
Viewpoint

Is Artificial Intelligence Better Than Human Clinicians in Predicting
Patient Outcomes?

Joon Lee1,2,3, PhD
1Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
2Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
3Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

Corresponding Author:
Joon Lee, PhD
Data Intelligence for Health Lab
Cumming School of Medicine
University of Calgary
3280 Hospital Dr NW
TRW 5E17
Calgary, AB, T2N 4Z6
Canada
Phone: 1 403 220 2968
Email: joonwu.lee@ucalgary.ca

Abstract

In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs
in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not
yet occurred. Interestingly, the performance of machine learning–based patient outcome prediction models has rarely been
compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive
information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together
with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive
abilities of clinicians.
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Absence of Human-Generated
Predictions in Patient Outcome Research

In recent years, there has been a proliferation of patient outcome
prediction research that applies machine learning (ML) and
artificial intelligence (AI) to electronic health records (EHRs)
and other clinical and administrative health data. The central
premises are that 1) complex health data contains predictive
information that ML can effectively extract and transform into
a predictive algorithm and 2) accurate prediction of patient
outcomes can facilitate early, preventative intervention and
more efficient health care resource allocation through
identification of high-risk patients. For example, predicting
which intensive care unit patients are likely to develop sepsis
can prompt early initiation of fluid resuscitation, vasopressor
therapy, or antibiotics, which can reduce damage from
insufficient organ perfusion [1,2]. Although AI has been

enormously successful in medical imaging diagnostics, where
the medical condition of interest is already present or absent in
the images (eg, diagnosis of diabetic retinopathy [3] and
classification of skin legions [4]), patient outcome prediction
poses an inherent challenge of predicting events that have notyet
occurred (eg, mortality, length of stay, and readmission) [5].
This challenge is common to both AI and human clinicians.

Interestingly, while human and AI predictions are often directly
compared in medical imaging research [6-8], patient outcome
prediction studies tend to focus only on ML and seldom
investigate human predictions. This is corroborated by a number
of systematic reviews and meta-analyses, which target only ML
methods [9-14] or empirical methods [15-19]. This gap in the
literature is coherent across a wide range of medical specialties
and diseases, including trauma [9], cancer [11], neurosurgery
[10], depression [12], acute gastrointestinal bleeding [13], sepsis
[14], acute liver failure [15], ischemic stroke [16], thermal injury
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[17], and cardiovascular disease [18,19]. The absence of human
predictions appears to be a recent trend, as older literature prior
to the current widespread use of modern ML and EHRs includes
more comparisons of human and AI predictions [20-23].

There are several possible reasons why human performance is
more frequently studied in medical imaging than in patient
outcome prediction. First, radiologists are trained to analyze,
interpret, and classify images, whereas most other medical
specialists are not trained to directly predict patient outcomes.
While accurate prognostic information can certainly be helpful
in any medical specialty, it is usually generated by empirical
risk scoring systems such as the Framingham Risk Score [24]
or Acute Physiology and Chronic Health Evaluation (APACHE)
[25] rather than by human clinicians. Second, human predictions
in medical imaging are readily available from routine clinical
practice or can be generated systematically by trained
radiologists. Conversely, it is rare for clinicians in other medical
specialties to record patient outcome predictions that they
generate on a regular basis. Third, the implicit assumption is
that humans cannot accurately predict patient outcomes because
analysis of complex, high-dimensional clinical data may be
required; moreover, recall bias is rampant in the human mind.

Humans and AI Should Work as a Team

However, there is no reason to rule out the possibility that
human clinicians can outperform AI in patient outcome
prediction, at least in some clinical scenarios. While AI can
only access information that can be recorded in the form of
electronic data, human clinicians interact face-to-face with their
patients and have access to both clinical and contextual
information. The qualitative information collected via clinicians’
five senses can be critical in patient outcome prediction;
however, this information is mostly absent in EHRs, if it is
possible to record it at all. Although some qualitative
observations can be recorded in EHRs as free-text notes, such
as nursing notes, these data are logged in a limited, inconsistent
fashion. Human intuition and insight may well be the most
underused resources in patient outcome prediction.

While the performance of ML-based patient outcome prediction
models appears impressive on paper, the most accurately
predicted cases tend to be “easy” cases where the likely
outcomes are already obvious to human clinicians [26]. This
further supports the hypothesis that human clinicians perform
well in patient outcome prediction.

On the other hand, AI easily outperforms humans in processing,
analyzing, and finding patterns in complex, high-dimensional
data [27]. As demonstrated by IBM Watson [28] and AlphaGo
[29], the memory, attention, and information processing abilities
of AI vastly exceed the capabilities of human cognition [30].
This AI advantage is crucial for extracting and using data-driven
insights from big data [31]; it is also key to the recent successful
breakthroughs in ML, particularly in deep learning [32], in a
number of problem domains, including medical imaging [33].
In addition, AI does not suffer from fatigue [34] or cognitive
biases (eg, recall bias) [35] as humans do. However, even if AI
outperforms human clinicians in patient outcome prediction,
human performance represents a more meaningful benchmark

that puts AI performance in better perspective. Understanding
the superiority of AI in comparison with humans can facilitate
adoption of AI technology in real patient care.

The bottom line is that both AI and humans can make unique
contributions to patient outcome prediction, and they should
help each other to maximize predictive performance. Patient
outcome prediction research should aim for human-AI
symbiosis, where the respective predictive abilities of AI and
human clinicians are combined in a synergistic and
complementary way [36]. Given the challenging nature of
patient outcome prediction, creating an AI to act alone without
human help will simply lead to suboptimal predictive
performance because even state-of-the-art ML technology
cannot leverage information that is not present in the data [26].

Another way for AI and humans to work together is via the
human-in-the-loop model, where humans directly inform
machines on how to learn from the data at hand by providing
guidance based on human intuition and knowledge. The term
“interactive machine learning” [37] was coined to describe this
paradigm; it encompasses more well-known branches of ML,
such as active learning, where humans select which data points
should be labelled. This human-in-the-loop approach can greatly
reduce the computational complexity of some ML problems;
for example, it has shown promising results in protein folding
[38]. Moreover, in the field of human-computer interaction, the
human-in-the-loop concept has been studied in the context of
vehicle control [39], security [40,41], and decision-making
[40,42]. Knowledge from these application areas can potentially
inform the design of human-AI symbiosis in patient outcome
prediction.

AI and human prediction performance may vary across different
types of patients. Complex patterns in data can be more
predictive than human intuition in certain patient subgroups,
and the opposite may be true in other subpopulations. An
investigation of how AI and human predictions can be optimally
combined for different types of patients could directly contribute
to advancing precision medicine. A better understanding of the
respective predictive powers of AI and humans in various
clinical scenarios can also help increase human trust in AI (eg,
“For this type of patient, I need to trust AI more because most
predictive information is buried in the complex data”). This can
facilitate evidence-based adoption of AI technology.

For human clinicians to completely trust AI, it is necessary to
understand why an algorithm arrives at a given conclusion; this
requires transparency, traceability, and causality. The active
field of explainable AI has been producing useful methods, such
as SHapley Additive exPlanations (SHAP) [43], that can help
explain how ML models work at an algorithmic level (this
explanation is almost always based on correlation rather than
causation); however, human clinicians ultimately want to elevate
this algorithmic explainability to a model that is understandable
by humans with sufficient causal understanding, also known as
causability [44]. Therefore, mapping explainability to causability
will be key in achieving true human-AI symbiosis.

One major roadblock to the proposed human-AI symbiosis is
the need to collect a large number of human predictions in a
variety of clinical scenarios, which is labor-intensive and adds
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to clinicians’ workloads. Seamlessly integrated electronic
prediction collection platforms (eg, embedded in a multi-center
EHR system) can minimize this burden and enable large-scale
prediction collection.

From Patient Outcome Prediction to Real
Impact

Once predictive performance is optimized via human-AI
symbiosis, the next important step is to formulate clinical
guidelines so that the predictive information is actionable. This
is a crucial step, as accurate predictions alone will not lead to

any real impact; rather, the combination of accurate predictions
and appropriate interventions by clinicians will have a greater
effect [5,26].

The ultimate goal of patient outcome prediction is to improve
patient outcomes and decrease health care costs through early
intervention and efficient use of health care resources. To prove
that this goal has been met, we will need to perform randomized
clinical trials of AI-driven patient care [45], such as that
conducted by Wijnberge and colleagues [46]. In addition to
simply comparing AI with human work alone, these randomized
clinical trials should investigate a promising third species:
human-AI symbiosis.
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