, 3 demo apps for computed tomography (CT)
colonography (also known as virtual colonoscopy) were
developed using Oracle Java, Adobe Flash, and HTML5. These
apps were designed to satisfy the aforementioned criteria, and
they were used to evaluate Oracle Java, Adobe Flash, and
HTML5 as tools to determine the best architecture for the
development of a medical imaging app.

These apps provide remote access in such a way that radiologists
can view images from a downloaded data set and manipulate
them using 2D or 3D functions. They can be placed as a client
component in a large teleradiology system. This study focuses
solely on the client app and presents a comparison of 2D and
3D performance of the Oracle Java, Adobe Flash, and HTML5
technologies for the development of such medical imaging apps.

Operational Flow of Radiological Interpretation Using
Demo Apps

Step 1
Select a data set to be interpreted and click the Download button
to activate the download process. The selected data set is now
stored on the local computer.

Step 2
The first slice of the data set is automatically displayed on the
screen in the Java-based app. In the cases of the Flash and
HTML5 apps, users need to click the Choose file button and
select in the dialog box the downloaded file in either of the 2
apps. Thereafter, the first slice of the data set is displayed.

Step 3
Navigate through the image data set using the Previous and
Next buttons or mouse scrolling.

Step 4
Interpret the data set using 2D image processing tools, such as
zoom in, zoom out, and windowing.

Step 5
Interpret the data set using 3D visualization tools, such as 3D
rendering and fly-through.

App Implementation

Access to the Local File System
All 3 apps enabled the user to choose a CT colonography data
set for study (Figure 1). The selected data set was then
transmitted to the client and stored on the local computer using
a custom data format. Currently, Oracle Java, Adobe Flash, and
HTML5 use different local file reading and writing technologies.
Oracle Java downloaded the file via HTTP using the Java
HttpURLConnection class. This class was used to read and
write the resources referenced by a URL (uniform resource
locator). Once the download was completed, the
RandomAccessFile class was used to read local files in the
Java-based app. Adobe Flash used the FileReference class to
provide a safe way to directly read and write data to the local
system (provided that the action was sanctioned by the user).
Using this class in the app, the study data set was stored on the
local computer disk and could then be navigated easily and

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 2http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

efficiently. HTML5 had a new input type <input type = “file”>
which provided a standard way to interact with local files. After

reading the downloaded file, the first slice in the data set was
automatically displayed on the screen.

Figure 1. Graphical user interface used to display the first slice in the data set: (left) Java, (center) Flash, and (right) HTML5.

Image Processing
Another crucial requirement for these apps was pixel-level
operation. For medical imaging apps, basic 2D image processing
functions include magnification and windowing. For the
magnification function, Java used scaleX() and scaleY() in the
ScalePane class to zoom in and zoom out. Flash used the Zoom
class to zoom in or out of the object. HTML5 used the canvas
drawImage() method to zoom in and out. In terms of windowing,
Java used setRGB() to set the pixels in BufferedImage to the
specified RGB value. Flash was implemented using the
BitmapData class. The setPixel() and getPixel() methods in the

BitmapData class were used to change the value of each pixel
in the image. For HTML5, a <canvas> element that has the
ability to define the color of the pixels was used.

Figure 2 depicts a series of screenshots of the user interfaces of
the windowing function in the 3 tested apps. The image is a
windowed slice with the following parameters: the center of
the window is 20 HU (where HU is Hounsfield units) and the
width of the window is 200 HU. Figure 3 is a screenshot of the
user interface of maximum intensity projection in Java-, Flash-
and HTML5-based apps. Measurement and magnification
functions can also be implemented by these 3 apps.

Figure 2. An anatomical axial slice at the thoracic level, wherein the center parameter is 20 HU, and the width is 200 HU. (left) Java, (center) Flash,
and (right) HTML5. Screen resolution is 1920×1080.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 3http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. Graphical user interface and demonstration of maximum intensity projection. (left) Java, (center) Flash, and (right) HTML5.

3D Visualization
It is well known that 3D visualization is a computationally
intensive task. Hence, this work is typically implemented at a
workstation equipped with a high-performance graphics
processing unit (GPU). However, based on our previous research
[11,13,15], it is feasible to implement 3D visualization on a
personal computer using Oracle Java, Adobe Flash, or HTML5.
In this implementation, 3D visualization was based on both
surface rendering and volume rendering.

Surface rendering generally involved 2 stages: surface extraction
and 3D rendering. The marching cubes algorithm was used to
extract the isosurface from a volumetric data set [20]. The
information of the extracted surface (ie, the vertex and the
normal) were stored on a server. Once the user sent the request

to view the 3D data, the corresponding vertex and normal files
were sent to the client. Subsequently, the client side was
responsible for rendering the 3D model surface. Currently,
Oracle Java, Adobe Flash, and HTML5 enable the provision of
hardware 3D rendering, which is a fast rendering mode when
compared to that of software rendering. Java used Canvas3D
to implement 3D rendering. For Adobe Flash, a Context3D
object was used in its 3D app programming interface (API).
Using the createVertexBuffer() method, Flash could send the
vertices and normals to the GPU directly and perform a fast
reconstruction. The combination of HTML5 with WebGL could
also realize fast 3D rendering. Figure 4 presents 3D colon
models rendered by Java-, Flash-, and HTML5-based apps. The
user could also interact with this model and perform various
operations, such as rotation and translation, using the mouse.

Figure 4. Screenshot of a 3D model of the entire colon in the browser. (left) Java, (center) Flash, and (right) HTML5.

Virtual fly-through navigation is a function used to manipulate
the results of 3D reconstruction. It creates a virtual camera
within the colon that moves along a planned path (commonly
referred to as the colon centerline [21]); the radiologist can
observe the interior of the colon using the continuous movement
of the camera. This advanced imaging technique can help the
radiologist make more accurate judgments about the lesion.
Figure 5 presents the results of different techniques for
implementing 3D fly-through within the colon, running in a
browser.

Volume rendering is another type of 3D visualization that can
represent the interior information of the 3D data set. Our
implementation of volume rendering was based on a ray casting
algorithm due to its ability to render high quality images [22].
This technique involved intensive computations resulting in
low rendering speeds; however, it was feasible to define a
subvolume to represent a region of interest. Volume rendering
was then applied in this subvolume. In our apps, the size of the
subvolume was 100×100×100 pixels and could be selected by
the user. Figure 6 presents a region of interest rendered by the
ray casting algorithm in Java-, Flash-, and HTML5-based apps.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 4http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Screenshot of the implementation of the fly-through in the browser. (left) Java, (center) Flash, and (right) HTML5.

Figure 6. Screenshot of volume rendering in the browser. (left) Java, (center) Flash, and (right) HTML5.

Experiment Design

Overview
To compare the performances of the Java-, Flash-, and
HTML5-based apps, 3 types of experiments were conducted:
determining the performance of the apps running on the same
platform (in Windows; Experiment 1); evaluating the
performance of the apps on multiple platforms (Experiment 2);

comparing the performances of the apps using a local area
network (LAN) or a wide area network (WAN) (Experiment
3). CT colonography data sets (n=3), which were downloaded
from The Cancer Imaging Archive [23], were used. Descriptions
of the data sets are presented in Table 1, and the information
about the computers used in the experiments is provided in
Table 2. It is evident that the computers were ordinary personal
computers for regular users.

Table 1. CT data sets used in the experiments.

3D visualizationData set size SizeData set

Number of facesNormal file (kB)Vertex file (kB)pixelkB

1,642,58057,74757,747512×512×628321,5361

1,693,70059,54559,545512×512×610312,3202

1,713,37260,23660,236512×512×500256,0003

It should be noted that while the performances of Java- and
Flash-based apps are browser independent, they are dependent
on Java Virtual Machine and Flash Player, respectively.
However, HTML5 is solely dependent on the browser, and our
previous research [15] has demonstrated that Google Chrome

can provide stable and excellent HTML5 performance. Thus,
Google Chrome was used to run the HTML5-based app as well
as to launch the Flash- and Java-based apps in this experiment.
The details of the testing metrics in this study are presented in
Table 3.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 5http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 2. Computers used in the experiments.

GPUbMemoryCPUaOperating systemTypeComputer

NVIDIA GeForce GTX
1050Ti

16.00 GBIntel Core i5-8400 @2.80 GHzWindows

10, 64 bits

Desktop1

NVIDIA GeForce GTX
1050Ti

16.00 GBIntel Core i5-8400 @2.80 GHzUbuntu 20.04Desktop2

Intel Iris Plus Graphics
640

8.00 GBIntel Core Intel i5 @ 2.30 GHzMacOS Sierra
10.12.5

Laptop (Mac-
Book Pro)

3

aCPU: central processing unit.
bGPU: graphics processing unit.

Table 3. Details of testing metrics of this study.

MeasurementDescriptionLabelFunction

HTML5Adobe FlashJava

Data access

ManualActionScript 3.0JavaExecution time for downloading a medical image data setM1

2D image processing

JavaScriptActionScript 3.0JavaExecution time for viewing a slice in a medical image data setM2

JavaScriptActionScript 3.0JavaExecution time for implementing windowing per sliceM3

JavaScriptActionScript 3.0JavaExecution time for implementing magnification per sliceM4

JavaScriptActionScript 3.0JavaExecution time for implementing mouse wheel per sliceM5

JavaScriptActionScript 3.0JavaExecution time for implementing measure tool per sliceM6

JavaScriptActionScript 3.0JavaExecution time for implementing maximum intensity projectionM7

3D visualization

ManualActionScript 3.0JavaExecution time for downloading the vertex and normal files of
a medical image data set

M8

JavaScriptActionScript 3.0JavaExecution time for rendering a 3D model based on the download-
ed vertex and normal files

M9

JavaScriptActionScript 3.0JavaFrame rate of fly-throughM10

JavaScriptActionScript 3.0JavaFrame rate of software-based volume renderingM11

Experiment 1
The first experiment was carried out with 3 data sets using LAN
to compare the performances of different apps running on the
same platform. Computer 1 was chosen to test the Java-, Flash-,
and HTML5-based apps on a Windows operating system. Each
function was implemented 20 times in each app.

Experiment 2
The second experiment was used to determine the performance
consistency of different internet technologies among multiple
platforms. Computers 1, 2, and 3 were used in this experiment.
Therefore, Java-, Flash-, and HTML5-based apps were run on
Windows, macOS, and Linux platforms, respectively. Each
function in the 3 apps was implemented 20 times on these
platforms using data set 1 over a LAN.

Experiment 3
In the third experiment, computer 1 was used to evaluate the
performances of Java-, Flash-, and HTML5-based apps over
the LAN and WAN. This computer was equipped with

Windows, and hence all the 3 apps were tested on the same
platform. All 3 data sets were used in the experiment. Java-,
Flash-, and HTML5-based apps were tested based on data sets
1, 2, and 3, to determine the performance differences when they
ran over a LAN and WAN. In WAN, the 3 apps accessed the
medical data set and vertex and normal files on the remote
server. The bandwidth of the connecting network was 50 Mbps,
and it had a download speed of approximately 5.1 MB/s. The
download sizes for the medical image data set, vertex file, and
normal file are listed in Table 2.

Each function in the app was implemented 20 times by Java
Virtual Machine (version 1.8.0), Flash Player (version
32.0.0.433), and Chrome (version 83.0.4103.97), either over
the LAN or WAN.

Radiologist Feedback
In order to collect feedback on the apps, we conducted a pilot
trial. Radiologists (n=5) at Wuhan Hospital of Traditional
Chinese Medicine participated in this trial. They first received
a brief introduction of the project and our medical imaging apps.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 6http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

After that, each of them was required to interpret 10 CT
examinations using the Java-based app, 10 CT examinations
using the Flash-based app, and 10 CT examinations using the
HTML5-based apps on a Windows personal computer on the
LAN.

After the trial, they filled out questionnaires (Multimedia
Appendix 1). A 5-point Likert scale was used to represent the
radiologists’ opinions on a particular question or statement:
strongly disagree, disagree, unsure, agree, and strongly agree.
Radiologists’ responses were recorded on a 1-5 scale, with
higher numbers representing stronger agreement.

Results

Experiment 1: General Performance
The average performances for each function are presented in
Table 4 (Experiment 1). The comparison revealed that each
technology had its own advantages. Java was associated with
the shortest downloading time and highest frame rate for
software-based volume rendering. However, it performed poorly
at surface rendering. HTML5 surface rendering performed best.
In terms of 2D functions, such as zooming and windowing, all
3 apps performed similarly. Overall, HTML5 outperformed the
other 2 technologies, with the exception of downloading and
software-based volume rendering.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 7http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 4. Comparison of the performances of the 3 apps in various scenarios.

3D visualization2D image processingData accessTechnology

M11

(fps)

M10

(fpsb)

M9 (s)M8 (s)M7 (s)M6 (s)M5 (s)M4 (s)M3 (s)M2 (s)M1 (sa)

Experiment 1

Data set 1

1.9232.25271.2110.760.34460.00100.00770.00150.01420.007329.87Java (Win-
dows)

0.0510.2116.2010.2426.70710.00010.01460.00040.01930.014427.76Flash
(Windows)

0.5659.301.0913.462.40360.00020.00080.00060.01330.000928.58HTML5
(Windows)

Data set 2

1.9734.23280.5410.290.37010.00100.00580.00160.00940.006629.16Java (Win-
dows)

0.059.9117.5910.3527.55140.00020.01490.00070.01890.014826.97Flash
(Windows)

0.6160.051.2512.382.45600.00030.00090.00040.01540.000827.98HTML5
(Windows)

Data set 3

2.2436.25283.7911.130.29230.00080.00490.00180.00980.004623.96Java (Win-
dows)

0.0610.1318.7210.4221.17750.00020.01440.00050.01860.014222.11Flash
(Windows)

0.7160.101.4312.371.97720.00020.00080.00050.01510.000823.19HTML5
(Windows)

Experiment 2

Data set 1

1.9232.25271.2110.760.34460.00100.00770.00150.01420.007329.87Java (Win-
dows)

0.0510.2116.2010.2426.70710.00010.01460.00040.01930.014427.76Flash
(Windows)

0.5659.301.0913.462.40360.00020.00080.00060.01330.000928.58HTML5
(Windows)

Data set 1

1.42——c10.270.34830.00020.01330.00280.01890.013228.93Java (ma-
cOS)

0.0710.0713.599.9821.43240.00060.01910.00020.02320.020727.76Flash (ma-
cOS)

0.5460.200.928512.312.63520.00020.00120.00090.01940.001129.04HTML5
(macOS)

Data set 1

1.6819.3377.848.490.43980.00020.01040.00520.01770011319.61Java (Lin-
ux)

0.119.2615.129.9816.37150.00040.03250.00030.05130.029127.75Flash (Lin-
ux)

0.3758.71.3913.953.73690.00040.00190.00080.04140.002133.22HTML5
(Linux)

Experiment 3

Data set 1

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 8http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

3D visualization2D image processingData accessTechnology

M11

(fps)

M10

(fpsb)

M9 (s)M8 (s)M7 (s)M6 (s)M5 (s)M4 (s)M3 (s)M2 (s)M1 (sa)

1.9232.25271.2110.760.34460.00100.00770.00150.01420.007329.87Java
(LAN)

1.8932.23268.65169.890.34170.00100.00720.00110.01530.0071311.47Java
(WAN)

Data set 2

0.059.9117.5910.3527.55140.00020.01490.00070.01890.014826.97Flash
(LAN)

0.059.1769.18176.4227.40850.00030.01480.00060.01910.0145464.05Flash
(WAN)

Data set 3

0.7160.101.4312.371.97720.00020.00080.00050.01510.000823.19HTML5
(LAN)

0.7260.021.31186.392.01470.00060.00080.00080.01620.0009377.51HTML5
(WAN)

as: seconds.
bfps: frames per second.
cNot tested in macOS.

Experiment 2: Performance on Multiple Platforms
The average performances of all the functions are presented in
Table 4 (Experiment 2). It can be observed from this table that
although the 2D performances of Java-, Flash-, and
HTML5-based apps running on multiple platforms (Windows,
macOS, and Linux) were almost the same, there are obvious
differences in 3D performance. Owing to the facts that Java3D
is obsolete and the configuration in macOS was much more
complicated than expected, surface rendering by Java was not
tested in macOS but only tested in Windows and Linux. In terms
of the 3D performance on different platforms, Java-based apps
on Windows achieved better performance than on Linux and
macOS. However, Flash- and HTML5-based apps demonstrated
consistent performance across different platforms.

Experiment 3: Performance based on LAN and WAN
The average performances for each function are presented in
Table 4 (Experiment 3). The results of the performances of
Java-, Flash-, and HTML5-based apps over LAN and WAN
revealed that there was little difference between the LAN and
WAN, except for downloading. Given that the data transmission
speed over the WAN was lower than that over the LAN, the
downloading time was different, as expected. After downloading
data to the client computer, the app performance over the WAN
was the same as that over the LAN.

Summary
The experimental results demonstrated that Java-, Flash-, and
HTML5-based apps have the ability to yield real-time
performances for all 2D functions. However, the 3D
performances differed between the 3 apps. In terms of
software-based volume rendering, the Java-based app had the
highest frame rate; however, it required the longest amount of
time for surface rendering and failed to run surface rendering
in macOS. In terms of surface rendering, the HTML5-based
app had the fastest rendering and the highest speed for
fly-through without platform dependence. However, the frame
rate of software-based volume rendering by HTML5 was slightly
lower than that by Java. The 3D performances of the Flash-based
app were worse than both of the other apps.

Pilot Trial and Feedback From Radiologists
The results of radiologists’ responses are presented in Table 5.

Most radiologists were satisfied with the functions that we
provided. However, they were not satisfied with 3D functions
in Java and Flash. Three radiologists reported that Java took a
long time for surface rendering and Flash provided a
significantly low frame rate for volume rendering. For question
8, every radiologist chose HTML5, which means that HTML5
obtained the highest satisfaction among these 3 technologies.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 9http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 5. Radiologists’ responses to the questionnaires.

Question scoreaRadiologist

8b7654321

35555555Radiologist 1

34335554Radiologist 2

35445555Radiologist 3

35445555Radiologist 4

35555555Radiologist 5

N/Ac24212125252524Total score

aFrom 1 (strongly disagree) to 5 (strongly agree).
bOptions: 1 (Java), 2 (Flash), 3 (HTML5).
cN/A: not applicable.

Discussion

Principal Findings
Currently, there are 3 main technologies for the development
of web-based medical imaging apps, namely, Oracle Java,
Adobe Flash, and HTML5. Around the 2000s, Oracle Java was
a popular internet technology in the field of medical imaging
[7-12,14,24]. Since 2010, Flash-based imaging apps have
appeared, owing to the ubiquity and small size of the Flash
Player [13,16]. Since the release of the World Wide Web
Consortium HTML5 recommendation in 2014, there has been
a growing trend toward the utilization of HTML5 in the
development of medical imaging apps. McLaughlin et al [25]
developed a digital training platform for interpreting
radiographic images based on HTML5. Their platform had 2
tools, a search strategy training tool and an eye tracking tool,
which were used to clarify the image interpretation process [25].
Gorgbjerg [26] presented an HTML5-based web app that could
be manipulated as in a picture archiving and communication
systems. Zhang [27] created a network-based medical data
rendering and sharing system with a client app that was
developed by HTML5. This client app has the ability to deliver
real-time visualization on the web. Additionally, our previous
study [15] provided an evaluation of HTML5 for medical
imaging apps and demonstrated that HTML5 can provide an
excellent remote access medical imaging experience.

In this study, 3 technologies were used to develop a
comprehensive medical imaging app and to evaluate the
performances of these technologies in the field of radiology. In
terms of accessibility, both Java- and Flash-based apps require
a browser plug-in. Despite the fact that the Flash Player has
long been one of the most popular browser plug-ins, Apple
decided to stop bundling Flash Player in macOS in 2010. Thus,
for this group of users, to be able to run Flash-based apps, they
must initially install Flash Player. Similarly, to be able to run
Java, Java Virtual Machine must be installed. HTML5 does not
suffer from this problem because it is the native language used
in all browsers. Therefore, HTML5 requires no preinstallation
and is a platform-independent technology that provides a high
level of accessibility. However, the advantages associated with
HTML5 exist only in the latest version of browsers. Older

browser versions, such as Microsoft Internet Explorer 8 (or
older versions), Mozilla Firefox 3.5 (or older versions), and
Google Chrome 10 (or older versions), are not compatible with
HTML5. In these cases, users would be required to update their
browsers, otherwise, HTML5-based apps could not be launched
in their browsers. Furthermore, browsers vary in their level of
support for the HTML5 standard, and thus, this leads to
inconsistent user experiences. For example, the implementation
of the mouse wheel event is different among Internet Explorer,
Chrome, Safari, and Firefox. In the case of Chrome, when the
mouse wheel is rolled up, the value increases however, in
Firefox, the value decreases.

In terms of functionality, all 3 technologies can realize the
necessary functions for remote viewing of radiological images.
Image processing, such as zooming and windowing, can be
provided by all 3 technologies on all platforms. However,
implementation of 3D visualization is more complicated than
the implementation of image processing, especially for Oracle
Java. Oracle Java realizes 3D surface rendering by depending
on Java3D API. However, this API has not been updated since
2008. Hence, some problems emerge in recent implementations
of Java3D (eg, the Java3D app failed to launch in macOS). 3D
visualization by Adobe Flash and HTML5 can be successfully
implemented, regardless of the platform. However, it should be
noted that Adobe will terminate its support for Flash at the end
of 2020. Thereafter, Flash 3D API and Flash Player will not be
updated. In this case, only HTML5 has an advanced API and
hence can provide a higher level of functionality (compared to
Oracle Java and Adobe Flash).

In terms of usability, the experimental results reveal that all 3
technologies can provide 2D image processing on all platforms.
However, the 3D performances of these technologies are
different. Among these technologies, HTML5 presents the best
surface rendering performances in terms of rendering time and
frame rate. In terms of volume rendering, HTML5 is not good
at software-based volume rendering. However, when integrated
with a GPU, HTML5 can provide fast hardware-based volume
rendering [28,29].

In terms of interoperability, Oracle Java, Adobe Flash, and
HTML5 are designed for developing rich web apps. Therefore,
all 3 apps can be connected to a large teleradiology system and

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 10http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

placed as client components. Moreover, the source code of
HTML5 is exposed online, and therefore, the locations of image
data sets can be easily assessed. The source codes of Java and
Flash are hidden (inside .JAR and .SWF files, respectively),
which prevents unauthorized access to image data sets. Thus,
Java and Flash outperform HTML5 in data privacy.

Recently, cloud computing has been used in the field of medical
imaging for high-capacity storage, sharing, and intensive
computational tasks [30,31]. In this infrastructure, the image
data and complex processing tasks are moved from user
computers to the cloud. The users then launch an app to access
the cloud. In this case, a radiologist can implement the
cloud-based medical image analysis using a personal computer
from any location. Furthermore, web technology supports the
development of the client app in the cloud-based system. With
its development, the client app can become more powerful than
before. Among these web technologies, HTML5 can develop
a zero-footprint web viewer, which requires zero plug-ins, zero
latency, and zero maintenance. Therefore, most commercially
web-based DICOM (Digital Imaging and Communications in
Medicine standard) viewers, such as Ambra [32], medDream
[33], and boxDicom [34], switched to an HTML5-based solution
recently. All of them can be integrated into any picture archiving
and communication systems system. Additionally, medDream
provides 3D features, such as maximum intensity projection
and 3D rendering, in a browser. We confirmed that their HTML5
solutions can implement necessary interpretation tools, such as
2D image processing and 3D visualization, inside the client
browser with satisfactory performance.

Although web technology enables remote viewing of
radiological images easily and efficiently, there are still 4 issues
affecting current web-based medical imaging apps. First, when
data are transmitted over the internet, security is the biggest
challenge, and this has encouraged many researches to find
ways to keep medical images safe and confidential [35,36].
Second, remote viewing of radiological images is heavily
dependent on the network. When internet connections are slow
or unavailable, our web apps cannot work properly; hence,
network condition is an important factor in teleradiology
settings. Third, the specifications of a personal computer are

usually inferior to those of dedicated workstations, and therefore,
intensive computational tasks, such as volume rendering, cannot
be implemented on a personal computer. In our implementation
of volume rendering, the rendering region was reduced in order
to provide fast volume rendering. Therefore, some interpretation
tools need to be customized and simplified in web-based apps.
Furthermore, typical medical image sizes range from 512×512×8
bits up to 1024×1024×12 bits. For some imaging apps, the
resolution is even higher. Therefore, the client’s screen should
support higher resolutions, otherwise the medical images cannot
be properly displayed.

Limitations
Our study and the web-based apps that were developed also
have some limitations. First, we were able to obtain feedback
from 5 radiologists to conduct a pilot testing, but we were not
able to conduct a large and comprehensive investigation on
users’ opinions. Therefore, the feedback of users may contain
deviations due to a small sample size. Second, only 2 personal
computers, one on which Windows and Linux were installed,
and another on which macOS was installed, were used in our
experiments. The performances of apps may be affected by the
hardware specifications. In future, upgraded computer hardware
could enhance the performance of our apps.

Conclusion
Based on the review of existing literature, it is apparent that
there is a lack of studies on the evaluation of different internet
technologies for remote viewing of radiological images. In this
study, 3 main internet technologies (ie, Oracle Java, Adobe
Flash, and HTML5) were used to develop comprehensive
web-based medical imaging apps. Experiments were conducted
to compare these technologies in terms of accessibility,
functionality, and usability. Moreover, advantages and
disadvantages were discussed. Our research demonstrated that
HTML5 is a promising technology for remote viewing of
radiological images and can provide excellent performance
without requiring any plug-ins. Therefore, our research provides
an important reference for future development of web apps in
the field of medical imaging, and it could help to identify an
optimal solution for remote viewing of radiological images.

Acknowledgments
This work was supported by the self-determined research funds of Central China Normal University from the colleges' basic
research and operation of Ministry of Education (No. CCNU20QN019).

Authors' Contributions
All authors contributed to the design of the study. BH and LX designed the medical imaging apps; QM and XW collected the
data sets and developed the Java-, Flash-, and HTML5-based apps; all authors performed the experiments. QM wrote the main
body of the manuscript, and all authors reviewed the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Questionnaire.
[DOCX File , 34 KB-Multimedia Appendix 1]

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 11http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v22i9e16224_app1.docx&filename=7f82169bc947a6a0a3c9d6acf35ad3a1.docx
https://jmir.org/api/download?alt_name=jmir_v22i9e16224_app1.docx&filename=7f82169bc947a6a0a3c9d6acf35ad3a1.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/

References

1. James J, Davies A, Cowen A, O'Connor P. Developments in digital radiography: an equipment update. Eur Radiol 2001
Mar 13;11(12):2616-2626. [doi: 10.1007/s003300100828] [Medline: 11734969]

2. Bowers GH, Steiner E, Kalman M. Implementing teleradiology in a private radiology practice: lessons learned. J Digit
Imaging 1998 Aug;11(3 Suppl 1):96-98 [FREE Full text] [doi: 10.1007/BF03168271] [Medline: 9735443]

3. Fraternali P, Rossi G, Sánchez-Figueroa F. Rich internet application. IEEE Internet Comput 2010 May;14(3):9-12. [doi:
10.1109/mic.2010.76]

4. JDK 12 documentation. Oracle. URL: https://docs.oracle.com/en/java/javase/12/index.html [accessed 2019-07-05]
5. ActionScript 3.0. Reference for the Adobe Flash Platform. 2019. URL: https://help.adobe.com/en_US/FlashPlatform/

reference/actionscript/3/ [accessed 2019-07-05]
6. Living standard. HTML. URL: http://w3c.github.io/html/ [accessed 2019-07-10]
7. Slomka PJ, Elliott E, Driedger AA. Java-based remote viewing and processing of nuclear medicine images: toward "the

imaging department without walls". J Nucl Med 2000 Jan;41(1):111-118. [Medline: 10647613]
8. Knoll P, Höll K, Mirzaei S, Koriska K, Köhn H. Distributed nuclear medicine applications using World Wide Web and

Java technology. Eur Radiol 2000 Aug 18;10(9):1483-1486. [doi: 10.1007/s003300000432] [Medline: 10997440]
9. Choi H, Park S, Kang J, Kim S, Choi H. Tele-medical imaging conference system based on the Web. Comput Methods

Programs Biomed 2002 Jun;68(3):223-231. [doi: 10.1016/s0169-2607(01)00174-2] [Medline: 12074849]
10. Kamauu AWC, DuVall SL, Wiggins RH, Avrin DE. Using applet-servlet communication for optimizing window, level

and crop for DICOM to JPEG conversion. J Digit Imaging 2008 Sep;21(3):348-354 [FREE Full text] [doi:
10.1007/s10278-007-9038-3] [Medline: 17534682]

11. Min Q, Sadleir R. Distributed medical imaging apps using Java technology. 2015 Dec 16 Presented at: International Congress
on Image and Signal Processing BioMedical Engineering and Informatics (CISP-BMEI); 2015; Hong Kong, China p. 16-19.
[doi: 10.1109/APSIPA.2015.7415343]

12. Looney PT, Young KC, Halling-Brown MD. MedXViewer: providing a web-enabled workstation environment for
collaborative and remote medical imaging viewing, perception studies and reader training. Radiat Prot Dosimetry 2016
Jun;169(1-4):32-37. [doi: 10.1093/rpd/ncv482] [Medline: 26628613]

13. Min Q, Wang Z, Wu M. An evaluation of adobe flash for remote access medical imaging applications. 2016 Oct 15 Presented
at: IEEE 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI);
2016; Datong, China p. 15-17. [doi: 10.1109/cisp-bmei.2016.7852789]

14. Doel T, Shakir DI, Pratt R, Aertsen M, Moggridge J, Bellon E, et al. GIFT-Cloud: A data sharing and collaboration platform
for medical imaging research. Comput Methods Programs Biomed 2017 Feb;139:181-190 [FREE Full text] [doi:
10.1016/j.cmpb.2016.11.004] [Medline: 28187889]

15. Min Q, Wang Z, Liu N. An evaluation of HTML5 and WebGL for medical imaging applications. J Healthc Eng 2018 Aug
29;2018:1592821 [FREE Full text] [doi: 10.1155/2018/1592821] [Medline: 30245782]

16. Arguinarena EJC, Macchi JE, Escobar P, Del Fresno M, Massa J, Santiago M. Dcm-ar: a fast flash-based Web-PACS
viewer for displaying large DICOM images. In: Conf Proc IEEE Eng Med Biol Soc. 2010 Presented at: International
Conference of the IEEE Engineering in Medicine and Biology; Aug 31-Sept 4; Buenos Aires, Argentina p. 3463-3466.
[doi: 10.1109/IEMBS.2010.5627827]

17. Rosenkrantz AB, Hanna TN, Steenburg SD, Tarrant MJ, Pyatt RS, Friedberg EB. The current state of teleradiology across
the United States: a national survey of radiologists' habits, attitudes, and perceptions on teleradiology practice. J Am Coll
Radiol 2019 Dec;16(12):1677-1687. [doi: 10.1016/j.jacr.2019.05.053] [Medline: 31271736]

18. Haj-Mirzaian A, Sethi N, de Francesca B, Sahni S, Zaheer A. Web-based radiology subspecialty training program: pilot
feasibility and effectiveness analysis on Ethiopian radiologists. Acad Radiol 2020 Feb;27(2):293-299. [doi:
10.1016/j.acra.2019.02.025] [Medline: 31060981]

19. Pickhardt PJ, Lee AD, Taylor AJ, Michel SJ, Winter TC, Shadid A, et al. Primary 2D versus primary 3D polyp detection
at screening CT colonography. AJR Am J Roentgenol 2007 Dec;189(6):1451-1456. [doi: 10.2214/AJR.07.2291] [Medline:
18029884]

20. Lorensen W, Cline H. Marching cubes: a high resolution 3D surface construction algorithm. 1987 Presented at: SIGGRAPH
'87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques; August 1987; New
York, NY, USA. [doi: 10.1145/37401.37422]

21. Sadleir RJ, Whelan PF. Fast colon centreline calculation using optimised 3D topological thinning. Comput Med Imaging
Graph 2005 Jun;29(4):251-258. [doi: 10.1016/j.compmedimag.2004.10.002] [Medline: 15890252]

22. Levoy M. Display of surfaces from volume data. IEEE Comput Grap Appl 1988 May;8(3):29-37. [doi: 10.1109/38.511]
23. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and

operating a public information repository. J Digit Imaging 2013 Dec 25;26(6):1045-1057 [FREE Full text] [doi:
10.1007/s10278-013-9622-7] [Medline: 23884657]

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 12http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1007/s003300100828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11734969&dopt=Abstract
http://europepmc.org/abstract/MED/9735443
http://dx.doi.org/10.1007/BF03168271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9735443&dopt=Abstract
http://dx.doi.org/10.1109/mic.2010.76
https://docs.oracle.com/en/java/javase/12/index.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
http://w3c.github.io/html/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10647613&dopt=Abstract
http://dx.doi.org/10.1007/s003300000432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10997440&dopt=Abstract
http://dx.doi.org/10.1016/s0169-2607(01)00174-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12074849&dopt=Abstract
http://europepmc.org/abstract/MED/17534682
http://dx.doi.org/10.1007/s10278-007-9038-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17534682&dopt=Abstract
http://dx.doi.org/10.1109/APSIPA.2015.7415343
http://dx.doi.org/10.1093/rpd/ncv482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26628613&dopt=Abstract
http://dx.doi.org/10.1109/cisp-bmei.2016.7852789
https://linkinghub.elsevier.com/retrieve/pii/S0169-2607(16)30654-X
http://dx.doi.org/10.1016/j.cmpb.2016.11.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28187889&dopt=Abstract
https://doi.org/10.1155/2018/1592821
http://dx.doi.org/10.1155/2018/1592821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30245782&dopt=Abstract
http://dx.doi.org/10.1109/IEMBS.2010.5627827
http://dx.doi.org/10.1016/j.jacr.2019.05.053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31271736&dopt=Abstract
http://dx.doi.org/10.1016/j.acra.2019.02.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31060981&dopt=Abstract
http://dx.doi.org/10.2214/AJR.07.2291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18029884&dopt=Abstract
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1016/j.compmedimag.2004.10.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15890252&dopt=Abstract
http://dx.doi.org/10.1109/38.511
http://europepmc.org/abstract/MED/23884657
http://dx.doi.org/10.1007/s10278-013-9622-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23884657&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

24. Poliakov AV, Albright E, Hinshaw KP, Corina DP, Ojemann G, Martin RF, et al. Server-based approach to web visualization
of integrated three-dimensional brain imaging data. J Am Med Inform Assoc 2005;12(2):140-151 [FREE Full text] [doi:
10.1197/jamia.M1671] [Medline: 15561787]

25. McLaughlin L, Woznitza N, Cairns A, McFadden S, Bond R, Hughes C, et al. Digital training platform for interpreting
radiographic images of the chest. Radiography (Lond) 2018 May;24(2):159-164. [doi: 10.1016/j.radi.2017.12.010] [Medline:
29605114]

26. Borgbjerg J. MULRECON: a web-based imaging viewer for visualization of volumetric images. Curr Probl Diagn Radiol
2019;48(6):531-534. [doi: 10.1067/j.cpradiol.2018.09.001] [Medline: 30340913]

27. Zhang Q. Web-based medical data visualization and information sharing towards application in distributed diagnosis.
Inform Med Unlocked 2019;14:69-81. [doi: 10.1016/j.imu.2018.10.010]

28. Arbelaiz A. Volume visualization tools for medical applications in ubiquitous platforms. In: Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering.: Springer, Cham; 2017 Presented at:
International Summit on eHealth; June 14-16, 2016; Budapest, Hungary p. 443-450. [doi: 10.1007/978-3-319-49655-9_54]

29. Lesar Ž, Bohak C, Marolt M. Real-time interactive platform-agnostic volumetric path tracing in webGL 2.0. 2018 Jun 20
Presented at: Web3D '18: Proceedings of the 23rd International ACM Conference on 3D Web Technology; 2018; Poznań,
Poland p. 1-7. [doi: 10.1145/3208806.3208814]

30. Kagadis GC, Kloukinas C, Moore K, Philbin J, Papadimitroulas P, Alexakos C, et al. Cloud computing in medical imaging.
Med Phys 2013 Jul 21;40(7):070901. [doi: 10.1118/1.4811272] [Medline: 23822402]

31. Liu L, Chen W, Nie M, Zhang F, Wang Y, He A, et al. iMAGE cloud: medical image processing as a service for regional
healthcare in a hybrid cloud environment. Environ Health Prev Med 2016 Nov 25;21(6):563-571 [FREE Full text] [doi:
10.1007/s12199-016-0582-7] [Medline: 27783315]

32. DICOM web viewer: vew from anywhere, anytime, across all imaging types. Ambra Health. URL: https://ambrahealth.
com/products-and-services/dicom-web-viewer/ [accessed 2020-09-01]

33. HTML 5 zero-footprint DICOM viewer. MedDream. URL: https://www.softneta.com/products/meddream-dicom-viewer/
[accessed 2020-09-01]

34. Medical images for the cloud. BoxDicom. URL: https://boxdicom.com/ [accessed 2020-09-01]
35. Rodrigues JJPC, de la Torre I, Fernández G, López-Coronado M. Analysis of the security and privacy requirements of

cloud-based electronic health records systems. J Med Internet Res 2013 Aug 21;15(8):e186 [FREE Full text] [doi:
10.2196/jmir.2494] [Medline: 23965254]

36. Blanquer I, Brasileiro F, Brito A, Calatrava A, Carvalho A, Fetzer C, et al. Federated and secure cloud services for building
medical image classifiers on an intercontinental infrastructure. Future Generation Computer Systems 2020 Sep;110:119-134.
[doi: 10.1016/j.future.2020.04.012]

Abbreviations
CT: computed tomography
DICOM: Digital Imaging and Communications in Medicine standard
GPU: graphics processing unit
HTML: hypertext markup language
LAN: local area network
WAN: wide area network

Edited by G Eysenbach; submitted 18.09.19; peer-reviewed by J Borgbjerg, A Korchi, P Lei, J Lee; comments to author 11.03.20;
revised version received 21.07.20; accepted 11.08.20; published 25.09.20

Please cite as:
Min Q, Wang X, Huang B, Xu L
Web-Based Technology for Remote Viewing of Radiological Images: App Validation
J Med Internet Res 2020;22(9):e16224
URL: http://www.jmir.org/2020/9/e16224/
doi: 10.2196/16224
PMID: 32975520

©Qiusha Min, Xin Wang, Bo Huang, Liangzhou Xu. Originally published in the Journal of Medical Internet Research
(http://www.jmir.org), 25.09.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 13http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://europepmc.org/abstract/MED/15561787
http://dx.doi.org/10.1197/jamia.M1671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15561787&dopt=Abstract
http://dx.doi.org/10.1016/j.radi.2017.12.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29605114&dopt=Abstract
http://dx.doi.org/10.1067/j.cpradiol.2018.09.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30340913&dopt=Abstract
http://dx.doi.org/10.1016/j.imu.2018.10.010
http://dx.doi.org/10.1007/978-3-319-49655-9_54
http://dx.doi.org/10.1145/3208806.3208814
http://dx.doi.org/10.1118/1.4811272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23822402&dopt=Abstract
http://europepmc.org/abstract/MED/27783315
http://dx.doi.org/10.1007/s12199-016-0582-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27783315&dopt=Abstract
https://ambrahealth.com/products-and-services/dicom-web-viewer/
https://ambrahealth.com/products-and-services/dicom-web-viewer/
https://www.softneta.com/products/meddream-dicom-viewer/
https://boxdicom.com/
https://www.jmir.org/2013/8/e186/
http://dx.doi.org/10.2196/jmir.2494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23965254&dopt=Abstract
http://dx.doi.org/10.1016/j.future.2020.04.012
http://www.jmir.org/2020/9/e16224/
http://dx.doi.org/10.2196/16224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32975520&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information
must be included.

J Med Internet Res 2020 | vol. 22 | iss. 9 | e16224 | p. 14http://www.jmir.org/2020/9/e16224/
(page number not for citation purposes)

Min et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

