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Abstract

Background: Detecting bacteremia among surgical in-patients is more obscure than other patients due to the inflammatory
condition caused by the surgery. The previous criteria such as systemic inflammatory response syndrome or Sepsis-3 are not
available for use in general wards, and thus, many clinicians usually rely on practical senses to diagnose postoperative infection.

Objective: This study aims to evaluate the performance of continuous monitoring with a deep learning model for early detection
of bacteremia for surgical in-patients in the general ward and the intensive care unit (ICU).

Methods: In this retrospective cohort study, we included 36,023 consecutive patients who underwent general surgery between
October and December 2017 at a tertiary referral hospital in South Korea. The primary outcome was the area under the receiver
operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for detecting bacteremia by the
deep learning model, and the secondary outcome was the feature explainability of the model by occlusion analysis.

Results: Out of the 36,023 patients in the data set, 720 cases of bacteremia were included. Our deep learning–based model
showed an AUROC of 0.97 (95% CI 0.974-0.981) and an AUPRC of 0.17 (95% CI 0.147-0.203) for detecting bacteremia in
surgical in-patients. For predicting bacteremia within the previous 24-hour period, the AUROC and AUPRC values were 0.93
and 0.15, respectively. Occlusion analysis showed that vital signs and laboratory measurements (eg, kidney function test and
white blood cell group) were the most important variables for detecting bacteremia.

Conclusions: A deep learning model based on time series electronic health records data had a high detective ability for bacteremia
for surgical in-patients in the general ward and the ICU. The model may be able to assist clinicians in evaluating infection among
in-patients, ordering blood cultures, and prescribing antibiotics with real-time monitoring.
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Introduction

Bacteremia is associated with increased morbidity and mortality
[1]. As bacteria grow in the bloodstream, subsequent immune
response can cause sepsis, a life-threatening organ dysfunction
[2]. Early administration of antibiotics is important for reducing

the mortality associated with this infectious condition [3]. As
the observable features of infection are symptoms or laboratory
data, the systemic inflammatory response syndrome (SIRS)
criteria have been used to detect sepsis in bedside medicine [4],
even though it harbors issues such as underscoring and
inaccuracy [2]. Variations of rule-based scoring systems such
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as the Modified Early Warning Score (MEWS) [5] and the
Sequential Organ Failure Assessment (SOFA) [6] have also
been developed; however, these systems are not commonly used
outside the setting of critical care [2].

More recently, machine learning or deep learning–based models
that use data from electronic health records (EHRs) were
developed for early prediction of sepsis [7-9]. However, labeling
the start time of sepsis is a delicate matter. Different scholars
have used different criteria to define sepsis, such as the increase
of SOFA score [8] or the detection of any two SIRS criteria in
in-patients with the International Classification of Diseases,
Ninth Revision (ICD-9) codes of sepsis [7,9,10]. The SIRS
criteria should only be used when an infection is suspected [11].
This is why the ICD-9 code for sepsis is used with SIRS criteria;
however, using the ICD-9 code does not guarantee that the
patients are indeed suspected with sepsis, especially if other
interventions such as surgery are performed. Another gold
standard of defining sepsis is the Sepsis-3 criteria, which refers
to the increase of the SOFA score, that is also used in suspected
infection. Considering the infectious condition, some studies
used a time stamp of antibiotics and blood culture as the
suspected time of infection [12,13]. However, the SOFA score
is continuously measured only for patients in the intensive care
unit (ICU), as in the case of the Glasgow coma scale.

For these reasons, although existing models have shown
significant results, they cannot be used in the general ward
especially when factors other than infection, such as surgery,
may affect the SIRS criteria through inflammation or when the
SOFA score cannot be measured. To overcome the limitations
of indirect measurements of infection, direct measurements of
blood culture could be helpful for defining infection. In the
EHR data set, the results of a blood culture are recorded along
with the reception time and the isolated species; therefore,
clinicians can define the period of bacteremia so that the labeling
of bacteremia only represents the infection. Once a clinician
identifies the risk for patients, the clinician could investigate
the source of infection and prescribe antibiotics.

Recently, the time series models based on the long short-term
memory model [14] and the gated recurrent unit [15] have
gained popularity due to their end-to-end modeling, ease of
incorporating exogenous variables, and ability for extracting
features [16]. The models use a time window to characterize
the trend of features. Time series data such as vital signs or
laboratory measurements could have different features whether
the body temperature increases slowly or quickly. Moreover, if
the model uses a longer time window, the model could imply
a longer trend of data. With the ability to characterize the trend
of time series data, previous studies showed significant
performance using those models for predicting sepsis or acute
kidney injury [8,17].

This paper presents a model based on a recurrent neural network
(RNN) that continuously detects and predicts bacteremia for
surgical in-patients in the general ward and the ICU. We
compared the performance of this model with the traditional
models used in sepsis detection (ie, SIRS criteria, SOFA score,
and MEWS). To enhance the reader’s understanding, the paper

also presents figures depicting continuous detection alongside
vital signs and laboratory measurements.

Methods

Study Population
We retrospectively included all patients who had undergone
general surgeries at Asan Medical Center (Seoul, South Korea)
between October 2007 and December 2017. The following
surgical procedures, coded by the International Classification
of Diseases, Tenth Revision, Clinical Modification
(ICD-10-CM), were included: lung lobectomy (32.0-32.4),
gastrectomy (43.4-43.9), hepatectomy (50.0-50.4), and
pancreaticoduodenectomy (51.5-51.7, 52.7). We excluded
patients who did not undergo spirometry within 3 months before
the surgery as well as those who received operations other than
the previously mentioned types according to the manually
written operation records (first e-table in Multimedia Appendix
1). For querying the EHRs, we used the Asan Biomedical
Research Environment system at Asan Medical Center [18,19].

The data can be categorized into time-invariant and time-variant
data depending on whether the data changed over the admission
period. The time-invariant data included demographic data (ie,
age, sex, height, weight, body mass index), underlying disease
as coded with the ICD-10-CM code, type of operation, disease
for operation, amount of transfusion during operation,
spirometry (forced expiratory volume in 1 second [FEV1], forced
vital capacity [FVC], FEV1/FVC, each with raw and predicted
values), and the department of surgery. The time-variant data
were vital signs (systolic blood pressure [sBP], diastolic blood
pressure [dBP], pulse rate, respiratory rate, temperature) and
laboratory data (groups as white blood cell [WBC], red blood
cell, liver function, electrolyte, kidney function, arterial blood
gas analysis, inflammation).

Definition of Bacteremia
Bacteremia was defined as a laboratory-confirmed bloodstream
infection that meets at least one of the following criteria [1].
First, the patients must have a recognized pathogen cultured
from ≥1 blood specimen. Second, patients must have a fever
(>38.0 °C) or hypotension (sBP<90 mmHg) in case of common
skin contaminant (eg, diphtheroids, Bacillus species,
Propionibacterium species, coagulase-negative staphylococci,
or micrococci) that should be isolated from more than 2 blood
cultures.

Ground Truth for Bacteremia Periods
Two time points of bacteremia were present in the EHR data
set: time ordered by a clinician and time of reception at the
department of laboratory. Often there existed a time discrepancy
between a clinician’s order and the actual sampling time.
Therefore, the reception time (which was a little later than
sampling time) was used as the ground truth time point of the
bacteremia. In a previous study, bacteremia episodes identified
in more than one blood culture within 24 hours were considered
as a single episode [20]. In general, within the 24-hour period,
vital signs are not readily stabilized even with the appropriate
use of antibiotics. Thus, we defined the “bacteremia period” as
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24 hours after the time of bacteremia and labeled it as the ground
truth.

The prediction target at each point in time prior to the blood
culture was a binary variable that was deemed positive if the
bacteremia occurred within a predetermined time window. To
determine the effect of the length of the time window on the
detection ability of the model, we trained three different models
(8, 16, and 24 hours prior) for predicting future time points.

Models for Detecting and Predicting Bacteremia
All models function across the entire time period of admission.
In the beginning of an admission period, there were not enough
data to fill each time window. In these cases, only the existing
data were used for predicting bacteremia. For example, to predict
bacteremia 24 hours after admission, with a 96 hour (4 days)
time window, only data from the first 24 hours of admission
were used, and the vacant 72 hours of data, which was prior to
the admission, were masked (Keras Masking layer). We tested
time-variant variables with different time steps (1, 2, 4, 6, 8,
10, and 12 days) to find the optimal length of time steps that
results in superior detection performance.

When constructing the model, different approaches were taken
depending on the nature of the variables: time-variant variables
were treated with an RNN-based model and time-invariant
variables were treated with dense neural networks (first e-Figure
in Multimedia Appendix 1). The outputs of both arms were
concatenated, and the probability of bacteremia was calculated
by a dense neural network. The code used to train and evaluate
the model is available on GitHub [21].

We used the area under the receiver operating characteristic
curve (AUROC), area under the precision-recall curve
(AUPRC), sensitivity, specificity, and positive predictive value
as comparative measures. The 95% CI was calculated by using
a bootstrap approach in which we resampled the data at each
time point 1000 times. All analyses were conducted in Python,
version 3.7.5 (Python Software Foundation).

Details on data preprocessing, feature embedding,
hyperparameter optimizing, ensemble of each batch for
overcoming imbalance of data, and model testing are described
in the method section of Multimedia Appendix 1.

Significance of Features Analysis
The performance of the model changes when some variables
are masked. This method is known as occlusion analysis, which
is frequently applied in the field of image analysis [17,22]. We
investigated the relative importance of the variables in our
trained models through the occlusion analysis, in which variable
groups were occluded one by one to determine their respective
influence on the prediction of bacteremia. For example, if the
occluded variables held higher importance in bacteremia
detection, the resulting model would have a lower performance.
Each group of variables was independently embedded with

separate autoencoders, and the groups are described in the
second e-Table in Multimedia Appendix 1.

Results

Baseline Characteristics
A total of 56,339 patients and 58,223 admission records were
included when applying ICD-10-CM codes and spirometric
results. After applying the exclusion criteria, 35,256 patients
and 36,023 admission records were left in the final data set. The
baseline demographic characteristics, operation types, and hours
of operation are described in the third e-Table in Multimedia
Appendix 1. The incidence of bacteremia was 1.9% (720/36,023
cases) and the period of bacteremia was 0.22% (1006/1,362,865
person-time). Furthermore, the annual incidence of bacteremia
was rather stable during the study period, ranging from 1.6%
(76/4484 cases) to 2.3% (45/1882 cases; second e-Figure in
Multimedia Appendix 1).

The median time of bacteremia was 9 (IQR 2-18) days since
admission, and the median time of postoperative bacteremia
was 9 (IQR 6-15) days after surgery. If bacteremia occurred
prior to surgery, patients underwent surgeries at a median of 10
(IQR 5-18) days after the occurrence of bacteremia (third
e-Figure in Multimedia Appendix 1).

Predicted Probability in Laboratory Sheets
Figure 1 depicts the predicted probability of bacteremia along
with the vital signs and the laboratory data during hospital
admission. As shown in Figure 1, the probability of bacteremia
notably increased when the pulse rate and body temperature
were elevated. In contrast, laboratory data such as WBC,
hemoglobin, platelet, and c-reactive protein (CRP) did not show
such changes in accordance with the increase in bacteremia
probability (Figure 1). More examples of good, bad, and obscure
prediction results are presented in the fourth e-Figure in
Multimedia Appendix 1.

Figure 2 shows the actual time of negative blood cultures as
green bars. Even though the model was only trained based on
the red bars (ie, bacteremia periods), the green bars indicate
high probabilities for bacteremia. As the results of a blood
culture could be false negative, the green bar might represent
bacteremia at which clinicians should inspect patients and
prescribe antibiotics. Other examples related to this figure are
shown in the fourth e-Figure in Multimedia Appendix 1.

Our model had an AUROC of 0.978 (95% CI 0.974-0.981) and
an AUPRC of 0.17 (95% CI 0.147-0.203; Figure 3). The
AUROC of previous models are as follows: SIRS 0.778 (95%
CI 0.768-0.786), SOFA 0.738 (95% CI 0.728-0.748), and
MEWS 0.673 (95% CI 0.662-0.682). The AUPRC of previous
models are as follows: SIRS 0.011 (95% CI 0.010-0.013), SOFA
0.010 (95% CI 0.009-0.011), and MEWS 0.010 (95% CI
0.008-0.011).
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Figure 1. Patterns of the probability of bacteremia along with vital signs and laboratory data. Data from a 76-year-old female patient admitted for
pancreatic cancer who underwent pylorus-preserving pancreaticoduodenectomy on hospital day 8. The graph in the bottom shows the probability of
bacteremia at each time step. Red bars represent the actual period of bacteremia during which bacteria was isolated in the blood culture. The name of
the pathogen is written in a small box. On hospital day 21, fever was noted and the probability of bacteremia was elevated. Lab data did not show a
notable correlation with bacteremia probabilities. CRP: c-reactive protein; WBC: white blood cell.

Figure 2. Time of negative blood culture could represent high likelihood of bacteremia. Data from a 77-year-old male patient admitted for intrahepatic
duct stone. The lobectomy of the liver was carried out on hospital day 3. On hospital day 15, high fever was noted, and the blood culture was performed;
however, no bacterial species were isolated. On hospital day 20, the second high fever was identified, and the blood culture was performed again.
Candida Albicans was isolated, and the vital sign was subsequently stabilized. The green bar is the blood culture with no isolation. CRP: c-reactive
protein; WBC: white blood cell.
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Figure 3. Receiver operating characteristics and precision-recall curve of the proposed model. The AUROC of the model was 97%, and the area under
the precision-recall curve was 17%, which were higher compared with those of previous models. Each circle of previous criteria is the metric of the
cut-off value of the models. AUROC: area under the receiver operating characteristic curve; MEWS: Modified Early Warning Score; SIRS: systemic
inflammatory response syndrome; SOFA: Sequential Organ Failure Assessment.

Table 1 shows the trend of sensitivity and specificity of the
proposed model according to different thresholds, along with
the performances of other models (ie, SIRS, SOFA, and
MEWS). The positive predicted value was relatively low

because of the low incidence of bacteremia in our data set.
Overall, our model showed superior performance to the SIRS
criteria [23], SOFA score [6], and MEWS score [24] in terms
of both AUROC and AUPRC for detecting bacteremia.

Table 1. Performance of the model compared with previous criteria.

PPVaSpecificitySensitivityModel and threshold

Recurrent neural network model

0.0230.920.940.1

0.0340.950.880.2

0.0440.960.860.3

0.0540.970.830.4

0.0650.980.790.5

0.0790.980.720.6

0.0990.990.650.7

0.1220.990.530.8

0.1650.990.410.9

0.0110.920.46SIRSb criteria (>2 score)

0.0060.790.60SOFAc score (>2 increase from baseline)

0.0310.990.12MEWSd score (>4 score)

aPPV: positive predictive value.
bSIRS: systemic inflammatory response syndrome.
cSOFA: Sequential Organ Failure Assessment.
dMEWS: Modified Early Warning Score.

Various Experiments for Bacteremia Prediction
We developed models predicting 8, 16, and 24 hours before the
event of bacteremia (Table 2). Both the AUROC and AUPRC

values decreased as the time to predict bacteremia increased
from 8 to 24 hours (AUROC 0.963 to 0.929; AUPRC 0.176 to
0.154).
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When we made the model using various time step lengths (1,
2, 4, 6, 8, 10, and 12 days), the AUROC values did not show
notable decreases (0.977 to 0.971) as the time windows
increased from 1 to 12 days; in contrast, the AUPRC value
increased from 0.139 to 0.174 (Table 2). Performance for

predicting bacteremia events 8, 16, and 24 hours prior to the
event are shown. Different time steps and performances in our
data set are shown. The time steps indicate the length of time
period used in the RNN model to predict bacteremia.

Table 2. Model performance for predicting bacteremia according to forecasting time to event and time steps of the recurrent neural network model.

AUPRCbAUROCaVariables

Prior time to event (hour)

0.170.980 (at event)

0.180.968 prior

0.170.9516 prior

0.150.9324 prior

Time steps (days)

0.140.981

0.150.982

0.150.984

0.150.986

0.160.978

0.1740.9710

0.1650.9812

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.

Relative Importance of Variables
Table 3 shows the results of the occlusion analysis. We found
that occlusion of vital signs resulted in the largest decrease in
both the AUROC and AUPRC values, followed by
kidney-related values and WBC. In contrast, the occlusion of
time-invariant data, which were reported to be important in
predicting postoperative complications [25-27], showed little
effects in decreasing AUROC or AUPRC. For comparison with
previous studies that only used time-invariant data [25-27], we
also trained a model only with time-invariant data; as a result,

we observed that this model had a similar performance with
those in previous studies (AUROC 0.84, AUPRC 0.15; fourth
e-Table in Multimedia Appendix 1). Vital signs and lab data
were more important than time-invariant data, even though the
latter could also somewhat assess the risk of bacteremia.
Particularly, body temperature was the most important vital
sign in detecting bacteremia, followed by dBP and pulse rate
(fifth e-Table in Multimedia Appendix 1).

The model performance was described as when the important
variables were occluded.
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Table 3. Detecting performance of the proposed model in occlusion analysis.

AUPRCbAUROCaMethods

0.170.98Original model

Occluding method

0.050.85Occluding vital sign

0.060.95Occluding kidney-related values

0.070.96Occluding WBCc

0.100.96Occluding electrolyte

0.110.97Occluding RBCd-related lab

0.120.97Occluding ABGAe

0.140.98Occluding inflammatory markers

0.140.97Occluding time-invariant data

0.150.98Occluding liver function test

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cWBC: white blood cell.
dRBC: red blood cell.
eABGA: arterial blood gas analysis.

Discussion

Summary of the Principal Finding
By using the deep learning method, we devised a model that
generates a real-time probability of detecting and predicting
bacteremia. The proposed model had an AUROC of 0.978 in
detecting bacteremia every 8 hours, which is a notably superior
performance compared with other existing criteria [2,5,6,24].
In predicting bacteremia 24 hours in advance, the model showed
a relatively lower performance (AUROC 0.929) than the
detecting model. Occlusion analysis showed that vital signs
were the most important variables in bacteremia detection.
Confirming our expectation that patterns of time-variant
variables such as vital signs could be used to characterize the
risk type of a patient, the model using long time steps showed
more accurate results (time steps: 10 days vs 1 days, AUPRC:
0.174 vs 0.139).

This study is also important for the continuous monitoring of
bacteremia so that clinicians can get advice on the risk of
uncontrolled infection. Other studies on predicting sepsis rely
on assessments about the clinical state (based on the SOFA or
SIRS criteria) [8,9,20]. However, if the outcome label included
systemic inflammations as well as infections, the probability
results would be difficult for interpretation by clinicians [2]. To
overcome the unclear labeling problem, we used the direct
results from the blood culture and suggested the “bacteremia
period,” which can be used as an indication of infection. Since
the model derives the results solely from the blood cultures, the
resulting predicted probabilities directly indicate the infection
so that physicians can get advice when they search for the source
of infection, start new antibiotics, or monitor the appropriate
response to antibiotics.

Importance of Variables in the Deep Learning Model
Deep neural networks are often questioned for being
nontransparent and because the basis of the prediction results
is hard to explain [28]. By depicting the probability with vital
signs and major laboratory findings, we were able to determine
whether the prediction results were proper (fourth e-Figure in
Multimedia Appendix 1). Specifically, we observed that the
bacteremia probability was elevated in accordance with increases
in body temperature, respiratory rate, and pulse rate, whereas
laboratory data such as WBC and CRP did not show notable
correlations with the bacteremia probability.

To explain what variables drive the model, we used occlusion
analysis, a method used in image analyses [28]. If the model is
driven by an important location within the image, the result
must not be changed after occluding the surrounding of the
image [22]. We found that the most important variable of our
model was the vital sign, followed by kidney-related values and
WBC. The result resembles the SIRS criteria, which consists
of three vital sign categories [2], and supports our expectation
that our model would focus on relevant variables for predicting
bacteremia. Underlying diseases are also known as important
predictors of postoperative complications [25-27]. However,
time-invariant variables such as the underlying diseases and the
type of surgery did not have significant effects in the detection
of bacteremia. In clinical practice, patients with a high likelihood
of postoperative complications are not always suspected of
having an infection, unless they show features of infection such
as fever. As previous risk factors suggest that only high-risk
patients acquired infection during the whole admission period,
the detection of bacteremia should be based on clinical clues
such as vital signs or laboratory data. This is in line with the
routine practice of clinicians suspecting infection based on vital
signs and clinical features rather than underlying disease.
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Validation of Predicted Probability Compared With
Medical Chart
Blood cultures are usually performed for diagnosing infections
or monitoring the bacteremia, and some negative blood cultures
could be false negatives [1]. Investigating negative blood
cultures (green bars in the fourth e-Figure in Multimedia
Appendix 1), the predicted probability of the green bar is high
among negative cases (Figure 2). However, a green bar
following 2 days after a positive blood culture showed a lower
probability of bacteremia (4.2.2 e-Figure in Multimedia
Appendix 1). Although the negative blood culture was not
trained in our model, the probability at the green bar represents
the time of the blood culture following a clinician’s suspicion.
Usually, the probability for bacteremia is high at the green bar,
meaning that both clinicians and our model suspected high risk
of infection at similar time points. In other words, our model is
not just trained for the labeling but also trained against general
features of bacteremia.

Additionally, we examined the performance of our model using
different time steps. We assumed that additional information
exists when there are spikes in body temperature or lab data, or
when the data exhibits recognizable patterns throughout the
time. Using the RNN-based model, such information can be
considered in the hidden state and be used to predict bacteremia.
When we increased the time steps per bacteremia prediction,
the performance of the model in bacteremia detection was
increased, indicating that the model was able to further learn
the patterns of vital signs and lab data. For example, when the
changes in value were not steep, the predicted probability was
relatively low despite the elevated pulse rate and body
temperature (4.1.3 e-Figure in Multimedia Appendix 1). These
patterns of vital signs and lab data could also be used for
differentiating different species of bacteremia if they have
distinct disease patterns.

Limitations
Our study has the following limitations. First, we used the
outcome defined by positive blood culture. In the Prehospital
Antibiotics Against Sepsis Trial, only 42.6% of the cases were
culture-positive sepsis [29]. Therefore, this labeling may have
affected our model and the results. However, because we
assumed that the vital signs and laboratory results are similar
between culture-positive sepsis and culture-negative sepsis, the
model could predict higher probability even when the blood
culture produced negative results. Further prospective study is
needed to validate the proper prediction about culture-negative
sepsis. Second, our model was trained on data from a single
tertiary hospital in Korea and may, thus, have limited
generalizability. Nevertheless, our data set does not seem to
significantly deviate from the country-wide data, as the
incidence rates of bacteremia in our data set and the general
Korean cohort data were 1.9% and 2.2%, respectively [30]. As
our data set included all consecutive patients who underwent
surgeries, it could represent the global population of surgical
patients undergoing major upper abdominal surgery and thoracic
surgery. In addition, as our model used the data set in a
retrospective manner, a prospective study is needed to determine
whether our proposed model confers real-time values in helping
clinicians predict bacteremia at an earlier stage.

Conclusions
In conclusion, we have applied the deep learning algorithm to
develop a model for detecting and predicting bacteremia with
in-hospital data. Our model may help clinicians to make
appropriate decisions regarding early responses to bacteremia.
In the future, clinicians may be able to improve the clinical
outcomes of patients with bacteremia using this algorithm in
the EHR system.
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