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Abstract

Background: Compartmental models dominate epidemic modeling. Transmission parameters between compartments are
typically estimated through stochastic parameterization processes that depends on detailed statistics of transmission characteristics,
which are economically and resource-wise expensive to collect.

Objective: We aim to apply deep learning techniques as a lower data dependency alternative to estimate transmission parameters
of a customized compartmental model, for the purpose of simulating the dynamics of the US coronavirus disease (COVID-19)
epidemic and projecting its further development.

Methods: We constructed a compartmental model and developed a multistep deep learning methodology to estimate the model’s
transmission parameters. We then fed the estimated transmission parameters to the model to predict development of the US
COVID-19 epidemic for 35 and 42 days. Epidemics are considered suppressed when the basic reproduction number (R0) is less
than 1.

Results: The deep learning–enhanced compartmental model predicts that R0 will fall to <1 around August 17-19, 2020, at which
point the epidemic will effectively start to die out, and that the US “infected” population will peak around August 16-18, 2020,
at 3,228,574 to 3,308,911 individual cases. The model also predicted that the number of accumulative confirmed cases will cross
the 5 million mark around August 7, 2020.

Conclusions: Current compartmental models require stochastic parameterization to estimate the transmission parameters. These
models’ effectiveness depends upon detailed statistics on transmission characteristics. As an alternative, deep learning techniques
are effective in estimating these stochastic parameters with greatly reduced dependency on data particularity.
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Introduction

The coronavirus disease (COVID-19) pathogen that has ravaged
China, Europe, and the United States since December 2019 is
a member of the coronavirus family, which also includes the

severe acute respiratory syndrome coronavirus (SARS-CoV)
and Middle East respiratory syndrome–related coronavirus
(MERS-CoV). In the United States, as of July 31, 2020, there
have been 4,562,038 confirmed cases and 153,314 deaths of
COVID-19.
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The COVID-19 pandemic is still in progress, and most of the
noticeable early research is descriptive in nature, focusing on
reported cases to establish the baseline demographic parameters
for the disease such as age, gender, health, and medical
conditions in addition to the disease’s clinical manifestations,
in a Chinese context. These studies include reports on
demographic characteristics, epidemiological and clinical
characteristics, exposure and travel history to the epicenter, and
illness timelines of laboratory-confirmed cases [1-5] as well as
epidemiological information on patients from social networks
and local, national, and international health authorities [6]. The
spread of SARS-CoV-2 outside China (eg, Iceland) is also
analyzed [7], albeit to a limited extent. Concerned about the
worsening situation in New York City, researchers have
characterized information on the first 393 consecutive patients
with COVID-19 admitted to 2 hospitals in the city [8].

Some stage-specific studies on patients with COVID-19 have
also been carried out, including a single-centered, retrospective
study on critically ill adult patients in Wuhan, China [9] and a
retrospective, multicenter study on adult laboratory-confirmed
inpatients (≥18 years of age) from 2 Wuhan hospitals, who have
been discharged or have died [10].

The aim of this paper is to establish a class of extended
COVID-19 compartmental models, for which the transmission
parameters are estimated by a multistep, multivariate deep
learning methodology.

Methods

COVID-19 Epidemic Modeling
There have been attempts to model the COVID-19 epidemic
dynamics. These studies add a worldwide mobile dimension,
reflecting a higher level of mobility and globalization in 2020
than in 2003 (SARS) and even 2013 (MERS). The SEIR
(Susceptible–Exposed–Infectious–Recovered) model is used to
infer the basic reproduction ratio and simulate the Wuhan
epidemic [11]; it considers domestic and international air travel
to and from Wuhan to other cities to forecast the national and
global spread of the virus. More sophisticated models have also
been developed to correlate risk levels of foreign countries with
their travel exposure to China [12,13], including a stochastic
dual-SEIR approach on both the Wuhan population and
international travelers, to estimate how transmission varied over
time from Wuhan to international destinations [13]. Simulations
on the international spread of the COVID-19 after the start of
the travel ban from Wuhan on January 23, 2020, have also been
conducted [14], which apply the Global Epidemic and Mobility
Model to a multitude of Chinese and international cities, and a
SEIR variety (SLIR, Susceptible–Latent–Infectious–Recovered)
to project the impact of human-to-human transmissions. To

simulate the transmission mechanism itself, a
Bats-Hosts-Reservoir-People network is developed to simulate
potential transmission from the infection sources (ie, bats) to
humans [15].

Since March 2020, with the COVID-19 outbreak winding down
in China, researchers have dedicated more efforts to analyzing
the effectiveness of containment measures. Mobility and travel
history data from Wuhan are used to ascertain the impact of the
drastic control measures implemented in China [16]. A study
investigated the spread and control of COVID-19 among
Chinese cities, using data on human movements and public
health interventions [17]. Using contact data for Wuhan and
Shanghai and contact tracing information from Hunan Province,
a group of researchers built a transmission model to study the
impact of social distancing and school closure [18].

Theoretical Foundation
Compartmental models dominate epidemic modeling on
COVID-19 epidemics (and previous coronavirus outbreaks),
and they require detailed statistics on transmission characteristics
to estimate the stochastic transmission parameters between
compartments. Essentially, these models correlate factors such
as geographic distances and contact intensities among
heterogeneous subpopulations with gradient probability decay.
Technically, transmission parameterization applies Bayesian
inference methods such as Marcov Chain Monte Carlo or
Gillespie algorithm [19] simulations to form probability density
functions on a cross-section in order to estimate parameters for
each timestep of a multivariate time series construct. These
detailed statistics on transmission characteristics are
economically and resource-wise expensive to collect.

We are particularly interested in extended compartmental models
that cover multiple interconnected and heterogeneous
subpopulations [10,15,20]. There are also some pure time series
analyses on epidemic dynamics outside of mainstream
compartmental modeling, for example, the AutoRegressive
Integrated Moving Average approach [21] that is typically found
in financial applications. Such analyses provide another
perspective.

We developed a multistep, multivariate deep learning
methodology to estimate the transmission parameters. We then
fed these estimated transmission parameters to a customized
compartmental model to predict the development of the US
COVID-19 epidemic.

We established a SEIR-variety discrete time series on a daily
interval as the theoretical foundation for a deep
learning–enhanced compartment model. We started with the
cons t ruc t ion  of  a  so-ca l led  SEIRQJD
(SEIR-Quarantined-Isolated-Deceased) model (Figure 1).
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Figure 1. The SEIRQJD (Susceptible–Exposed–Infectious–Recovered–Quarantined–Isolated–Deceased) Model. E: Exposed; Q: Quarantined; I:
Infectious; D: Deceased; S: Susceptible; I: Infectious; J: Isolated; R: Recovered. The transmission parameters (Greek letters) are - β: from Susceptible

(S) to Exposed (E) if Exposed (E) is reported directly, or Susceptible (S) to Infectious (I) if Exposed (E) is not reported directly; σI, σQ: from Exposed

(E) to Infectious (I) and Quarantined (Q), respectively; κI: from Quarantined (Q) to Infectious (I); γJ, γR, γD: from Infectious (I) to Isolated (J), Recovered

(R) and Deceased (D), respectively; υR, υD: from Isolated (J) to Recovered (R) and Deceased (D), respectively.

We used the US COVID-19 epidemic datasets from John
Hopkins University Center for Systems Science and Engineering
(JHU CSSE) Github COVID-19 data depository, which does
not include directly Exposed (E) and Quarantined (Q) data, and
therefore, we set all transmission parameters to and from the

“E” and “Q” compartments (σI, σQ, κI) to 0. Furthermore, the
datasets assume that all deaths arise from the isolated population
(J); thus, we also set the transmission parameter from Infectious

(I) to Deceased (D), γD, to 0. We then simplified the SEIRJD
model to a SIRJD (Susceptible–Infectious–
Recovered–Isolated–Deceased) construct, in which a population
is grouped into 5 compartments:

1. Susceptible (S): The susceptible population arises at a

percentage of a net influx of individuals (Lt).
2. Infectious (I): The infectious individuals are symptomatic,

come from the Susceptible compartment, and further
progress into the Isolated or Recovered compartments.

3. Isolated (J): The isolated individuals have developed clinical
symptoms and have been isolated by hospitalization or other
means of separation. They come from the Infectious
compartment and progress into the Recovered or Deceased
compartments

4. Recovered (R): The recovered individuals come from
Infectious and Isolated compartments and acquire lasting
immunity (there is no contradiction against this assumption
yet).

5. Deceased (D): The deceased cases come from the Infectious
and Isolated compartments.

The SIRJD model has a daily (Δt=1) multivariate time series
construct given by the follow matrix form:

or

The Greek letters in the time series are transmission parameters
defined in the state diagram in Figure 1. Essentially, all these
parameters are stochastic.

Since we need to estimate the transmission parameters, we can
rewrite and rearrange Equations (1) and (2) to the following
matrix representation:

or
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Data
We collected the following US COVID-19 datasets from the
JHU CSSE data depository [22]:

1. Dataset 1: The JHU CSSE updates daily records (confirmed,
active, dead, recovered, hospitalized, etc) from April 12,
2020. We used these detailed case data to construct the
compartmental model (Multimedia Appendix 1).

2. Dataset 2: The JHU CSSE updates 2 time series on a daily
basis. One tracks the confirmed cases and the other tracks
the dead cases, both starting from January 22, 2020. We
used the confirmed/dead cases as training data for deep
learning (Multimedia Appendix 2).

The JHU CSSE dataset has an almost precise period of 7 days
(±1 day), indicating that a majority of the reporting agencies in
the country choose to update their respective statistics on a
weekly, fixed-calendar interval. We ran a 7-day moving average
on the dataset to smooth out this “unnatural” data seasonality.

Methodology
We then conducted the following step-by-step operations to
model the US epidemic:

1. We constructed an in-sample SIRJD time series starting
from April 12, 2020, with Dataset 1.

2. We used the in-sample SIRJD time series constructed in
Step 1 to come up with an in-sample time series for the 2

most critical daily transmission parameters (β and γR).
3. We constructed a confirmed/dead-case time series starting

from January 22, 2020 (in-sample time series), with Dataset
2.

4. We applied 2 deep learning approaches—the standard deep
neural networks (DNN) and the advanced recurrent neural
networks–long short-term memory (RNN-LSTM)—to fit
the confirmed/dead in-sample time series from Step 3 and
predict the further development of confirmed/dead cases
for 35 and 42 days (out-of-sample time series).

5. We use the confirmed/dead in-sample time series from Step

3 as training data and the in-sample β and γR time series
from Step 2 as training label. We then applied the DNN

and RNN-LSTM techniques to predict β and γR for 35 and
42 days (out-of-sample time series).

6. Finally, we used the predicted (out-of-sample) transmission

parameters (β and γR) from Step 5 to simulate 35- and
42-day progressions (out-of-sample time series) of the
SIRJD model (particularly the SIR portion) in a recursive
manner, starting with the data point of the last timestep
from the in-sample SIRJD time series from Step 1.

Figure 2 presents a flowchart to illustrate the dataset and
methodology.
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Figure 2. Flowchart of the dataset and methodology. JHU CSSE: John Hopkins University Center for Systems Science and Engineering; DNN: deep
neural networks; RNN-LSTM: recurrent neural networks–long short-term memory; SIR: Susceptible–Infectious–Recovered; SIRJD:
Susceptible–Infectious–Recovered–Isolated–Deceased.

Results

The results based on data up to July 31, 2020, are illustrated in
Figures 3-6 for the 35-day forecast and Figures 7-10 for the
42-day forecast.

In Figure 3 (35-day forecast), the DNN method predicts that on
August 19, 2020, the “Infected-to-Recovered” transmission

parameter γR will rise and stay above the

“Susceptible-to-Infected” transmission parameter β. This means
that the value of the basic reproduction rate, R0, will fall to <1
and that the spread of COVID-19 in the United States will
effectively end on that day. In Figure 4 (35-day forecast), the
RNN-LSTM method gives a slightly more aggressive prediction

that γR will overtake β on August 17, 2020. Thus, with the
35-day forecast, we predict that the tide of the US epidemic will
turn around the August 17-19, 2020, timeframe.
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Figure 3. Transmission parameter estimations (deep neural networks) for 35 days. Beta is the “Susceptible-to-Infected” transmission parameter (β)

and Gamma_R is the “Infected-to-Recovered” transmission parameter (γR) for the in-sample (observed) data. Beta_fo is the forecasted β and Gamma_R_fo

is the forecasted γR for the out-of-sample (forecasted) data.

Figure 4. Transmission parameter estimations (recurrent neural networks–long short-term memory) for 35 days. Beta is the “Susceptible-to-Infected”

transmission parameter (β) and Gamma_R is the “Infected-to-Recovered” transmission parameter (γR) for the in-sample (observed) data. Beta_fo is the

forecasted β and Gamma_R_fo is the forecasted γR for the out-of-sample (forecasted) data.

In Figure 5 (35-day forecast), the DNN method predicts that
the US “Infected” population will peak on August 18, 2020, at
3,267,907 individual cases. In Figure 6 (35-day forecast), the
RNN-LSTM method predicts that the US “Infected” population
will peak on August 16, 2020, at 3,228,574 individual cases.

For the 35-day forecast, the deep learning methods predict that
the number of accumulative confirmed cases will cross the 5
million mark on August 7, 2020, at 5,007,479 cases by DNN
(Figure 5) and at 5,002,100 cases by RNN-LSTM (Figure 6).
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Figure 5. SIR (Susceptible–Infectious–Recovered) model forecasting (deep neural networks) for 35 days. Susceptible, Infected, Recovered, and Dead
are in-sample compartmental model data, and Confirmed_cal is the in-sample number of confirmed cases. Susceptible_fo, Infected_fo, Recovered_fo,
Dead_fo, and Confirmed_cal_fo are their out-of-sample (forecasted) counterparts. The right y-axis is for Susceptible/Susceptible_fo, while the left
y-axis is for all others. The right y-axis is needed for scaling purpose, as Susceptible/Susceptible_fo are derived from the total population.

Figure 6. SIR (Susceptible–Infectious–Recovered) model forecasting (recurrent neural networks–long short-term memory) for 35 days. Susceptible,
Infected, Recovered, and Dead are in-sample compartmental model data, and Confirmed_cal is the in-sample number of confirmed cases. Susceptible_fo,
Infected_fo, Recovered_fo, Dead_fo, and Confirmed_cal_fo are their out-of-sample (forecasted) counterparts. The right y-axis is for
Susceptible/Susceptible_fo, while the left y-axis is for all others. The right y-axis is needed for scaling purpose, as Susceptible/Susceptible_fo are derived
from the total population.

In Figure 7 (42-day forecast), the DNN method also predicts

(same as 35-day forecast) that γR will overtake β on August 19,

2020. In Figure 8 (42-day forecast), the RNN-LSTM method
gives exactly the same prediction, that R0 will fall to <1 on
August 19, 2020.
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Figure 7. Transmission parameter estimations (deep neural networks) for 42 days. Beta is the “Susceptible-to-Infected” transmission parameter (β)

and Gamma_R is the “Infected-to-Recovered” transmission parameter (γR) for the in-sample (observed) data. Beta_fo is the forecasted β and Gamma_R_fo

is the forecasted γR for the out-of-sample (forecasted) data.

Figure 8. Transmission parameter estimations (recurrent neural networks–long short-term memory) for 42 days. Beta is the “Susceptible-to-Infected”

transmission parameter (β) and Gamma_R is the “Infected-to-Recovered” transmission parameter (γR) for the in-sample (observed) data. Beta_fo is the

forecasted β and Gamma_R_fo is the forecasted γR for the out-of-sample (forecasted) data.

In Figure 9 (42-day forecast), the DNN method predicts that
the US “Infected” population will peak on August 18, 2020, at
3,275,304 individual cases. In Figure 10 (42-day forecast), the
RNN-LSTM method predicts that the US “Infected” population
will peak on August 18, 2020, at 3,308,911 individual cases.
For the 42-day forecast, the deep learning methods predict that

the number of accumulative confirmed cases will cross the 5
million mark on August 7, 2020, at 5,008,504 individual cases
by DNN (Figure 9) and 5,014,608 individual cases by
RNN-LSTM (Figure 10), which are consistent with the 35-day
forecasts.
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Figure 9. SIR (Susceptible–Infectious–Recovered) model forecasting (deep neural networks) for 42 days. Susceptible, Infected, Recovered, and Dead
are in-sample compartmental model data, and Confirmed_cal is the in-sample number of confirmed cases. Susceptible_fo, Infected_fo, Recovered_fo,
Dead_fo, and Confirmed_cal_fo are their out-of-sample (forecasted) counterparts. The right y-axis is for Susceptible/Susceptible_fo, while the left
y-axis is for all others. The right y-axis is needed for scaling purpose, as Susceptible/Susceptible_fo are derived from the total population.

Figure 10. SIR (Susceptible–Infectious–Recovered) model forecasting (recurrent neural networks–long short-term memory) for 42 days. Susceptible,
Infected, Recovered, and Dead are in-sample compartmental model data, and Confirmed_cal is the in-sample number of confirmed cases. Susceptible_fo,
Infected_fo, Recovered_fo, Dead_fo, and Confirmed_cal_fo are their out-of-sample (forecasted) counterparts. The right y-axis is for
Susceptible/Susceptible_fo, while the left y-axis is for all others. The right y-axis is needed for scaling purpose, as Susceptible/Susceptible_fo are derived
from the total population.

Discussion

In this study, we applied DNN and RNN-LSTM techniques to
estimate the stochastic transmission parameters for an SIRJD
model with a discrete time series construct. We then used the
SIRJD model to forecast further development of the US
COVID-19 epidemic.

We used two US COVID-19 datasets from the JHU CSSE data
depository. The first dataset includes detailed daily records
(confirmed, active, dead, recovered, hospitalized, etc) starting
from April 12, 2020, from which we constructed the SIRJD
model. The second dataset includes time series tracked
confirmed and dead cases starting from January 22, 2020, which
we used to construct training data for deep learning. The JHU
CSSE data have an almost precise period of 7 days (±1 day)
that masks the true epidemic dynamics; thus, we ran a 7-day
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moving average on the dataset to smooth out this data
seasonality.

We then applied DNN and RNN-LSTM deep learning
techniques to fit the confirmed/dead series to predict the further
development of confirmed/dead cases as well as to predict the
“Susceptible-to-Infected” and “Infected-to-Recovered”

transmission parameters (β and γR) for 35 and 42 days. Finally,

we used the predicted transmission parameters (β and γR) to
simulate the epidemic progression for 35 and 42 days.

With data up to July 31, 2020, the deep learning
implementations predicted that the basic reproduction rate (R0)
will fall to <1 around August 17-19, 2020, for the 35-day
forecast and around August 19, 2020, for the 42-day forecast,
at which point the spread of the coronavirus will effectively
start to die out.

Implementations for the 35-day forecast predict that the US
“Infected” population will peak around August 16-18, 2020, at
3,228,574 to 3,267,907 individual cases. The implementations
for the 42-day forecast predict that the peak will occur on August
18, 2020, at 3,275,304 to 3,308,911 individual cases. All

implementations indicate that the number of accumulative
confirmed cases will cross the 5 million mark around August
7, 2020.

The 42-day forecasts provide a wider range of time and numbers
than the 35-day forecasts, because for the same training data
size, a longer forecast produces wider probability distributions.

With the introduction of the deep learning–enhanced
compartmental model, we provide an effective and
easy-to-implement alternative to prevailing stochastic
parameterization, which estimates transmission parameters
through probability likelihood maximization or Marcov Chain
Monte Carlo simulation. The effectiveness of the prevalent
approach depends upon detailed statistics on transmission
characteristics among heterogeneous subpopulations, and such
statistics are economically and resource-wise expensive. On the
other hand, deep learning techniques uncover hidden
interconnections among seemly less-related data, reducing the
prediction’s dependency on data particularity. Future research
on the usefulness of deep learning in epidemic modeling can
further enhance its forecasting power.
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