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Abstract

Background: Semisupervised and unsupervised anomaly detection methods have been widely used in various applications to
detect anomalous objects from a given data set. Specifically, these methods are popular in the medical domain because of their
suitability for applications where there is a lack of a sufficient data set for the other classes. Infection incidence often brings
prolonged hyperglycemia and frequent insulin injections in people with type 1 diabetes, which are significant anomalies. Despite
these potentials, there have been very few studies that focused on detecting infection incidences in individuals with type 1 diabetes
using a dedicated personalized health model.

Objective: This study aims to develop a personalized health model that can automatically detect the incidence of infection in
people with type 1 diabetes using blood glucose levels and insulin-to-carbohydrate ratio as input variables. The model is expected
to detect deviations from the norm because of infection incidences considering elevated blood glucose levels coupled with unusual
changes in the insulin-to-carbohydrate ratio.

Methods: Three groups of one-class classifiers were trained on target data sets (regular days) and tested on a data set containing
both the target and the nontarget (infection days). For comparison, two unsupervised models were also tested. The data set consists
of high-precision self-recorded data collected from three real subjects with type 1 diabetes incorporating blood glucose, insulin,
diet, and events of infection. The models were evaluated on two groups of data: raw and filtered data and compared based on
their performance, computational time, and number of samples required.

Results: The one-class classifiers achieved excellent performance. In comparison, the unsupervised models suffered from
performance degradation mainly because of the atypical nature of the data. Among the one-class classifiers, the boundary and
domain-based method produced a better description of the data. Regarding the computational time, nearest neighbor, support
vector data description, and self-organizing map took considerable training time, which typically increased as the sample size
increased, and only local outlier factor and connectivity-based outlier factor took considerable testing time.

Conclusions: We demonstrated the applicability of one-class classifiers and unsupervised models for the detection of infection
incidence in people with type 1 diabetes. In this patient group, detecting infection can provide an opportunity to devise tailored
services and also to detect potential public health threats. The proposed approaches achieved excellent performance; in particular,
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the boundary and domain-based method performed better. Among the respective groups, particular models such as one-class
support vector machine, K-nearest neighbor, and K-means achieved excellent performance in all the sample sizes and infection
cases. Overall, we foresee that the results could encourage researchers to examine beyond the presented features into other
additional features of the self-recorded data, for example, continuous glucose monitoring features and physical activity data, on
a large scale.

(J Med Internet Res 2020;22(8):e18912) doi: 10.2196/18912
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Introduction

Anomaly or novelty detection problem involves identifying the
anomalous or novel instances, which exhibit different
characteristics, from the rest of the data set and has been widely
used in various applications including machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnostics and monitoring, cyber-intrusion
detection, and others [1-7]. The term anomaly was precisely
coined by Hawkins [8] as “observations that deviate much from
the other observations so as to arouse suspicions that it could
be generated by a different process.” Anomalousness is usually
described as point, contextual, and collective, depending on
how the degree of anomaly is computed [1,7,9]. On the basis
of the necessity of having labeled data instances for the
respective class, the anomaly detection problem can be
approached as supervised, semisupervised, and unsupervised
[3,7,9-11]. Supervised anomaly detection, for example,
multiclass classification, requires labeled data instances for both
the target and the nontarget (anomaly) classes. This
characteristic makes it impractical for tasks where there is
difficulty in either finding enough samples for the anomaly
class, that is, poorly sampled and unbalanced data, or
demarcating boundaries of the anomaly class [7,10,12].
Moreover, anomalies could also evolve over time, and what is
known today might not be valid through time, making the
characterization of anomalies class more challenging. In this
case, semisupervised anomaly detection, that is, one-class
classification, is preferred given that it only requires
characterizing what is believed to be normal (target data
instances) to detect the abnormal (nontarget data instances) [7].
Under certain circumstances, for example, medical domain,
obtaining and demarcating the anomalous (nontarget) data
instances can become very difficult, expensive, and time
consuming, if not impossible [7,13]. For instance, assume a
health diagnostic and monitoring system that detects health
changes in an individual by tracking the individual’s
physiological parameters, where the current health status is
examined based on a set of parameters, and raises a notification
alarm when the individual health deteriorates [12]. In such a
system, it becomes feasible to rely on a method that can be
trained using only the regular or normal day measurements
(target days) so as to detect deviation from normality [12,14].
This is because demarcating the exact boundaries between
normal and abnormal health conditions is very challenging given
that each pathogen has a different effect on the individual
physiology. The one-class classifiers–based anomaly detection

methods can be roughly grouped into 3 main groups: boundary
and domain-based, density-based, and reconstruction-based
methods based on how their internal function is defined and the
approach used for minimization [3,10,12,13,15,16]. These
models take into account different characteristics of the data
set, and depending on the data set under consideration, these
models could achieve different generalization performance,
overfitting, and bias [12]. Unlike supervised and semisupervised
anomaly detection methods, unsupervised methods do not
require labeled instances to detect the anomaly (nontarget)
instances because they rely on the entire data set to determine
the anomalies and can be another possible alternative to
semisupervised anomaly detection methods [7,10,12]. One of
the drawbacks of unsupervised methods is that they require
significant amount of data to achieve comparable performance.
Both semisupervised and unsupervised methods have been used
in various applications to detect anomalous instances [1,7,10,16].
In particular, these methods have been popular in the medical
domain owing to their suitability for such applications, where
there is lack of a sufficient data set for the other classes [13].
Accordingly, considering the difficulty and expense of obtaining
enough sample data sets for the infection days from people with
type 1 diabetes, a one-class classifier and unsupervised models
are proposed for detecting infection incidence in people with
type 1 diabetes.

Type 1 diabetes, also known as insulin-dependent diabetes, is
a chronic disease of blood glucose regulation (hemostasis), and
is caused by the lack of insulin secretion from pancreatic cells
[17,18]. In people with type 1 diabetes, the incidence of infection
often results in hyperglycemia and frequent insulin injection
[19-26]. Infection-induced anomalies are characterized by
violation of the norm of blood glucose dynamics, where blood
glucose remains elevated despite taking a higher amount of
insulin injection with less carbohydrate consumption [19].
Despite these potentials, there have been very few studies that
focused on detecting infection incidence in individuals with
type 1 diabetes using a dedicated personalized health model.
Therefore, the objective of this study was to develop an
algorithm, that is, a personalized health model that can
automatically detect the incidence of infection in people with
type 1 diabetes using blood glucose levels and
insulin-to-carbohydrate ratio as input variables. For this, a
one-class classifier and unsupervised models are proposed. The
model is expected to detect any deviations from the norm
because of infection incidences considering elevated blood
glucose level (hyperglycemia incidences) coupled with unusual
changes in the insulin-to-carbohydrate ratio, that is, frequent
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insulin injections and unusual reduction in the amount of
carbohydrate intake [19]. Three groups of one-class classifiers
and two unsupervised density-based models were explored. A
detailed theoretical description of the proposed models is given
in Multimedia Appendix 1 [1,7-16,27-37]. The anomaly
detection problem studied in this paper can be regarded as a
contextual anomaly, where the ratio of insulin-to-carbohydrate
is the context and the average blood glucose level is the
behavioral attribute. This is mainly because of the fact that
elevated blood glucose levels do not always signify being
anomalies without looking at the context of the ratio of
insulin-to-carbohydrate in this case. Throughout the paper, the
term object is used to describe a feature vector incorporating
the number of parameters under consideration. For example, an
object X can define a specific event of an individual blood
glucose dynamics at a specified time index k and is represented
by a feature vector Xk=(xk,1, xk,2), where xk,1 represents the ratio
of total insulin-to-total carbohydrate and xk,2 represents the
average blood glucose level in a specific time-bin (interval)
around k.

Methods

A group of one-class classifiers and unsupervised models were
tested and compared. The one-class classifier incorporates 3
groups: boundary and domain-based, density-based, and
reconstruction-based methods. The boundary and domain-based
method contains support vector data description (SVDD) [27],
one-class support vector machine (V-SVM) [28], incremental
support vector machine [29], nearest neighbor (NN) [12], and
minimum spanning tree (MST) [15]. Density-based method
includes normal Gaussian [32], minimum covariance Gaussian
[38], mixture of Gaussian (MOG) [32], Parzen [39], naïve
Parzen [32], K-nearest neighbor (KNN) [12,30], and local outlier
factor (LOF) [31]. The reconstruction-based method includes
principal component analysis (PCA) [12,32], K-means [32],
self-organizing maps (SOM) [12,32], and auto-encoder networks
[12]. In addition, the unsupervised models were also tested,
including the LOF [31,33] and the connectivity-based outlier
factor (COF) [33,34]. The input variables, average blood glucose
levels and ratio of total insulin (bolus) to total carbohydrate,
used in training and testing of the models were selected in
accordance with the description provided by Woldaregay et al

[19], and the ratio was calculated by dividing the total insulin
with the total carbohydrate within a specified time-bin. The data
set consists of high-precision self-recorded data collected from
3 real subjects (2 males and 1 female; average age 34 [SD 13.2]
years) with type 1 diabetes. It incorporates blood glucose levels,
insulin, carbohydrate information, and self-reported infections
cases of influenza (flu) and, mild and light common cold without
fever, as shown in Table 1. Exemplar data depicting the model’s
input features for 2 specific patient years with and without
infection are shown in Figures 1-4, and a more detailed
description of the input features for 10-patient years with and
without infection incidences can be found in Multimedia
Appendix 2 [12,19]. The data were resampled and imputed in
accordance with the description provided by Woldaregay et al
[19], and the preprocessed data were smoothed using a moving
average filter of 2 days’ (48 hours) window size to remove
short-term and small-scale features [19,40,41]. Feature scaling
was carried out using min-max scaling [42] to normalize the
data between 0 and 1, which is important to ensure that larger
parameters do not dominate the smaller ones. The data sets are
labeled as target and nontarget data sets, where the target data
sets include all the self-recorded normal period of the year and
the nontarget data set includes only the self-reported infection
periods when the individual was sick. Accordingly, the one-class
classifiers were trained using only the target data sets containing
the regular or normal period of the year and tested using both
the target and the nontarget (infection period) data sets. For the
unsupervised models, all the data sets containing both the target
and the nontarget data sets were presented during testing. The
hyperparameters of most of the one-class classifiers were
optimized using a consistency approach [43]. Models such as
naïve Parzen and Parzen were optimized using the leave-one-out
method. For MST, the entire MST was used. For PCA, the
fraction of variance retained from the training data set was set
to be 0.67. The models were evaluated based on different
characteristics including data nature (with and without filter),
data granularity (hourly and daily), data sample size, and
required computational time. All the experiments were
conducted using MATLAB 2018b (Mathworks, Inc). Most of
the models were implemented using ddtools, prtools, and
anomaly detection toolbox, which are MATLAB toolboxes
[32,33,35].
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Table 1. Equipments used in the self-management of diabetes.

Self-managementPatients

HbA1c
b (%)Body weight (kg)DietInsulin administrationBGa

6.083Carbohydrate in grams record-
ed in the Diabetes Diary mobile
app; level 3 (advanced carb
counting)

Insulin Pen (multiple bolus and 1-
time basal in the morning) recorded
in the Diabetes Diary mobile app

Finger pricks recorded in
the Diabetes Diary mobile

app and Dexcom CGMc

Subject 1

7.377Carbohydrate in grams record-
ed in the Spike mobile app;
level 3 (advanced carb count-
ing)

Insulin Pen (multiple bolus [Huma-
log] and 1-time basal [Toujeo] before
bed) recorded in the Spike mobile app

Finger pricks recorded in
the Spike mobile app and

Dexcom G4 CGMc

Subject 2

6.270Carbohydrate in grams record-
ed in pump information; level
3 (advanced carb counting)

Medtronic MinMed G640 insulin
pump (basal rates profile [Fiasp] and
multiple bolus [Fiasp])

Enlite (Medtronic) CGMc

and Dexcom G4

Subject 3

aBG: blood glucose.
bHbA1c: hemoglobin A1c.
cCGM: continuous glucose monitoring.
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Figure 1. Daily scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific regular or normal patient
year without any infection incidences.
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Figure 2. Hourly scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific regular or normal
patient year without any infection incidences.
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Figure 3. Daily scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific patient year with an
infection incidence (flu).

Figure 4. Hourly scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific patient year with an
infection incidence (flu).

Model Evaluation
The performance of the one-class classifiers was evaluated using
20 times 5-fold stratified cross-validation. For both daily and
hourly cases, the user-specified outlier fraction threshold ß was
set to 0.01 such that 1% of the training target data are allowed
to be classified as outlier or get rejected [12]. Class imbalance
was mitigated by oversampling of the nontarget data sets through
random sampling [44]. Performance was measured using the
area under the receiver operating characteristic (ROC) curve
(AUC), specificity, and F1-score [45-48]. The AUC, specificity,
and F1-score were reported as the average (SD) of twenty times
five-fold stratified cross-validation rounds. AUC is the result
of integration (summation) of the ROC curve over a range of
possible classification thresholds [49]. It is regarded as robust

(insensitive) when it comes to the presence of data imbalance;
however, it is impractical for real-world implementation because
it is independent of a single threshold [48]. Specificity measures
the ratio of correctly classified negative samples from the total
number of available negative samples [50]. Thus, it depicts the
proportion of infection days (nontarget samples) that are
correctly classified as such to the total number of infection days
(period). It is only used to examine how the model performs in
regard to the nontarget class (infection days). F1-score is the
harmonic mean of precision and recall, where the value ranges
from 0 to 1, and high F1 scores depict high classification
performance [45]. F1-score is considered appropriate when
evaluating model performance with regard to one target class
and in the presence of unbalanced data sets [10,46-48]. The
models were further compared based on various criteria, which
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can contribute to the implementation of the models in real-world
settings, including computation time, sample size, number of
user-defined parameters, and sensitivity to outliers in the training
data sets:

• Computation time: this characteristic defines the amount
of time taken to train and test the model. Regarding personal
use, response time is crucial for acceptance of the services
by a wide range of users. Furthermore, with regard to the
outbreak detection settings, this is an important parameter
given that a system that uses data from many participants
needs to have an acceptable response time. However, in
real-world applications, the training phase can be performed
in an offline mode, which makes the testing response time
very crucial.

• Sample size: this characteristic specifies the minimum
amount of training data required to generate an acceptable
performance. This is an important factor given that the
system relies on self-recorded data; it is difficult to
accumulate a large set of data for an individual initially.

• Number of user-defined parameters: this characteristic
defines the complexity of the model. It is simpler and less
data are required to estimate a model with fewer parameters.
This is an important factor because it is easier for an
individual to implement the simple model compared with
the complex model.

• Sensitivity to outliers in the training data sets: this
characteristic defines how the model estimation is affected
by outliers in the training set. This is a crucial characteristic
because the model training depends on self-reported data,
which are highly dependent on the accuracy of the user data
registration. It is possible that the user might forget to report
some infection incidence and hence might be considered
as target data sets and be used as a training data set.
Furthermore, errors incurred during manual registration of
data can also affect model generalization.

Data Collection and Ethical Declaration
The study protocol has been submitted to the Norwegian
Regional Committees for Medical Health Research Ethics
Northern Norway for evaluation and was found exempted from
regional ethics review because it is outside the scope of medical
research (reference number: 108435). Written consent was
obtained, and the participants donated the data sets. All data
from the participants were anonymized.

Results

The models were evaluated based on two different versions of
the same data set: raw and filtered. The input variables to the
models were the average blood glucose levels and the ratio of
total insulin (bolus)-to-total carbohydrate. The necessary
computational time for both training and testing of the models
was also estimated. A comparison of the classifiers was carried
out taking into account their performance, necessary sample
size for producing acceptable performance, and computational
time. These models were further compared based on their
theoretical guarantee provided for robustness to outliers in the
target data set and based on their complexity. In addition, these

classifiers were compared with the unsupervised version of
some selected models.

Model Evaluation
Model training and evaluations were carried out on an individual
basis taking into account different characteristics of the data,
specified time window or resolution (hourly and daily), and
nature of the data (raw data and its smoothed version). For daily
evaluation, we compared the performance of the models on raw
data and its smoothed version with a 2-day moving average
filter. For hourly evaluation, we compared the performance of
the model on a smoothed version of the data set. The purpose
of the comparison was to study the performance gain achieved
by removing short-time noises from the data set through
smoothing. The average and SD of AUC, specificity, and
F1-score are computed and reported for each model. The top
performing models from each category are highlighted in italics
within each tables.

Semisupervised Models
The regular or normal days were labeled as the target class data
set and the infection period as the nontarget class data set. Three
groups of one-class classifiers were trained on the target class
and tested on a data set containing both the target and the
nontarget classes. In addition to the data characteristics stated
above, resolution and data nature, the one-class classifier
performance was also assessed taking into account the required
sample object size to produce acceptable data description. In
this direction, we consider four groups of sample size: 1 month,
2 months, 3 months, and 4 months data sets. In the model
evaluation, the data set containing the infection period was
presented during testing. The evaluation was carried out based
on 20 times 5-fold stratified cross-validation. The performance
of the model was reported as the average and SD of AUC,
specificity, and F1-score of the rounds. A score plot of each
model for both the hourly and the daily scenarios using the
smoothed version of the data can be found in Multimedia
Appendix 3, where the models were trained on random 120
regular or normal days of the patient year and tested over the
whole year.

Daily

As can be seen in Tables 2 and 3 below (see also Multimedia
Appendix 4), the performance of the models generally improves
as the size of the sample increases. The models performed well
with respect to the raw data sets; however, the performance
significantly improved with the smoothed version of the data.
The results indicate that the sample size greatly affects the model
performance and that there is a larger variation in performance
when the training data set is small. Generally, it can be seen
that the models generalize well with the 3-month data set (90
sample objects) and further improve after 3 months. In general,
on average, with both the raw and smoothed data sets, the
boundary and domain-based method performed better with a
small sample size. As the sample size increased, all the three
groups produced comparable descriptions of the data. From
each respective category, models such as V-SVM, K-NN, and
K-means performed well across all the sample sizes.
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First Case of Infection (Flu)

The boundary and domain-based method achieved a better
description of the data with a small sample size when compared
with the other two groups. However, as the sample size
increased, all the three groups achieved relatively comparable
descriptions of the data. Specific models such as V-SVM, K-NN,
and K-means performed better from their respective group.
Regarding the raw data, as seen in Table 2, all the models failed
to generalize from the 1-month data set as compared with the
large sample objects, that is, 3 months, which was expected:

1. From the boundary and domain-based method, V-SVM
performed better in all the sample sizes and achieved
comparable performance even with 60 objects and improved
significantly afterward. SVDD produced a comparable
description with higher sample sizes, that is, 3 months and
later.

2. From the density-based method, K-NN performed better
in all the sample sizes and achieved better performance

even with 60 objects. Naïve Parzen produced comparable
performance with higher sample sizes, that is, 3 months
and later.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Smoothing the data, as shown in Table 3, improved the model
performance even with 30 sample objects:

1. From the boundary and domain-based method, V-SVM
achieved better performance in all sample sizes.

2. From the density-based method, K-NN achieved better
performance for all sample sizes, minimum covariance
determinant (MCD) Gaussian produced a comparable
description with 30 and 60 sample objects, and naïve Parzen
achieved comparable description of the data with 4-month
sample objects.

3. Regarding the reconstruction-based method, PCA achieved
good performance with 30 and 60 sample objects, whereas
K-means performed better with larger sample objects.
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Table 2. Average (SD) of area under the receiver operating characteristic curve, specificity, F1-score for the raw data set (without smoothing), and
different sample size. Fraction=0.01.

4 months3 months2 months1 monthModels

F1,
mean
(SD)

Specifici-
ty, mean
(SD)

AUC,
mean
(SD)

F1,
mean
(SD)

Specifici-
ty, mean
(SD)

AUC,
mean
(SD)

F1,
mean
(SD)

Specifici-
ty, mean
(SD)

AUC,
mean
(SD)

F1,
mean
(SD)

Specifici-
ty, mean
(SD)

AUCa,
mean
(SD)

Boundary and domain–based method

90.0
(4.6)

81.7 (5.0)94.6 (3.7)91.3
(6.0)

87.8 (3.3)96.4 (2.9)87.4
(8.1)

81.7 (5.0)93.4 (6.2)73.6
(5.5)

71.7 (7.7)90.7 (8.8)SVDDb

81.0
(2.7)

55 (10.7)93.7 (3.6)85.4
(1.2)

70.0 (7.1)95.8 (2.9)84.4
(3.2)

66.7 (7.5)91.8 (5.9)72.7
(4.9)

66.7 (7.5)90.4 (8.9)IncSVDDc

91.7
(1.4)

83.3 (0.0)96.2 (2.3)94.1
(2.0)

88.9 (0.0)97.9 (1.5)90.7
(3.4)

81.9 (4.7)96.5 (2.3)78.9

(6.2) e
63 (10.6)93.1 (6.0)V-SVMd

75.1
(0.4)

33.3 (0.0)92.8 (3.3)69.2
(3.8)

11.1 (18)90.1 (6.6)70.0
(4.6)

20.0 (6.7)89.5 (9.3)61.0
(4.7)

38.3 (7.7)74.2 (9.3)NNf

80.6
(2.3)

55.0 (7.7)94.1 (2.8)83.6
(4.7)

68.9 (4.5)96.6 (2.7)82.3
(5.9)

61.7 (7.7)95.4 (5.6)62.7
(6.6)

50.0 (0.0)89.4 (8.1)MSTg

Density-based method

84.5
(2.0)

66.7 (0.0)95.5 (3.2)89.2
(3.3)

80.0 (4.5)97.3 (2.5)85.3
(4.6)

70.0 (6.7)95.4 (4.6)68.8
(8.4)

60.0 (8.2)90.6 (7.1)Gaussian

84.2
(5.7)

68.7
(11.6)

93.7 (3.9)86.0
(6.7)

80.2 (7.5)95.6 (3.4)82.5
(10.1)

75.8
(14.8)

93.1 (7.1)67.8
(16.4)

80.1
(17.3)

88.1 (9.9)MOGh

84.0
(3.2)

65.0 (5.0)94.5 (3.2)89.9
(2.4)

80.0 (4.5)97.0 (2.7)84.6
(6.3)

68.3 (5.0)94.0 (4.6)66.4
(9.0)

55.0 (7.7)89.0 (8.5)MCDi

Gaussian

88.9
(3.3)

83.3 (0.0)95.2 (2.9)90.5
(5.9)

88.9 (0.0)97.2 (2.4)87.9
(6.3)

83.3 (0.0)94.6 (4.9)70.7
(5.9)

70.0 (6.7)89.0 (9.2)Parzen

90.7
(2.0)

83.3 (0.0)96.8 (2.1)93.6
(2.4)

88.9 (0.0)98.3 (1.4)87.2
(3.5)

76.7 (8.2)95.7 (3.9)65.0
(5.0)

55 (10.7)90.1 (7.6)Naïve
Parzen

92.0
(1.0)

83.3 (0.0)97.0 (2.2)93.5
(3.7)

88.9 (0.0)97.9 (1.6)90.9
(3.2)

81.7 (5.0)95.6 (3.1)66.0
(2.0)

50.0 (0.0)91.8 (6.9)K-NNj

79.3
(2.6)

50.0 (0.0)92.6 (4.8)88.7
(2.8)

78.9 (3.3)96.8 (2.8)86.1
(2.4)

71.7 (7.7)97.0 (1.9)72.7
(4.9)

66.7 (7.5)88.5 (6.1)LOFk

Reconstruction-based method

78.7
(2.3)

46.7 (6.7)91.3 (5.2)81.8
(4.4)

60 (10.2)93.6 (4.7)78.2
(4.1)

51.7 (5.0)93.5 (6.2)62.4
(8.5)

50.0 (7.5)87.8
(11.9)

PCAl

82.7
(5.7)

61.3
(14.3)

88.4 (8.8)86.4
(5.9)

74.4 (11)93.4 (5.7)81.4
(7.1)

61.6
(14.0)

88.2 (9.5)64.7
(12.0)

57.9
(15.3)

82.2
(12.0)

Auto-en-
coder

87.5
(4.5)

76.5 (9.0)92.2 (4.1)86.9
(5.5)

80.1 (6.3)95.8 (3.7)80.9
(7.0)

64.2
(12.4)

92.8 (7.3)66.7
(16.9)

78.3
(13.3)

86.9 (9.4)SOMm

91.5
(1.6)

83.3 (0.0)96.2 (2.2)93.5
(3.7)

88.9 (0.0)97.6 (1.6)91.5
(2.8)

83.3 (0.0)96.0 (2.4)71.8
(5.1)

65.0 (9.0)91.8 (6.9)K-means

aAUC: area under the receiver operating characteristic curve.
bSVDD: support vector data description.
cIncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.
eItalicized values indicates the top performing models.
fNN: nearest neighbor.
gMST: minimum spanning tree.
hMOG: mixture of Gaussian.
iMCD: minimum covariance determinant.
jK-NN: K-nearest neighbor.
kLOF: local outlier factor.
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lPCA: principal component analysis.
mSOM: self-organizing maps.

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 11https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Average of area under the receiver operating characteristic curve, specificity, and F1-score for smoothed version of the data with a 2-day
moving average filter and different sample size. Fraction=0.01.

4 months3 months2 months1 monthModels

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

Boundary and domain–based method

96.9
(4.0)

100 (0.0)100 (0.0)97.0
(4.1)

100 (0.0)100 (0.0)94.8
(10.1)

100 (0.0)100 (0.0)93.6
(15.2)

100 (0.0)99.6 (1.3)SVDDb

98.3
(2.8)

100 (0.0)100 (0.0)97.6
(4.1)

100 (0.0)100 (0.0)97.1
(6.3)

100 (0.0)100 (0.0)93.6
(15.2)

100 (0.0)99.6 (1.3)IncSVDDc

99.6
(1.2)

100 (0.0)100 (0.0)99.4
(1.7)

100 (0.0)100 (0.0)99.1
(2.6)

100 (0.0)100 (0.0)98.9

(3.2) e
99.5 (2.9)100 (0.0)V-SVMd

69.0
(4.8)

8.3 (17.1)92.4 (5.3)80.0
(8.6)

54.4
(22.5)

88.1 (6.5)70.5
(5.3)

16.7
(22.4)

86.9
(12.5)

72.3
(9.9)

58.3
(15.4)

98.1 (3.9)NNf

97.0
(7.9)

100 (0.0)99.7 (0.8)97.2
(4.0)

97.8 (4.5)99.9 (0.4)97.1
(6.3)

100 (0.0)99.7 (0.8)85.5
(2.1)

85.0 (5.0)98.5 (2.4)MSTg

Density-based method

97.0
(7.9)

100 (0.0)99.4 (1.7)97.6
(4.1)

100 (0.0)99.8 (0.7)97.1
(6.3)

100 (0.0)100 (0.0)92.1
(15.2)

98.3 (5.0)100 (0.0)Gaussian

94.4
(11.8)

99.9 (1.2)99.3 (2.0)94
(10.3)

99.8 (1.4)99.7 (0.7)92.2
(11.1)

100 (0.0)99.6 (1.2)88.5
(16.8)

99.8 (1.7)98.6 (3.2)MOGh

92.0
(6.8)

88.3 (7.7)99.4 (1.7)96.6
(5.9)

96.7 (5.1)99.5 (1.1)98.0
(6.0)

100 (0.0)100 (0.0)90.9
(7.7)

91.7 (8.4)98.9 (2.2)MCDi

Gaussian

94.6
(12.3)

100 (0.0)99.9 (0.4)94.6
(9.8)

100 (0.0)100 (0.0)95.1
(8.0)

100 (0.0)100 (0.0)87.7
(17.0)

100 (0.0)99.6 (1.3)Parzen

98.7
(2.7)

100 (0.0)100 (0.0)97.5
(5.0)

100 (0.0)99.6 (1.1)93.8
(11.0)

100 (0.0)100 (0.0)94.7
(11.1)

100 (0.0)99.2 (2.5)Naïve
Parzen

97.7
(4.7)

100 (0.0)100 (0.0)98.8
(3.8)

100 (0.0)100 (0.0)98.0
(6.0)

100 (0.0)100 (0.0)75.2
(4.3)

68.3 (5.0)98.1 (3.9)K-NNj

97.4
(7.9)

100 (0.0)99.7 (0.8)96.9
(5.0)

100 (0.0)100 (0.0)98.0
(6.0)

100 (0.0)100 (0.0)80.2
(10.8)

75.0
(13.5)

98.6 (2.9)LOFk

Reconstruction-based method

89.1
(9.7)

83.3 (0.0)97.8 (2.2)92.2
(6.0)

88.9 (0.0)98.6 (1.9)91.4
(2.7)

85.0 (5.0)99.2 (1.3)85.5
(2.1)

85.0 (5.0)98.9 (2.2)PCAl

93.7
(9.7)

94.4 (9.5)98.6 (3.8)93.7
(8.3)

93.7
(10.2)

99.2 (2.4)91.8
(9.4)

94.5 (9.6)98.5 (3.2)86.0
(14.2)

89.1
(13.0)

97.4 (6.0)Auto-en-
coder

93.4
(12.1)

100 (0.0)99.6 (1.3)95.2
(7.9)

100 (0.0)99.9 (0.3)91.4
(9.6)

100 (0.0)99.8 (0.7)84.7
(19.8)

99.9 (1.2)99.3 (1.9)SOMm

99.2
(2.5)

100 (0.0)100 (0.0)98.8
(3.8)

100 (0.0)100 (0.0)97.1
(6.3)

100 (0.0)100 (0.0)87.0
(10.4)

85.0
(11.7)

99.2 (2.5)K-means

aAUC: area under the receiver operating characteristic curve.
bSVDD: support vector data description.
cIncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.
eItalicized values indicates the top performing models.
fNN: nearest neighbor.
gMST: minimum spanning tree.
hMOG: mixture of Gaussian.
iMCD: minimum covariance determinant.
jK-NN: K-nearest neighbor.
kLOF: local outlier factor.
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lPCA: principal component analysis.
mSOM: self-organizing maps.

Second Case of Infection (Flu)

The boundary and domain-based method achieved better
performance with a small sample size compared with the density
and reconstruction-based methods. However, as the sample size
increased, all the three groups achieved comparable
performance. The detailed numerical values of comparison are
given in Multimedia Appendix 4. Specific models such as
V-SVM, K-NN, and K-means performed better from their
respective group. Regarding the raw data, all the models failed
to generalize from the 1-month data set as compared with the
higher sample objects, that is, 3 months (Multimedia Appendix
4):

1. From the boundary and domain-based method, SVDD,
MST, and incremental support vector data description
(incSVDD) performed better with a larger sample object,
and V-SVM achieved better description with 30 sample
objects.

2. From the density-based method, all the models exhibited
similar performance. Naïve Parzen and K-NN, with only
60 sample objects, achieved comparable performance with
the higher sample objects.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Smoothing the data significantly improved the performance of
the model even with 30 objects, compared with the raw data
(Multimedia Appendix 4):

1. From the boundary and domain-based method, the V-SVM
achieved higher performance in all the sample sizes.

2. From the density-based method, LOF achieved better
description with small sample objects, and K-NN produced
better description with all the sample sizes. Gaussian
families achieved improved and comparable performance
with increased sample objects. Among them, K-NN with
only 60 objects achieved comparable performance with
larger sample objects.

3. Regarding the reconstruction-based method, K-means and
SOM achieved better performance, whereas K-means
performed better in all the sample sizes.

Third Case of Infection (Flu)

The boundary and domain-based method achieved better
performance with a small sample size compared with the density
and reconstruction-based methods. However, as the sample size
increased, all the three groups produced comparable
descriptions. The detailed numerical values of comparison are
given in Multimedia Appendix 4. Specific models such as
V-SVM, MST, LOF, and PCA performed better from their
respective group. Regarding the raw data, surprisingly, in
contrast to the previous two infection cases, all the models
achieved higher generalization from the 1-month data set
(Multimedia Appendix 4):

1. From the boundary and domain-based method, SVDD,
V-SVM, MST, and incSVDD performed better in all the
cases, with MST achieving better performance.

2. From the density-based method, normal and MCD Gaussian
achieved better description of the data with 1-month sample
objects. K-NN and LOF performed better with sample sizes
larger than 1-month sample objects, and LOF outperformed
all sample sizes. The LOF with only 60 objects achieved
comparable performance with the higher sample objects.

3. From the reconstruction-based method, PCA produced
better description for all sample sizes, whereas K-means
and SOM achieved comparable performance with sample
size larger than 1-month sample objects.

Smoothing the data allowed the models to generalize well and
significantly improved the performance of the model even with
30 objects, compared with the raw data (Multimedia Appendix
4):

1. From the boundary and domain-based method, the V-SVM
and MST achieved higher performance in all the sample
sizes, whereas V-SVM outperformed all the models.

2. From the density-based method, the Gaussian families,
LOF, and K-NN achieved better performance, whereas LOF
achieved better performance in all sample sizes.

3. Regarding the reconstruction-based method, K-means and
PCA achieved better performance, whereas PCA performed
better in all the sample sizes.

Fourth Case of Infection (Flu)

The boundary and domain-based method achieved better
performance with small sample sizes compared with the density
and reconstruction-based methods. All the three groups
improved with increasing sample size. The detailed numerical
values of comparison are given in Multimedia Appendix 4.
Specific models such as V-SVM, LOF, and K-means performed
better from their respective group. Regarding the raw data,
surprisingly, in contrast to all the previous three infection cases,
all the models achieved higher generalization from the 1-month
data set (Multimedia Appendix 4):

1. From the boundary and domain-based method, SVDD,
V-SVM, and incSVDD performed better for all the sample
sizes.

2. From the density-based method, MCD Gaussian performed
better with a 1-month sample size, and all the models
produced comparable descriptions as the sample size
increased, whereas the LOF performed better for all the
sample sizes.

3. From the reconstruction-based method, PCA performed
relatively better for all the sample sizes, and K-means and
SOM achieved comparable performance with a larger
sample size.

Smoothing the data significantly improved the model
performance even with 30 objects compared with the raw data
(Multimedia Appendix 4):

1. From the boundary and domain-based method, the V-SVM
achieved higher performance in all the sample sizes. As the
sample size increased, the incSVDD and MST achieved
comparable performance.
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2. From the density-based method, K-NN and LOF produced
better descriptions with a 1-month sample size. K-NN
performed better in almost all sample sizes.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Hourly

As can be seen in Table 4 (see also Multimedia Appendix 4),
the performance of the model generally improved as more
training sample data were presented. The models produced
comparable performance even with the 1-month data set
compared with the daily scenario. This is mainly because of the
presence of more samples per day (24 samples per day), which
enables the models to reach a better generalization. Generally,
the results indicate that the models generalize well after 2
months. Both the boundary and domain-based method and
reconstruction-based method achieved better performance even
with a 1-month sample size. However, the density-based method
suffers from large variation with 1-month training samples. In
general, the boundary and domain-based method performed
better in all the infection cases compared with the other two

methods. In addition, specific models such as V-SVM, K-NN,
and K-means performed well from their respective groups.

First Case of Infection (Flu)

The boundary and domain-based method achieved better
performance compared with the density and
reconstruction-based methods. As can be seen in Table 4, the
boundary and domain-based method achieved better
generalization from the 1-month data set. Specific models such
as V-SVM, K-NN, and K-means performed better from their
respective group:

1. From the boundary and domain-based method, V-SVM
achieved better description in all sample sizes, whereas
SVDD, incSVDD, and V-SVM achieved comparable
performance with a larger sample size.

2. From the density-based method, Gaussian families and
naïve Parzen performed better at large sample sizes, whereas
K-NN and LOF achieved better performance in all the
sample sizes. K-NN outperformed all the models.

3. From the reconstruction-based method, K-means performed
better in all the sample sizes, and all the other models
performed better with larger sample sizes.
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Table 4. Average (SD) of area under the receiver operating characteristic curve, specificity, F1-score for the smoothed version of the data with a 48-hour
moving average filter and different sample size. Fraction=0.01.

4 months3 months2 months1 monthModels

F1Specifici-
ty

AUCa,
mean (SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean (SD)

Boundary and domain–based method

96.8
(0.9)

91.0 (3.7)98.1 (0.9)94.2
(2.9)

90.4 (5.1)97.7 (1.2)90.5
(9.6)

85.7 (5.0)97.8 (1.2)85.8
(1.7)

83.2 (3.4)97.6 (1.9)SVDDb

97.1
(0.7)

88.9 (1.2)97.9 (0.9)96.0
(1.1)

88.5 (1.5)97.5 (1.2)93.9
(1.0)

86.7 (2.0)97.7 (1.2)86.8
(1.9)

84.5 (2.8)97.4 (1.9)IncSVDDc

97.1
(1.3)

94.2 (0.0)99.4 (0.4)96.9
(1.4)

93.8 (0.5)99.5 (0.6)96.1
(1.3)

92.6 (0.0)99.0 (1.1)90.5

(1.1) e
84.5 (1.1)98.1 (2.1)V-SVMd

91.4
(6.4)

77.5 (3.8)90.2 (4.7)89.3
(4.4)

77.5 (3.9)89.0 (4.0)87.1
(3.3)

76.5 (4.1)89.3 (2.2)74.8
(6.0)

75.9 (4.5)84.8 (6.0)NNf

90.9
(5.9)

88.8 (3.0)95.8 (2.2)87.8
(8.5)

88.8 (3.5)94.7 (2.4)85.1
(7.0)

85.7 (4.0)94.4 (2.0)67.6
(14.5)

85.4 (3.9)90.5 (3.1)MSTg

Density–based method

97.7
(1.1)

92.2 (1.0)99.5 (0.5)97.1
(2.5)

92.9 (1.3)99.6 (0.7)95.2
(1.8)

90.1 (1.7)99.5 (0.9)83.9
(2.7)

79.8 (4.9)98.1 (2.2)Gaussian

95.3
(3.2)

88.2 (3.1)98.6 (1.6)94.7
(3.5)

88.7 (4.6)98.7 (1.4)92.3
(2.7)

86.2 (2.7)98.3 (1.5)83.7
(5.0)

82.7 (4.3)95.8 (3.6)MOGh

97.7
(1.1)

92.0 (1.2)99.6 (0.4)97.0
(2.3)

92.5 (1.8)99.6 (0.7)95.0
(1.8)

89.6 (1.9)99.6 (0.9)81.3
(2.5)

75.3 (6.9)98.6 (2.1)MCDi

Gaussian

87.9
(7.1)

95.6 (1.2)97.4 (2.2)84.2
(9.5)

94.8 (1.7)96.6 (2.6)81.6
(10.2)

94.4 (2.0)96.2 (2.3)63.4
(16.5)

93.6 (2.0)91.9 (2.9)Parzen

96.2
(1.6)

89.7 (2.4)98.9 (0.9)94.8
(2.5)

89.1 (3.8)99.1 (1.1)91.8
(2.9)

85.2 (3.3)98.7 (1.2)77.6
(7.9)

76.4 (5.6)94.8 (3.7)Naïve
Parzen

98.2
(0.9)

94.0 (0.6)99.5 (0.3)97.3
(1.9)

93.8 (0.7)99.6 (0.4)96.0
(1.8)

92.9 (0.7)99.1 (1.0)84.2
(2.1)

78.8 (2.0)97.1 (3.4)K-NNj

97.8
(1.2)

93.1 (0.4)99.5 (0.4)97.3
(2.1)

93.7 (0.8)99.6 (0.5)96.0
(1.8)

91.9 (0.9)99.2 (1.1)84.2
(2.4)

78.3 (3.0)96.9 (3.5)LOFk

Reconstruction–based method

93.1
(0.8)

69.1 (4.1)98.9 (1.2)92.4
(1.1)

75.1 (6.8)99.1 (1.3)90.2
(1.1)

76.4 (6.6)99.4 (1.2)75.4
(0.3)

63.9 (8.8)97.1 (3.4)PCAl

94.6
(4.4)

84.0 (8.0)96.7 (3.0)92.7
(5.0)

84.3 (7.7)96.3 (3.2)91.1
(3.9)

83.1 (7.2)96.2 (2.6)78.9
(8.3)

79.5 (7.6)92.0 (4.8)Auto-en-
coder

94.3
(3.8)

84.1 (3.8)95.5 (1.9)92.3
(4.1)

83.4 (5.8)94.8 (2.3)91.6
(1.9)

82.9 (3.1)95.6 (1.1)82.6
(4.9)

82.2 (3.3)94.1 (2.3)SOMm

98.1
(1.1)

94.1 (0.2)99.4 (0.4)97.3
(1.4)

92.9 (0.7)99.3 (0.6)95.8
(1.8)

92.6 (0.7)98.9 (1.1)85.5
(2.5)

80.9 (2.5)97.3 (3.2)K-means

aAUC: area under the receiver operating characteristic curve.
bSVDD: support vector data description.
cIncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.
eItalicized values indicates the top performing models.
fNN: nearest neighbor.
gMST: minimum spanning tree.
hMOG: mixture of Gaussian.
iMCD: minimum covariance determinant.
jK-NN: K-nearest neighbor.
kLOF: local outlier factor.
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lPCA: principal component analysis.
mSOM: self-organizing maps.

Second Case of Infection (Flu)

The boundary and domain-based method and
reconstruction-based method achieved better performance for
all sample sizes compared with the density-based method.
Specifically, the boundary and domain-based method achieved
better generalization from the 1-month data set. The detailed
numerical values of comparison are given in Multimedia
Appendix 4. Specific models such as V-SVM, K-NN, and
K-means performed better from their respective group:

1. From the boundary and domain-based method, V-SVM
achieved better description for all the sample sizes, and
SVDD, NN, and incSVDD improved with larger training
sample size; however, V-SVM outperformed all the models
for all the sample sizes.

2. From the density-based method, normal and MCD Gaussian
performed better with the 1- and 2-month sample sizes, and
models such as K-NN performed better on all the sample
sizes, whereas naïve Parzen outperformed all the models
with the 3- and 4-month data sets.

3. From the reconstruction-based method, K-means produced
better description for all the sample sizes and the
auto-encoder and SOM performed better with larger sample
sizes.

Third Case of Infection (Flu)

Generally, in comparison, all the groups performed better at
large training sample sizes; however, the boundary and
domain-based method achieved better performance with small
training sample sizes. It achieved comparable generalization
from the 1-month data set. The detailed numerical values of
comparison are given in Multimedia Appendix 4. Specific
models such as V-SVM, families that utilize nearest neighbor
distance (K-NN and LOF), and PCA performed better from
their respective group:

1. From the boundary and domain-based method, SVDD, NN,
MST, incSVDD, and V-SVM achieved better performance
at larger training sample sizes, whereas V-SVM
outperformed all the models for all the sample sizes.

2. From the density-based method, the Gaussian families,
K-NN, LOF, and naïve Parzen achieved better performance
at larger training sample sizes, whereas K-NN and LOF
outperformed all the models for all the sample sizes.

3. From the reconstruction-based method, K-means, PCA,
auto-encoder, and SOM achieved better performance at
larger training sample sizes, whereas PCA performed better
for all sample sizes.

Fourth Case of Infection (Flu)

Generally, in comparison, all the group performed better at large
training sample size; however, the boundary and domain-based
method achieved better performance with small training sample
sizes, for example, 1-month data set. It achieved comparable
generalization from the 1-month data set. The detailed numerical
values of comparison are given in Multimedia Appendix 4.
Specific models such as V-SVM, Gaussian families (Gaussian,
MOG, and MCD Gaussian), and PCA performed better from
their respective groups:

1. From the boundary and domain-based method, NN,
incSVDD, and V-SVM achieved better performance at
larger training sample sizes, whereas V-SVM outperformed
all the models for all the sample sizes.

2. From the density-based method, Gaussian families, K-NN,
LOF, and naïve Parzen achieved better performance at
larger training sample sizes, whereas Gaussian families
outperformed all the models for all the sample sizes.

3. From the reconstruction-based method, K-means, SOM,
auto-encoder, and PCA achieved better performance at
larger training sample sizes, whereas PCA performed better
for all sample sizes.

Average Performance Across all the Infection Cases

The average performances of the models across all the infection
cases for different sample sizes, levels of data granularity
(hourly and daily), and nature of data (raw and smoothed) are
shown in Tables 5-7. In general, the boundary and domain-based
method performed better than the other two groups in both daily
and hourly smoothed data sets; however, all the groups achieved
comparable performance with respect to the daily raw data set.
Specific models such as V-SVM, K-NN, and K-means
performed better in all these circumstances.

Daily Raw Data Set

Regarding the daily raw data set, as shown in Table 5, specific
models such as V-SVM, MCD Gaussian, K-NN, and K-means
produced relatively better descriptions of the 1-month data. For
the 2-month sample size, models such as incSVDD, K-NN,
LOF, and K-means achieved better performance. For the
3-month sample size, SVDD, incSVDD, V-SVM, Gaussian,
MCD Gaussian, K-NN, LOF, and K-means produced
comparable descriptions. As expected, SVDD and most of the
density-based method improved with larger training sizes. For
the 4-month sample size, almost all the models produced much
improved performance. In the group comparison, all three
groups produced comparable descriptions in all the sample sizes.
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Table 5. Average performance of each model across all the infection cases for the daily raw data set (without smoothing) and different sample sizes.
Fraction=0.01.

4 months3 months2 months1 monthModels

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean (SD)

F1Specifici-
ty

AUCa,
mean (SD)

F1Specifici-
ty

AUCa,
mean (SD)

Boundary and domain-based method

85.7
(4.1)
c

61.7
(10.6)

91.4 (4.3)86.2
(4.4)

67.3
(10.5)

93.3 (4.6)84.1
(5.5)

61.7
(10.6)

91.7 (7.3)74.8
(9.5)

66.0
(13.5)

87.1 (11)SVDDb

83.5
(3.7)

55.0
(11.7)

90.8 (4.4)84.9
(3.2)

62.8
(10.9)

92.8 (5.1)83.8
(3.6)

57.9 (11)90.5 (8.5)74.7
(10.4)

63.0 (4.6)85.2 (11)IncSVDDd

84.5
(5.1)

63.1
(11.9)

93.8 (4.1)86.6
(3.5)

66.9 (6.1)94.2 (3.8)82.8
(4.5)

60.6 (5.0)92.2 (5.1)77.4
(6.4)

55.7 (7.0)91.5 (8.0)V-SVMe

75.7
(3.4)

16.0
(14.4)

70.0 (9.0)72.0
(4.7)

8.6 (17.6)70.8 (11.2)75.7
(3.7)

25.0 (9.6)72.1 (11.9)65.0
(5.4)

31.3 (6.5)73.4 (12)NNf

82.6
(2.7)

50.0
(11.4)

84.2 (6.6)82.9
(3.5)

56.2 (9.3)84.0 (6.3)82.0
(5.1)

50.4 (9.0)82.6 (9.1)71.2
(6.1)

52.1 (0.0)82.4 (8.7)MSTg

Density-based method

84.6
(3.2)

57.9
(10.3)

95.0 (3.5)86.3
(3.2)

65.3
(10.6)

95.1 (4.3)84.0
(4.0)

58.8
(10.9)

93.6 (6.1)72.9
(7.8)

56.9 (7.7)91.5 (9.9)Gaussian

84.9
(5.1)

61.6
(12.6)

94.5 (3.7)85.0
(5.6)

67.0
(11.4)

94.0 (4.4)83.8
(6.8)

64.1
(14.0)

91.7 (6.1)71.3
(14.3)

69.2
(11.9)

89.9 (12)MOGh

84.9
(3.0)

57.9
(10.6)

94.8 (3.5)86.4
(3.0)

65.3
(10.6)

95.3 (4.2)84.1
(4.3)

58.0 (8.1)93.1 (6.0)72.0
(6.8)

54.0 (5.5)90.8 (9.1)MCDi

Gaussian

86.1
(3.8)

66.1
(12.7)

94.3 (3.8)85.6
(5.4)

68.7
(11.2)

93.9 (5.0)83.9
(5.3)

62.1
(10.3)

91.7 (6.5)70.6
(9.4)

59.6 (8.3)89.7 (10)Parzen

86.9
(3.4)

64.6
(10.0)

92.8 (4.7)86.6
(4.4)

66.5
(12.8)

91.9 (5.5)83.7
(4.9)

60.4
(11.2)

90.2 (7.1)69.1
(9.6)

54.2 (6.5)88.1 (8.7)Naïve
Parzen

86.5
(3.3
)

62.1
(10.3)

95.0 (3.8)87.1
(3.2)

66.9
(11.2)

94.8 (4.8)85.9
(3.1)

61.1
(11.3)

91.6 (5.0)71.6
(7.9)

52.9 (5.1)91.1 (7.8)K-NNj

83.8
(2.5)

53.8
(10.3)

93.7 (4.3)86.2
(2.8)

64.4
(11.4)

94.0 (4.8)84.9
(2.8)

59.2
(11.1)

92.4 (6.0)73.0
(8.6)

56.3 (3.9)89.2 (8.9)LOFk

Reconstruction-based method

83.6
(2.9)

53.8 (7.2)90.5 (4.5)84.1
(3.2)

59.7 (6.2)91.4 (4.9)82.7
(4.5)

55.0 (6.8)90.2 (6.4)73.7
(8.3)

58.8 (4.6)87.6 (8.8)PCAl

83.2
(5.8)

52.3
(21.0)

88.5
(10.6)

83.3
(6.8)

57.7
(21.5)

88.4 (10.0)82.1
(7.0)

53.1
(20.0)

84.6 (12.5)71.0
(12.5)

58.3
(17.7)

83.6 (14)Auto-en-
coder

85.0
(3.1)

59.0 (5.8)94.7 (4.0)84.8
(4.0)

64.4 (8.5)93.5 (5.4)81.6
(5.8)

57.1
(10.2)

87.6 (7.2)72.7
(11.7)

63.4
(10.3)

85.6 (12)SOMm

86.5
(2.9)

62.1
(10.3)

95.8 (3.9)87.4
(3.1)

67.6
(10.3)

96.0 (4.4)85.4
(4.2)

62.2
(10.5)

93.7 (6.2)73.1
(7.1)

57.2 (7.6)94.2 (7.6)K-means

aAUC: area under the receiver operating characteristic curve.
bSVDD: support vector data description.
cItalicized values indicates the top performing models.
dIncSVDD: incremental support vector data description.
eV-SVM: one-class support vector machine.
fNN: nearest neighbor.
gMST: minimum spanning tree.
hMOG: mixture of Gaussian.
iMCD: minimum covariance determinant.
jK-NN: K-nearest neighbor.
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kLOF: local outlier factor.
lPCA: principal component analysis.
mSOM: self-organizing maps.

Daily Smoothed Data Set

Regarding the daily smoothed data set, as shown in Table 6,
almost all models achieved excellent performance and much
improved data description compared with the daily raw data
set. As shown in Table 6, specific models such as V-SVM,

K-NN, and K-means produced excellent descriptions of the data
for all the sample sizes; however, V-SVM achieved superior
performance compared with these models. In the group
comparison, the boundary and domain-based method produced
excellent description of the data for all sample sizes.
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Table 6. Average performance of each model across all the infection cases for the daily smoothed data set (with filter) and different sample size.
Fraction=0.01.

4 months3 months2 months1 monthModels

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

Boundary and domain-based method

97.9
(3.9)

100 (0.0)100
(0.0)

96.5
(6.5)

100 (0.0)100
(0.0)

96.1
(7.6)

100 (0.0)100
(0.0)

94.1
(14.2)

100 (0.0)99.9
(0.7)

SVDDb

98.6
(2.9)

100 (0.0)100
(0.0)

97.3
(5.9)

100 (0.0)100
(0.0)

96.9
(6.5)

100 (0.0)100
(0.0)

94.1
(14.2)

100 (0.0)99.9
(0.7)

IncSVDDc

99.5
(1.5)

100 (0.0)100
(0.0)

99.4
(1.9)

100 (0.0)100
(0.0)

99.1
(2.9)

100 (0.0)100
(0.0)

99.1

(3.2) e
100 (0.0)100

(0.0)
V-SVMd

77.1
(5.7)

23.5
(18.6)

90.5
(6.8)

77.7
(5.3)

33.6
(14.6)

89.2
(7.9)

78.4
(6.8)

33.1
(22.6)

88.9
(9.9)

69.5
(13.2)

40.0
(30.5)

90.1
(14.5)

NNf

98.0
(5.4)

100 (0.0)99.9
(0.5)

98.0
(3.5)

98.9 (4.1)99.9
(0.2)

95.1
(6.2)

96.7 (3.4)99.8
(0.7)

86.7
(9.4)

85 (6.1)98.9
(3.6)

MSTg

Density-based method

98.3
(5.9)

100 (0.0)99.8
(0.8)

98.1
(4.9)

100 (0.0)99.9
(0.4)

94.8
(10.4)

96.7 (7.5)99.5
(2.5)

87.2
(15.2)

92.6 (9.0)99.2
(5.1)

Gaussian

96.4
(7.7)

99.9 (0.6)99.8
(1.0)

95.4
(7.8)

99.9 (0.7)99.9
(0.4)

92.1
(11.6)

97.0 (5.4)99.4
(2.6)

85.2
(17.1)

92.9 (8.6)98.8
(5.4)

MOGh

97.0
(5.5)

97.1 (3.9)99.8
(0.9)

98.0
(5.3)

99.2 (2.6)99.8
(0.5)

93.4
(8.1)

90.0 (8.7)99.3
(2.7)

86.6
(11.9)

86.6 (8.8)98.4
(5.6)

MCDi Gaus-
sian

95.8
(8.2)

100 (0.0)99.9
(0.3)

93.6
(8.9)

100 (0.0)100
(0.0)

93.7
(9.8)

100 (0.0)99.9
(0.4)

90.8
(16.4)

100 (0.0)99.2
(3.5)

Parzen

98.2
(4.2)

100 (0.0)100
(0.0)

97.4
(5.6)

100 (0.0)99.9
(0.5)

96.1
(7.9)

100 (0.0)100
(0.0)

94.4
(14.6)

100 (0.0)99.8
(1.2)

Naïve
Parzen

98.8
(3.6)

100 (0.0)100
(0.0)

98.4
(5.1)

100 (0.0)100
(0.0)

98.3
(4.9)

100 (0.0)99.9
(0.4)

90.7
(9.6)

91.6 (3.6)99.5
(2.0)

K-NNj

98.2
(5.9)

100 (0.0)99.9
(0.4)

97.4
(4.5)

98.6 (2.8)99.9
(0.2)

97.1
(7.3)

99.2 (3.4)99.9
(0.5)

92.4
(10.6)

93.3 (7.3)99.6
(1.5)

LOFk

Reconstruction-based method

89.0
(6.9)

76.2 (8.6)90.7
(3.6)

89.5
(5.3)

76.3 (8.6)88.7
(5.9)

89.3
(8.7)

77.9 (7.3)91.3
(4.3)

83.8
(10.4)

82.0 (7.3)93.8
(6.7)

PCAl

94.9
(7.7)

92.7
(15.8)

98.7
(4.0)

94.0
(8.3)

92.8
(14.8)

98.6
(4.6)

92.0
(10.7)

92.6
(15.3)

98.1
(5.4)

87.7
(16.0)

91.6
(14.6)

97.0
(8.1)

Auto-en-
coder

95.9
(8.1)

100 (0.0)99.8
(0.6)

94.6
(8.0)

100 (0.0)99.9
(0.2)

88.9
(16.1)

100 (0.0)99.8
(0.7)

85.2
(20.5)

99.9 (0.6)99.1
(3.2)

SOMm

99.0
(2.9)

100 (0.0)100
(0.0)

98.0
(5.6)

100 (0.0)100
(0.0)

97.8
(5.6)

100 (0.0)100
(0.0)

93.2
(12.7)

96.2 (6.0)99.8
(1.2)

K-means

aAUC: area under the receiver operating characteristic curve.
bSVDD: support vector data description.
cIncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.
eItalicized values indicates the top performing models.
fNN: nearest neighbor.
gMST: minimum spanning tree.
hMOG: mixture of Gaussian.
iMCD: minimum covariance determinant.
jK-NN: K-nearest neighbor.
kLOF: local outlier factor.
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lPCA: principal component analysis.
mSOM: self-organizing maps.

Hourly Smoothed Data Set

Regarding the hourly smoothed data set, as shown in Table 7,
almost all the models failed to produce acceptable data
description from the 1-month sample size except V-SVM, which
achieved the best description. The high variability between the
performance of the models with the 1-month hourly data set
could be associated with the high data granularity, and, in fact,
the models require more data sets to capture the high variability

among the data objects. Models such as V-SVM, MCD
Gaussian, and K-means achieved superior performance from
their respective groups. In general, V-SVM outperformed in all
the sample sizes. The density and reconstruction-based models
improved with larger sample size. In the group comparison, the
boundary and domain-based method produced better description
in all the sample sizes, and the density and reconstruction-based
method achieved equivalent performance with larger sample
sizes.
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Table 7. Average performance of each model across all the infection cases for the hourly data set with smoothing and different sample size. Fraction=0.01.

4 months3 months2 months1 monthModels

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

F1Specifici-
ty

AUCa,
mean
(SD)

Boundary and domain-based method

94.6
(6.0)

81.8 (5.3)97.6
(1.7)

93.5
(3.4)

80.1 (5.5)97.2
(2.6)

91.5
(10.9)

86.7 (4.4)97.4
(1.8)

89.4
(7.1)

89.0 (3.4)97.4
(2.9)

SVDDb

95.4

(1.9) d
79.0 (4.8)97.4

(1.7)
93.2
(2.6)

76.2 (6.3)97.0
(2.7)

93.6
(4.8)

86.4 (2.8)97.2
(1.8)

89.5
(5.9)

87.7 (2.7)97.1
(2.9)

IncSVDDc

95.4
(2.1)

89.2 (0.3)99.0
(0.9)

94.4
(2.0)

86.4 (0.4)98.7
(1.4)

95.4
(1.6)

89.8 (0.2)98.9
(1.4)

92.3
(1.3)

85.5 (0.6)98.1
(2.0)

V-SVMe

94.0
(4.0)

82.9 (3.6)94.0
(2.8)

92.0
(4.2)

83.0 (3.7)93.3
(2.8)

90.9
(5.3)

88.4 (3.4)94.4
(2.5)

83.9
(12.0)

92.0 (2.4)93.2
(7.8)

NNf

92.6
(5.0)

93.6 (1.7)97.0
(1.4)

90.2
(7.3)

93.5 (1.9)96.1
(2.1)

86.1
(11.0)

94.2 (2.1)97.3
(1.4)

72.9
(18.5)

94.4 (2.2)96.1
(2.6)

MSTg

Density-based method

97.2
(1.8)

89.8 (3.1)99.2
(0.7)

95.9
(2.7)

88.1 (4.0)98.8
(1.3)

95.7
(4.9)

92.3 (1.7)99.3
(0.9)

89.6
(12.5)

91.2 (2.6)98.4
(1.6)

Gaussian

96.0
(3.1)

88.0 (4.9)98.5
(1.5)

94.2
(4.1)

85.4 (6.6)98.2
(2.0)

94.0
(6.3)

90.9 (2.7)98.9
(1.2)

87.8
(13.3)

91.7 (3.2)97.5
(3.0)

MOGh

97.4
(1.7)

90.4 (3.4)99.2
(0.7)

96.0
(2.5)

87.9 (3.3)98.9
(1.1)

95.8
(4.5)

92.2
(92.2)

99.5
(0.9)

89.1
(11.8)

89.9 (3.7)98.5
(1.5)

MCDi

Gaussian

88.6
(7.1)

96.7 (1.1)98.1
(1.6)

85.1
(10)

96.4 (1.2)97.2
(2.3)

79.5
(14.5)

97.7 (1.1)98.0
(1.6)

59.9
(18.9)

97.8 (1.1)96.4
(2.6)

Parzen

96.2
(2.8)

90.0 (1.8)98.2
(1.6)

95.0
(4.1)

90.8 (2.6)96.0
(2.3)

92.8
(7.5)

89.2 (2.8)98.7
(1.5)

85.1
(10.9)

87.5 (3.5)96.4
(3.0)

Naïve
Parzen

97.3
(2.8)

93.3 (1.3)98.7
(1.1)

95.7
(4.8)

92.6 (1.4)98.4
(1.4)

94.5
(6.6)

92.4 (2.4)99.0
(1.4)

87.6
(13.6)

91.1 (1.6)97.6
(2.9)

K-NNj

94.7
(3.2)

85.3 (4.7)95.8
(1.7)

92.9
(4.8)

85.2 (4.6)95.0
(3.0)

93.1
(4.9)

89.8 (4.8)97.4
(1.8)

86.2
(13.0)

91.2 (1.6)96.9
(2.9)

LOFk

Reconstruction-based method

93.9
(1.1)

71.1 (2.5)93.4
(3.2)

92.5
(1.9)

72.4 (3.8)92.6
(4.2)

90.9
(3.6)

77.6 (4.5)94.8
(3.8)

82.5
(10.9)

78.2 (6.1)97.4
(3.2)

PCAl

95.0
(3.6)

80.3
(14.4)

95.9
(4.3)

93.1
(4.8)

79.3
(14.5)

95.0
(5.3)

92.8
(6.4)

87.1 (9.9)96.9
(3.2)

86.1
(13.1)

88.7 (9.5)95.4
(5.3)

Auto-en-
coder

96.1
(3.2)

87.5 (7.0)96.0
(2.5)

92.3
(4.5)

79.1
(10.9)

93.9
(3.5)

92.7
(5.7)

87.6 (4.1)95.7
(1.7)

86.1
(14.4)

91.6 (2.6)95.9
(2.9)

SOMm

97.9
(2.2)

93.9 (1.3)98.9
(1.0)

96.9
(3.3)

92.3 (2.9)98.5
(1.5)

95.2
(4.4)

91.1 (4.2)98.6
(1.7)

88.7
(12.1)

89.7 (6.7)97.1
(3.9)

K-means

aAUC: area under the receiver operating characteristic curve.
bSVDD: support vector data description.
cIncSVDD: incremental support vector data description.
dItalicized values indicates the top performing models.
eV-SVM: one-class support vector machine.
fNN: nearest neighbor.
gMST: minimum spanning tree.
hMOG: mixture of Gaussian.
iMCD: minimum covariance determinant.
jK-NN: K-nearest neighbor.
kLOF: local outlier factor.
lPCA: principal component analysis.

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 21https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


mSOM: self-organizing maps.

Unsupervised Methods

Two density-based unsupervised models were tested and
evaluated on the same set of data as used in the one-class
classifiers: LOF and COF. The average AUC, specificity, and
F1-score were computed after 20 runs. The best performing
thresholds for all the infection cases along with the optimal
value of k (number of neighbors) are given in Table 8. As can
be seen from the table, both the LOF and the COF achieved
better performance on the smoothed data set as compared with
its raw version. In all the infection cases, LOF performed better
than COF. This is mainly because of the characteristics of the
data sets, which fulfill the LOF spherical assumption of neighbor
distribution. Considering the average F1-score across all the
infection cases, LOF achieved 74.7% on the raw daily data,
91.1% on the smoothed daily data, and 72.7% on the hourly

data, whereas COF achieved 71.9% on the raw daily data, 85.8%
on the smoothed daily data, and 68.9% on the hourly data.
However, compared with the one-class classifier, it suffers from
performance degradation mainly because the data are not
distributed uniformly, where some regions may contain high
density and others might be sparse. However, the region of
sparse density does not always signify anomalies (infection
incidence). For example, an individual patient on certain days
might prefer to take little insulin compared with most of the
days and perform heavy physical activity to replace their insulin
needs. This scenario could generate an outlier, a small ratio of
insulin-to-carbohydrate, which will be considered and detected
as outliers by unsupervised models. A detailed score plot of
each model for the different infection cases can be found in
Multimedia Appendix 3.
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Table 8. Average area under the receiver operating characteristic curve, specificity, and F1-score for both with and without smoothed versions of the
data. The parameters kd and kh represent the optimal number of nearest neighbors for the daily and hourly cases, respectively.

Frequencies, density-based methods

4th case of infection
(kd=30, kh=240)

3rd case of infection (kd=30,
kh=240)

2nd case of infection (kd=30,
kh=240)

1st case of infection (kd=30,
kh=240)

Models
(threshold)

Pre-pro

F1SpecificAUCaF1SpecificAUCaF1SpecificAUCaF1SpecificAUCa

Daily

75.810098.270.166.792.167.410090.085.650.075.0LOFb

(T1=2.4,
T2=1.2,
T3=1.45,

T4=1.8)c

Without
filter

71.810096.767.666.775.275.810097.472.666.782.1COFd

(T1=1.4,
T2=1.3,
T3=1.4,
T4=1.4)

94.710099.910010010085.410099.284.110099.0LOFb

(T1=1.7,
T2=1.6,
T3=1.95,
T4=2.2)

With fil-
ter

10010010088.810099.577.610097.976.610097.6COFd(T1=1.3,
T2=1.3,
T3=1.8,
T4=1.8)

Hourly

71.172.685.275.091.494.370.210095.574.686.098.0LOFb

(T1=1.4,
T2=1.3,
T3=1.35,
T4=1.5)

63.782.282.674.682.790.362.566.077.074.688.492.4COFd

(T1=1.2,
T2=1.1, T3=,
T4=1.1)

aAUC: area under the receiver operating characteristic curve.
bLOF: local outlier factor.
cTk: threshold for the kth month.
dCOF: connectivity-based outlier factor.

Computational Time

Computational time is the amount of time a particular model
needs to learn and execute a given task [12]. It can be regarded
as one of the best performance indicators for real-time systems.
For a real-time application, an optimal model is the one that
achieves superior detection performance with small training
and testing time. Depending on the application, sometimes
models can be trained offline, which makes the training time
less important [12]. In this regard, the computational times of
all the models were estimated and compared with each other.
The computational time was measured for different sample sizes

of the training and testing data sets. The sample size of the
training and testing data includes 240, 480, 720, 960, 1200,
1440, 1680, 1920, 2160, 2400, 2640, and 2880 sample objects
(data points) each. The required computational time for both
training and testing each model is depicted in Figures 5 and 6.
The figures demonstrate a rough estimation of the computational
time, where each model learns the data set and classifies the
sample objects. During the training phase, NN, SVDD, and
SOM took considerable time. For a training sample size of 2880
objects, NN requires 296 times, SVDD requires 206 times, and
SOM requires 42 times the time taken by K-NN on the same
sample size. Generally, as the number of sample objects
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increases, these models require much more time. However,
K-means, Gaussian families, LOF, MST, K-NN, V-SVM, PCA,
auto-encoder, and incSVDD took less time. These models took
almost constant time even when the number of samples

increased. During the testing phase, only the LOF took
considerable time compared with the other models, as can be
seen in Figure 6.

Figure 5. Plot of models’ average computational time for the training phase. The x-axis depicts the sample size, and each label stands for total sample
size divided by 24. The y-axis depicts the computational time required by each model. Gauss: Gaussian; IncSVDD: incremental support vector data
description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD: minimum covariance determinant; MOG: mixture of Gaussian; MST: minimum
spanning tree; NN: nearest neighbor; NParzen: naïve Parzen; PCA: principal component analysis; SOM: self-organizing maps; SVDD: support vector
data description; V-SVM: one-class support vector machine.
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Figure 6. Plot of models’ average computational time for the testing phase. The x-axis depicts the sample size, and each label stands for total sample
size divided by 24. The y-axis depicts the computational time required by each model. Gauss: Gaussian; IncSVDD: incremental support vector data
description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD Gauss: Gaussian: SOM: self-organizing maps; MOG: mixture of Gaussian;
MST: minimum spanning tree; NN: nearest neighbor; NParzen: naïve Parzen; PCA: principal component analysis; SVDD: support vector data description;
V-SVM: one-class support vector machine.

Discussion

Principal Findings
Anomaly or novelty detection problem has been widely used
in various applications including machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnostics and monitoring, cyber-intrusion
detection, and others [1-3]. In applications related to health and
medical diagnostics and monitoring, the anomaly detection
problem has been used to detect and identify the abnormal health

state of an individual, for example, detecting abnormal patterns
of heartbeat recorded using an electrocardiogram [1,51-54]. The
omnipresence of various physiological sensors has facilitated
circumstances for individuals to easily self-record health-related
events and data for the purpose of self-informatics and
management [55]. Currently, people are generating huge
amounts of data on a daily basis that can contribute to both
individual and public health purposes [54]. To this end, people
with diabetes are not an exception, generating rich data in both
quality and quantity, which is expected to further improve with
advances in diabetes technologies. These data can provide
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valuable information if processed with the right tools and
methodology, and in this regard, particular instance includes
detecting novel or anomalous data points for various purposes.
The availability of labeled data constrains the choice of methods
in the anomaly detection problem [3,9-11]. Supervised anomaly
detection methods are impractical for applications such as
detecting infection incidences in people with type 1 diabetes
for a number of reasons [10,12]. Blood glucose dynamics are
affected by various other factors apart from infection incidences
[19,56,57], and characterization of infection-induced anomalies
(abnormal class) from the normal class [13] is a challenging
task because of the following reasons:

1. There are no well-defined boundaries regarding how
different pathogens affect various key parameters of blood
glucose dynamics, including blood glucose levels, insulin
injections, carbohydrate ingestions, physical activity or
exercise load, and others. This results in poor boundary
demarcation between the normal and abnormal classes.

2. Class boundaries defined for a single pathogen might not
work for the other pathogens because the effect of different
pathogens on the blood glucose dynamics could be different.

3. It is expensive and time consuming to collect
infection-related data to explore and characterize
pathogen-specific class boundaries. This results in
ill-defined class boundaries even for an infection related to
a single pathogen.

4. The degree of effect of the same pathogens on the blood
glucose dynamics could differ between different individuals
because of the difference in individual immunity, which
further complicates the characterization task.

5. Lack of sufficient sample size for both the abnormal and
the normal classes results in poor training and testing data
sample size or imbalanced class problems.

Given these challenges, the best possible approach is to identify
methods that can learn from the normal health state of an
individual and classify abnormalities relying on the boundaries
learnt from the normal health state, which is a one-class
classifier approach. This definitely reduces the challenge
because it only requires the characterization of what is believed
to be a normal health state. For instance, assume a health
diagnostic and monitoring system that detects health changes
in an individual by tracking the individual’s physiological
parameters, where the current health status is examined based
on set of parameters, and raises a notification alarm when the
individual health deteriorates [12]. In such a system, it becomes
feasible to rely on a method that can be trained using only the
regular or normal day measurements (target days) so as to detect
deviation from normality [12,14]. Another possible alternative
approach is to identify a method that does not require any
characterization and labeling of classes, which is unsupervised
methods [7]. Accordingly, considering the previously mentioned
challenges, one-class classifiers and unsupervised models were
proposed for detecting infection incidence in people with type
1 diabetes. The objective was to develop a personalized health
model that can automatically detect the incidence of infection
in people with type 1 diabetes using blood glucose levels and
insulin-to-carbohydrate ratio as input variables. The model is
expected to detect any deviations from the norm as a result of

infection incidences considering blood glucose level
(hyperglycemia incidences) coupled with unusual changes in
the insulin-to-carbohydrate ratio, that is, frequent insulin
injections and unusual reduction in the amount of carbohydrate
intake [19]. A personalized health model based on one-class
classifiers and unsupervised methods was tested using blood
glucose levels and the insulin-to-carbohydrate ratio as a bivariate
input. The result demonstrated the potential of the proposed
approach, which achieved excellent performance in describing
the data set, that is, detecting infection days from the regular or
normal days, and, in particular, the boundary and domain-based
method performed better. Among the respective group, particular
models such as V-SVM, K-NN, and K-means achieved excellent
performance in all the sample sizes and infection cases.
However, the unsupervised approaches suffer performance
degradation compared with the one-class classifier mainly
because of the atypical nature of the data, which are not
distributed uniformly, where some regions may contain high
density and others might be sparse (Multimedia Appendix 2).
There are rare events (sparse region) of blood glucose dynamics
that are a normal response; however, the unsupervised methods
can still detect and flag false alarms including the following:

1. Carbohydrate action: a situation in which the ratio of
insulin-to-carbohydrate is small and the blood glucose levels
are high (hyperglycemia), Carb Action-Quadrant 1 in
Figure 7. This is a normal response to blood glucose
dynamics as consumption of more carbohydrates and less
insulin intake can derive blood glucose dynamics into the
hyperglycemia region (high blood glucose levels) if there
is no physical activity session. A typical example of this
particular situation is holiday seasons, where people
consume too many carbohydrates.

2. Physical activity action: despite a small ratio of
insulin-to-carbohydrate, the blood glucose levels still drop
to low levels (hypoglycemia), PA Action-Quadrant 2 in
Figure 7. Normally, a small ratio of insulin-to-carbohydrate
signifies that the patient consumed more carbohydrates and
injected less insulin, which normally derives the blood
glucose dynamics into the hyperglycemia region. However,
despite taking more carbohydrates and less insulin, a
rigorous physical exercise can still derive the blood glucose
dynamics into the hypoglycemia region. Therefore, this is
a normal response of blood glucose dynamics as the action
of physical activity or exercise can derive the patient into
hypoglycemic regions even if the patient consumes more
carbohydrates. For example, an individual patient on certain
days might prefer to take little insulin as compared with
most of the days and perform heavy physical activity to
replace their insulin needs. This scenario could generate an
outlier, a small ratio of insulin-to-carbohydrate, which will
be considered and detected as anomalies by the
unsupervised models. However, this could be mitigated by
incorporating physical activity data as an input variable.

3. Insulin action: the ratio of insulin-to-carbohydrate is large,
that is, high insulin intake and low carbohydrate
consumption, and blood glucose levels are low
(hypoglycemia), Insulin Action-Quadrant 3 in Figure 7.
This is a normal response to blood glucose dynamics as
administration of high insulin with little carbohydrate
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consumption can derive the blood glucose dynamics into the hypoglycemic region.

Figure 7. Quadrants of wellness in people with type 1 diabetes. The figure depicts the 4 possible scenarios of different parameters: carbohydrate action,
insulin action, physical activity action, and abnormality because of metabolic change such as infection and stress. BG: blood glucose; PA: physical
activity.

The drawback of unsupervised methods is that they do not have
any mechanism to handle rare events even if the events are
normal. This is mainly because unsupervised methods define
an anomaly on the basis of the entire data set. However, the
one-class classifier can learn and handle such scenarios
appropriately if presented during the training phase. This is
mainly because one-class classifiers produce a reference
description based on the available normal (target) data set,
including the rare events. With regard to the one-class classifiers,
the boundary and domain-based method achieved a better
description of the data set compared with the density and
reconstruction-based methods, mainly because of the ability of
such models to handle the atypical nature of the data [12].
Detectability of the infection incidence is directly related to the
extent and degree of the effect it induces on the blood glucose
dynamics. The type of pathogen, individual’s immunity, and
hormones involved could play a role in determining the degree
of severity in this regard [19,24,58-62]. To this end, the results
demonstrated that the models were capable of detecting all the
infection incidences that can significantly alter the blood glucose
dynamics, such as influenza. Moreover, infection incidence that
had a moderate effect on the blood glucose dynamics, such as
mild common cold without fever, was also detected. However,
as expected, infection incidences that had almost little effect on
the blood glucose dynamics, such as light common cold without
fever, as reported by the individual patient, were not detected.
Regarding the computational time, NN, SVDD, and SOM took
considerable training time, which typically increased as the
number of sample objects increased. Moreover, compared with
the other models, only LOF and COF took considerable testing
time.

Comparative Analysis of the Methods
Selecting the proper model for implementation in a real-world
setting requires considering different characteristics of the

model. This includes typical model characteristics such as
performance in limited training sample size, robustness to
outliers in the training data, required training and testing time,
and complexity of the model (in terms of the number of model
parameters).

Performance and Sample Size
The sample size, N, is the number of sample objects used during
the training phase and highly affects the generalization power
of the model [12,13]. Models trained with small sample sizes
often fail to produce satisfactory descriptions mainly associated
with the presence of large variance in the sample objects
[3,12,13,63]. To this end, the results indicate that most of the
models fail to make good descriptions with a 1-month (30
objects) data set, mainly with the daily raw data set, as shown
in Figure 8. The figure depicts the average performance of each
model across all the infection cases over the 1- and 4-month
sample sizes. Specifically, MST, Gaussian families, SOM, and
auto-encoders require a considerable amount of training sample
objects to better describe the data. There is some exception, for
instance V-SVM, which produces a satisfactory description of
the 1-month data sets in all the infection cases and data
granularity. Models such as NN and PCA produced the worst
description in most cases. As the number of training sample
objects increased, all the models improved and produced a
comparable description of the data. As a rule of thumb, for the
daily scenario, a 3-month training sample (90 sample objects)
produces a good description of the data, which can be considered
for real-world applications. Moreover, if smoothing is
considered, a 1-month sample size produces better description
than the 4-month sample size without smoothing, as shown in
Figure 8. However, for the hourly scenario, a 1-month training
sample object produces a comparable description and anything
more than this size will be enough.
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Figure 8. Average performance (F1-score) of each model across all the infection cases. AE: auto-encoder; Gauss: Gaussian; IncSVDD: incremental
support vector data description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD: minimum covariance determinant; MOG: mixture of
Gaussian; MST: minimum spanning tree; NN: nearest neighbor; NP: naïve Parzen; PCA: principal component analysis; SOM: self-organizing maps;
SVDD: support vector data description; V-SVM: one-class support vector machine.

Computational Time
For real-time applications, the time a model takes to learn and
classify the sample object is essential in model selection. Table
9 depicts the rough estimation of average training and testing
time required by different classifiers, both the one-class
classifiers and the unsupervised models, based on 2880 training
and testing sample objects each. Most of the models, as shown
in Figures 5 and 6 and Table 9, require reasonable training and
testing time, except NN, SVDD, and SOM, which took a

considerably longer time. However, it is possible that in some
cases models can be trained offline, which makes the training
time less important. With regard to the testing time, most of the
models executed the classification task in a reasonable time
except COF and one class classifier version of LOF, which
consume considerable time to classify the 2880 objects. The
computational time in these particular models grows
exponentially as the sample size increases, which makes them
resource demanding in a big data setting.
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Table 9. Rough estimation of average training and testing time required by the different classifiers.

Testing time, mean (SD)Training time, mean (SD)Methods

One-class classifiers

0.008 (0.002)105.2 (2.03)SVDDa

2.41 (0.83)0.05 (0.16)IncSVDDb

0.0032 (0.0010)0.0047 (0.0014)K-means

0.0032 (0.0012)0.0055 (0.0032)Gaussian

0.0036 (0.0011)0.076 (0.018)MOGc

0.0034 (0.0015)0.27 (0.075)MCDd Gaussian

0.0033 (0.00087)21.62 (5.91)SOMe

0.52 (0.12)0.51 (0.11)K-NNf

0.21 (0.052)2.02 (0.41)Parzen

0.40 (0.10)4.02 (0.82)Naïve Parzen

1198.05 (323.07)1.15 (0.28)LOFg

0.18 (0.024)151.34 (22.52)NNh

1.24 (0.19)2.39 (0.31)MSTi

0.0031 (0.00086)0.046 (0.20)PCAj

0.017 (0.0034)0.65 (0.094)Auto-encoder

0.035 (0.0066)0.32 (0.024)V-SVMk

Unsupervised

0.2 (0.0)N/AmLOFl

82.8 (1.5)N/ACOFn

aSVDD: support vector data description.
bIncSVDD: incremental support vector data description.
cMOG: mixture of Gaussian.
dMCD: minimum covariance determinant.
eSOM: self-organizing maps.
fK-NN: K-nearest neighbor.
gLOF: local outlier factor.
hNN: nearest neighbor.
iMST: minimum spanning tree.
jPCA: principal component analysis.
kV-SVM: one-class support vector machine.
lLOF: local outlier factor.
mN/A: not applicable.
nCOF: connectivity-based outlier factor.

Robustness to Outliers in the Training Data Set
The presence of outliers in the training data set could
significantly affect the model’s generalization ability. Outlier
objects are samples that exhibit different characteristics
compared with the rest of the objects in the data set [8,63]. For
instance, an individual might forget a previous infection incident
and could label these days as a regular or normal period during
self-reporting, which could end up being used as target data sets
for training. Another important example could be error recorded

during data registration, that is, carbohydrate, blood glucose
levels, and insulin registration. Such errors could occur during
the manual registration of carbohydrates, associated with
infusion set failures and other similar situations. In this scenario,
an individual could record lower or higher values incorrectly
affecting the input features, for example, ratio of
insulin-to-carbohydrate and blood glucose levels, resulting in
an outlier that could greatly affect the model’s generalization
ability. In this type of situation, a model’s sensitivity to outliers
in the training data is crucial to curb the influence of outliers
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on the accuracy of the description generated. To some extent,
a user-specified empirical rejection rate is incorporated in the
models to reduce the effect of outliers in the training data by
rejecting the most dissimilar objects from the description
generated. For example, a rejection rate of 1% on training data
sets implies that 1% of outliers in the training data set are
rejected. Nevertheless, the sensitivity of models to outliers in
the training data sets differs greatly between models. Among
the models, NN is regarded as the most sensitive model to
outliers in the training data set [12]. The presence of outliers in
the training data changes the shape of the description generated
by the model, forcing a larger portion of the feature space to be
accepted as the target class [10,12]. Furthermore, models that
rely on an estimation of the covariance matrix, for example,
Gaussian families, also suffer from the presence of outliers in
the training data sets [12,36]. However, when equipped with
regularization, Gaussian models can withstand such outliers.
Local density estimators such as Parzen can withstand outliers,
considering the fact that only the local density is affected [12].
Models that rely on prototype estimation, such as SOM and
K-means, are highly affected by the presence of outliers in the
training data set, which could force the estimated prototype to
be placed near or at the nontarget data set [2,12,13].
Nevertheless, boundary and domain-based method such as
SVDD and V-SVM and reconstruction-based method such as
auto-encoders are more or less insensitive to outliers and can
generate acceptable solutions [3,12,64].

Model Parameters and Associated Complexity
The parameters of a model can be either free or user defined.
These two parameters, free and user defined, provide insight
into how flexible the model is, how sensitive the model is to
overtraining, and how easy the model is to configure (simplicity)
[12,16]. Considering the number of these parameters, there exist
large variations among the models. For instance, NN does not
possess any free parameters; therefore, its performance
completely relies on the training data set [12]. This constraint
has limitations, mainly because training data that contain outliers
could ruin the model’s performance [12,15,16]. A model that
possess large number of free and user defined parameters is too
flexible and complex [12]. Regarding the user-defined
parameters, also known as hyper-parameters, a model equipped
with small number of parameters and preferably with intuitive
meaning are easy to configure. Setting up the user defined
parameters incorrectly can degrade the model’s performance
and selecting the proper values (optimization) becomes complex
and vague as the number of model parameters become too large.
One of the simplest models is Parzen density and NN, which
do not require the user to specify any parameters [3,12,13].
Some models, such as support vector families, require the user
to specify parameters that have intuitive meaning, for example,
the ratio of training objects to be rejected by the description
[12,65]. There are also models that are complex enough given
that the user is expected to specify many parameters, which are
not intuitive and require careful choice. Examples of such
models include SOM and auto-encoders, where the user is
expected to supply the number of neuron, hidden units, and
learning rate [10,12,37,66].

Practical Illustration and Area of Applications
For a real-world application, apart from the performance of the
model, it is important to consider two important aspects of the
data set, the time window of detection (data granularity) and
the required sample size. The time window or data granularity,
that is, hourly and daily, defines the frequency (continuity) of
computation one needs to conduct throughout the day to screen
the health status of the individual with type 1 diabetes. In an
hourly time window, one is expected to carry out the
computation at the end of each hour throughout the day.
However, in the daily time window, one needs to carry out one
aggregate computation at the end of the day. Decreasing the
time window (increasing the granularity of the data) enhances
early detections; however, at the coast of accuracy, for example,
more unwanted features (noise) in the data. The results
demonstrated that almost all the models produced fairly
comparable detection performances in both time windows.
Moreover, the required sample size determines the necessary
amount of data an individual with type 1 diabetes needs to
collect in advance before joining such an infection detection
system. Models that could generalize well with small sample
sizes could be preferred in a real-world application to enable
more people to join the system with ease. Generally, the results
demonstrated that the models require at least a sample size of
3-month data for the daily case and 2-month data for hourly
case to perform better. Automating the detection of infection
incidences among people with type 1 diabetes can deliver a
means to provide personalized decision support and learning
platforms for the individuals and, at the same time, can be used
to detect infectious disease outbreaks on a large scale through
spatio-temporal cluster detection [19,67,68]. Detailed
descriptions of these instances are given below:

1. A personalized decision support system and learning
platform relies on an individual’s self-recorded data to
provide relevant information in relation to decision making
to assist the individuals during crises [19,67,68]. Moreover,
it can also provide a learning platform concerning the extent
to which infection incidence affects the key parameters of
the blood glucose dynamics. Information regarding what
to expect at each stage of the course of infection could be
very important to the individuals [19]. During infection
incidences, various kinds of information could be vital for
an individual to properly manage blood glucose levels,
including time in range (blood glucose), to what extent is
the evolution of blood glucose affected during the course
of infection, to what extent does insulin sensitivity change,
and how much does the insulin-to-carbohydrate ratio shift,
that is, changes in insulin requirements for each gram of
carbohydrate intake.

2. A population-based early outbreak detection system relies
on self-recorded information from an individual with type
1 diabetes to detect individuals’ infection cases and, thereby,
detect a group of infected individuals on a spatio-temporal
basis. Such a system should collect individuals’self-recoded
data to a central server, analyze individuals’data on a timely
basis, identify and locate a cluster of people based on space
and time, and notify the responsible bodies if there is an
ongoing outbreak [19,67-71].
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Conclusions
Anomaly or novelty detection problem has been widely used
in various applications including machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnostics and monitoring, cyber-intrusion
detection, and others. In this study, we demonstrated the
applicability of one-class classifiers and unsupervised anomaly
detection methods for the purpose of detecting infection
incidences in people with type 1 diabetes. In general, the
proposed methods produced excellent performance in describing
the data set, and particularly the boundary and domain-based
method performed better. In contrast to the specific models,

V-SVM, K-NN, and K-means achieved better generalization in
describing the data set in all infection cases. Detecting the
incidence of infection in people with type 1 diabetes can provide
an opportunity to devise tailored services, that is, personalized
decision support and a learning platform for the individuals,
and can simultaneously be used for detecting potential public
health threats, that is, infectious disease outbreaks, on a
large-scale basis through a spatio-temporal cluster detection.
Generally, we foresee that the results presented could encourage
researchers to further examine the presented features along with
other additional features of self-recorded data, for example,
various CGM features and physical activity data, on a large-scale
basis.

Acknowledgments
The work presented in this paper is part of the project Electronic Disease Surveillance Monitoring Network (EDMON) system,
which is funded by the University of Tromsø–The Arctic University of Norway and National Library of Medicine Mechanistic
machine learning (grant number: LM012734) and is the PhD program of the first author, AW. The authors would like to extend
their sincere gratitude to all the participants of the study.

Authors' Contributions
The first author, AW, conceived the study, designed and performed the experiments, and wrote the manuscript. IK, EÅ, JI, DA,
and GH provided successive inputs and revised the manuscript. All authors approved the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Theoretical background of the methods.
[DOCX File , 73 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Detailed description of the models input features.
[DOCX File , 12076 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Score plot of the models for each patient year.
[DOCX File , 12308 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Model evaluations – performance of the models for each patient year.
[DOCX File , 62 KB-Multimedia Appendix 4]

References

1. Dunning T, Friedman E. In: Loukides M, editor. Practical Machine Learning: A New Look at Anomaly Detection. New
York, USA: O'Reilly Media Inc; 2014.

2. Agrawal S, Agrawal J. Survey on anomaly detection using data mining techniques. Procedia Comput Sci 2015;60:708-713
[FREE Full text] [doi: 10.1016/j.procs.2015.08.220]

3. Pimentel MA, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Sig Process 2014 Jun;99:215-249 [FREE
Full text] [doi: 10.1016/j.sigpro.2013.12.026]

4. Cohen G, Hilario M, Sax H, Hugonnet S, Pellegrini C, Geissbuhler A. An application of one-class support vector machine
to nosocomial infection detection. Stud Health Technol Inform 2004;107(Pt 1):716-720. [Medline: 15360906]

5. Cohen G, Sax H, Geissbuhler A. Novelty detection using one-class Parzen density estimator. An application to surveillance
of nosocomial infections. Stud Health Technol Inform 2008;136:21-26. [Medline: 18487702]

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 31https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app1.docx&filename=0586fae7c971eeed2f1dcf271c2844c0.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app1.docx&filename=0586fae7c971eeed2f1dcf271c2844c0.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app2.docx&filename=f1031176335c47b46ce172b5c77339b7.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app2.docx&filename=f1031176335c47b46ce172b5c77339b7.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app3.docx&filename=434df0a63953310f74f48fb8762dd7bb.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app3.docx&filename=434df0a63953310f74f48fb8762dd7bb.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app4.docx&filename=67767f5875c9dcf24e19b13d9b89d922.docx
https://jmir.org/api/download?alt_name=jmir_v22i8e18912_app4.docx&filename=67767f5875c9dcf24e19b13d9b89d922.docx
https://doi.org/10.1016/j.procs.2015.08.220
http://dx.doi.org/10.1016/j.procs.2015.08.220
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15360906&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18487702&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A. Learning from imbalanced data in surveillance of nosocomial
infection. Artif Intell Med 2006 May;37(1):7-18. [doi: 10.1016/j.artmed.2005.03.002] [Medline: 16233974]

7. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv 2009 Jul;41(3):1-58 [FREE Full
text] [doi: 10.1145/1541880.1541882]

8. Hawkins DM. Identification of Outliers. Netherlands: Springer; 1980.
9. Mehrotra KG, Mohan CK, Huang H. In: Subrahmanian VS, editor. Anomaly Detection Principles and Algorithms. Cham,

Switzerland: Springer International Publishing; 2017.
10. Khan SS, Madden MG. One-class classification: taxonomy of study and review of techniques. Knowl Eng Rev 2014 Jan

24;29(3):345-374 [FREE Full text] [doi: 10.1017/s026988891300043x]
11. Ding X, Li Y, Belatreche A, Maguire LP. An experimental evaluation of novelty detection methods. Neurocomputing 2014

Jul;135:313-327 [FREE Full text] [doi: 10.1016/j.neucom.2013.12.002]
12. Tax DM. One-Class Classification: Concept Learning in the Absence of Counter-Examples. South Holand: Technische

Universiteit Delft; 2002.
13. Irigoien I, Sierra B, Arenas C. Towards application of one-class classification methods to medical data. ScientificWorldJournal

2014;2014:730712 [FREE Full text] [doi: 10.1155/2014/730712] [Medline: 24778600]
14. Japkowicz N. Concept Learning in the Absence of Counterexamples: an Autoassociation-Based Approach to Classification.

Semantic Scholar. 1999. URL: https://www.semanticscholar.org/paper/
Concept-learning-in-the-absence-of-counterexamples%3A-Japkowicz-Hanson/03ed0a73d1f7a7b16505d6cb9c8bfbeeef7b19bb
[accessed 2020-07-23]

15. Juszczak P, Tax DM, Pe¸kalska E, Duin RP. Minimum spanning tree based one-class classifier. Neurocomputing 2009
Mar;72(7-9):1859-1869 [FREE Full text] [doi: 10.1016/j.neucom.2008.05.003]

16. Mazhelis O. One-class classifiers: a review and analysis of suitability in the context of mobile-masquerader detection. S
Afr Comput J 2006;2006(36):29-48 [FREE Full text]

17. Clark M. What is diabetes? In: Ogden J, editor. Understanding Diabetes. New Jersey, United States: John Wiley & Sons,
Ltd; Jan 20, 2004.

18. Ogurtsova K, da Rocha FJ, Huang Y, Linnenkamp U, Guariguata L, Cho N, et al. IDF diabetes atlas: global estimates for
the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017 Jun;128:40-50. [doi:
10.1016/j.diabres.2017.03.024] [Medline: 28437734]

19. Woldaregay A, Årsand E, Albers D, Launonen I, Hartvigsen G. Towards detecting infection incidences in people with type
1 diabetes using self-recorded data: a novel framework for a digital infectious disease detection mechanism. JMIR preprints
2020:- preprint [FREE Full text] [doi: 10.2196/preprints.18911]

20. Marcovecchio ML, Chiarelli F. The effects of acute and chronic stress on diabetes control. Sci Signal 2012 Oct 23;5(247):pt10.
[doi: 10.1126/scisignal.2003508] [Medline: 23092890]

21. Rayfield EJ, Ault MJ, Keusch GT, Brothers MJ, Nechemias C, Smith H. Infection and diabetes: the case for glucose control.
Am J Med 1982 Mar;72(3):439-450. [doi: 10.1016/0002-9343(82)90511-3] [Medline: 7036735]

22. Botsis T, Lai AM, Hripcsak G, Palmas W, Starren JB, Hartvigsen G. Proof of concept for the role of glycemic control in
the early detection of infections in diabetics. Health Informatics J 2012 Mar;18(1):26-35. [doi: 10.1177/1460458211428427]
[Medline: 22447875]

23. Botsis T, Hejlesen O, Bellika JG, Hartvigsen G. Blood Glucose Levels as an Indicator for the Early Detection of Infections
In Type-1 Diabetics. Faculty & Staff Insider - University of Washington. 2007. URL: http://faculty.washington.edu/lober/
www.isdsjournal.org/htdocs/articles/2025.pdf [accessed 2020-07-23]

24. Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 1995 Jan;98(1):75-84.
[doi: 10.1016/S0002-9343(99)80083-7] [Medline: 7825623]

25. Bosarge PL, Kerby JD. Stress-induced hyperglycemia: is it harmful following trauma? Adv Surg 2013;47:287-297. [doi:
10.1016/j.yasu.2013.03.002] [Medline: 24298857]

26. Kajbaf F, Mojtahedzadeh M, Abdollahi M. Mechanisms underlying stress-induced hyperglycemia in critically ill patients.
Therapy 2007 Jan;4(1):97-106 [FREE Full text] [doi: 10.2217/14750708.4.1.97]

27. Tax DM, Duin RP. Support vector data description. Mach Learn 2004 Jan;54(1):45-66 [FREE Full text] [doi:
10.1023/b:mach.0000008084.60811.49]

28. Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support Vector Method for Novelty Detection. NIPS
Proceedings. 1999. URL: https://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf [accessed
2020-07-23]

29. Tax DM, Duin RP. Support vector domain description. Pattern Recognit Lett 1999 Nov;20(11-13):1191-1199 [FREE Full
text] [doi: 10.1016/s0167-8655(99)00087-2]

30. Ridder DD, Tax DM, Duin, RP. An Experimental Comparison of One-Class Classification Methods. In: Proceedings of
the 4th Annual Conference of the Advanced School for Computing and Imaging. 1998 Presented at: Annual Conference
of the Advacned School for Computing and Imaging; September 29-October 4, 1998; Delft, Netherlands URL: https://www.
researchgate.net/publication/
282673032_An_experimental_comparison_of_classification_algorithm_performances_for_highly_imbalanced_datasets

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 32https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.artmed.2005.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16233974&dopt=Abstract
https://dl.acm.org/doi/10.1145/1541880.1541882
https://dl.acm.org/doi/10.1145/1541880.1541882
http://dx.doi.org/10.1145/1541880.1541882
https://doi.org/10.1017/S026988891300043X
http://dx.doi.org/10.1017/s026988891300043x
https://doi.org/10.1016/j.neucom.2013.12.002
http://dx.doi.org/10.1016/j.neucom.2013.12.002
https://doi.org/10.1155/2014/730712
http://dx.doi.org/10.1155/2014/730712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24778600&dopt=Abstract
https://www.semanticscholar.org/paper/Concept-learning-in-the-absence-of-counterexamples%3A-Japkowicz-Hanson/03ed0a73d1f7a7b16505d6cb9c8bfbeeef7b19bb
https://www.semanticscholar.org/paper/Concept-learning-in-the-absence-of-counterexamples%3A-Japkowicz-Hanson/03ed0a73d1f7a7b16505d6cb9c8bfbeeef7b19bb
https://doi.org/10.1016/j.neucom.2008.05.003
http://dx.doi.org/10.1016/j.neucom.2008.05.003
https://hdl.handle.net/10520/EJC28012
http://dx.doi.org/10.1016/j.diabres.2017.03.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28437734&dopt=Abstract
https://preprints.jmir.org/preprint/18911
http://dx.doi.org/10.2196/preprints.18911
http://dx.doi.org/10.1126/scisignal.2003508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23092890&dopt=Abstract
http://dx.doi.org/10.1016/0002-9343(82)90511-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7036735&dopt=Abstract
http://dx.doi.org/10.1177/1460458211428427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22447875&dopt=Abstract
http://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2025.pdf
http://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2025.pdf
http://dx.doi.org/10.1016/S0002-9343(99)80083-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7825623&dopt=Abstract
http://dx.doi.org/10.1016/j.yasu.2013.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24298857&dopt=Abstract
https://www.openaccessjournals.com/abstract/mechanisms-underlying-stressinduced-hyperglycemia-in-critically-ill-patients-9852.html
http://dx.doi.org/10.2217/14750708.4.1.97
https://doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1023/b:mach.0000008084.60811.49
https://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf
https://doi.org/10.1016/S0167-8655(99)00087-2
https://doi.org/10.1016/S0167-8655(99)00087-2
http://dx.doi.org/10.1016/s0167-8655(99)00087-2
https://www.researchgate.net/publication/282673032_An_experimental_comparison_of_classification_algorithm_performances_for_highly_imbalanced_datasets
https://www.researchgate.net/publication/282673032_An_experimental_comparison_of_classification_algorithm_performances_for_highly_imbalanced_datasets
https://www.researchgate.net/publication/282673032_An_experimental_comparison_of_classification_algorithm_performances_for_highly_imbalanced_datasets
http://www.w3.org/Style/XSL
http://www.renderx.com/


31. Breunig MM, Kriegel H, Ng RT, Sander J. LOF: identifying density-based local outliers. SIGMOD Rec 2000 Jun
1;29(2):93-104 [FREE Full text] [doi: 10.1145/335191.335388]

32. Tax D. Software. DDTools. Delft: Delft University of Technology; 2015. URL: https://www.tudelft.nl/ewi/over-de-faculteit/
afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-bioinformatics/data-and-software/
dd-tools [accessed 2019-02-10]

33. A Collection of Algorithms for Anomaly/Outlier Detection. Anomaly Detection Toolbox. 2016. URL: http://dsmi-lab-ntust.
github.io/AnomalyDetectionToolbox/ [accessed 2019-03-25]

34. Tang J, Chen Z, Fu AW, Cheung DW. Enhancing effectiveness of outlier detections for low density patterns. In: Advances
in Knowledge Discovery and Data Mining. New York, USA: Springer; 2002.

35. Duin R, Juszczak P, Paclik P, Pekalska E, De Ridder D, Tax DM. Software. Delft University of Technology. 2007. URL:
http://prtools.tudelft.nl/Guide/37Pages/software.html [accessed 2019-02-25]

36. Goldstein M, Uchida S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data.
PLoS One 2016;11(4):e0152173 [FREE Full text] [doi: 10.1371/journal.pone.0152173] [Medline: 27093601]

37. Swersky L, Marques H, Sander J, Campello RJ, Zimek A. On the Evaluation of Outlier Detection and One-Class Classification
Methods. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA). 2016 Presented at: DSAA'16;
October 17-19, 2016; Montreal, QC, Canada URL: https://doi.org/10.1109/DSAA.2016.8 [doi: 10.1109/dsaa.2016.8]

38. Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determinant estimator. Technometrics 1999
Aug;41(3):212-223 [FREE Full text] [doi: 10.1080/00401706.1999.10485670]

39. Parzen E. On estimation of a probability density function and mode. Ann Math Statist 1962 Sep;33(3):1065-1076 [FREE
Full text] [doi: 10.1214/aoms/1177704472]

40. Rasoulzadeh V, Erkus EC, Yogurt TA, Ulusoy I, Zergeroğlu SA. A comparative stationarity analysis of EEG signals. Ann
Oper Res 2016 Apr 26;258(1):133-157 [FREE Full text] [doi: 10.1007/s10479-016-2187-3]

41. Azami H, Mohammadi K, Bozorgtabar B. An improved signal segmentation using moving average and Savitzky-Golay
filter. J Signal Inf Process 2012;03(01):39-44. [doi: 10.4236/jsip.2012.31006]

42. Kandanaarachchi S, Muñoz MA, Hyndman RJ, Smith-Miles K. On normalization and algorithm selection for unsupervised
outlier detection. Data Min Knowl Disc 2019 Nov 21;34(2):309-354 [FREE Full text] [doi: 10.1007/s10618-019-00661-z]

43. Tax DM, Muller KA. A Consistency-based Model Selection for One-Class Classification. In: Proceedings of the 17th
International Conference on Pattern Recognition. 2004 Presented at: ICPR'04; August 26, 2004; Cambridge, UK. [doi:
10.1109/icpr.2004.1334542]

44. Maldonado S, Montecinos C. Robust classification of imbalanced data using one-class and two-class SVM-based
multiclassifiers. Intell Data Anal 2014 Jan 1;18(1):95-112. [doi: 10.3233/ida-130630]

45. Tharwat A. Classification assessment methods. Appl Comput Inf 2018 Aug:- epub ahead of print [FREE Full text] [doi:
10.1016/j.aci.2018.08.003]

46. Nguyen GH, Bouzerdoum A, Phung SL. Learning pattern classification tasks with imbalanced data sets. Pattern Recog
2009:- [FREE Full text] [doi: 10.5772/7544]

47. Hajizadeh S, Li Z, Dollevoet RP, Tax DM. Evaluating classification performance with only positive and unlabeled samples.
In: Fränti P, Brown G, Loog M, Escolano F, Pelillo M, editors. Structural, Syntactic, and Statistical Pattern Recognition:
Joint IAPR International Workshop. Berlin, Heidelberg: Springer; 2014.

48. Hajizadeh S, Núñez A, Tax DM. Semi-supervised rail defect detection from imbalanced image data. IFAC-PapersOnLine
2016;49(3):78-83 [FREE Full text] [doi: 10.1016/j.ifacol.2016.07.014]

49. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recog
1997 Jul;30(7):1145-1159 [FREE Full text] [doi: 10.1016/s0031-3203(96)00142-2]

50. McNamara LA, Martin S. Principles of epidemiology and public health. In: Long SS, Prober CG, Fischer M, editors.
Principles and Practice of Pediatric Infectious Diseases. Fifth Edition. New York, USA: Elsevier; 2018.

51. Zhu Y. Automatic detection of anomalies in blood glucose using a machine learning approach. J Commun Netw 2011
Apr;13(2):125-131 [FREE Full text] [doi: 10.1109/jcn.2011.6157411]

52. Zhu Y. Automatic Detection of Anomalies in Blood Glucose Using a Machine Learning Approach. In: International
Conference on Information Reuse & Integration. 2010 Presented at: IER'10; August 4-6, 2010; Las Vegas, NV, USA URL:
https://ieeexplore.ieee.org/document/5558959 [doi: 10.1109/jcn.2011.6157411]

53. Spinosa EJ, Carvalho AC. Support vector machines for novel class detection in Bioinformatics. Genet Mol Res 2005 Sep
30;4(3):608-615. [Medline: 16342046]

54. Lotze TH. Anomaly Detection in Time Series: Theoretical and Practical Improvements for Disease Outbreak Detection.
Digital Repository at the University of Maryland. 2009. URL: https://drum.lib.umd.edu/handle/1903/9857 [accessed
2020-07-23]

55. Tsui F, Espino JU, Dato VM, Gesteland PH, Hutman J, Wagner MM. Technical description of RODS: a real-time public
health surveillance system. J Am Med Inform Assoc 2003;10(5):399-408 [FREE Full text] [doi: 10.1197/jamia.M1345]
[Medline: 12807803]

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 33https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.1145/342009.335388
http://dx.doi.org/10.1145/335191.335388
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-bioinformatics/data-and-software/dd-tools
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-bioinformatics/data-and-software/dd-tools
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-bioinformatics/data-and-software/dd-tools
http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/
http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/
http://prtools.tudelft.nl/Guide/37Pages/software.html
http://dx.plos.org/10.1371/journal.pone.0152173
http://dx.doi.org/10.1371/journal.pone.0152173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27093601&dopt=Abstract
https://doi.org/10.1109/DSAA.2016.8
http://dx.doi.org/10.1109/dsaa.2016.8
https://doi.org/10.2307/1270566
http://dx.doi.org/10.1080/00401706.1999.10485670
https://www.jstor.org/stable/2237880?seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/2237880?seq=1#metadata_info_tab_contents
http://dx.doi.org/10.1214/aoms/1177704472
https://doi.org/10.1007/s10479-016-2187-3
http://dx.doi.org/10.1007/s10479-016-2187-3
http://dx.doi.org/10.4236/jsip.2012.31006
https://doi.org/10.1007/s10618-019-00661-z
http://dx.doi.org/10.1007/s10618-019-00661-z
http://dx.doi.org/10.1109/icpr.2004.1334542
http://dx.doi.org/10.3233/ida-130630
https://doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1016/j.aci.2018.08.003
https://www.intechopen.com/books/pattern-recognition/learning-pattern-classification-tasks-with-imbalanced-data-sets
http://dx.doi.org/10.5772/7544
https://doi.org/10.1016/j.ifacol.2016.07.014
http://dx.doi.org/10.1016/j.ifacol.2016.07.014
https://doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/s0031-3203(96)00142-2
https://doi.org/10.1109/JCN.2011.6157411
http://dx.doi.org/10.1109/jcn.2011.6157411
https://ieeexplore.ieee.org/document/5558959
http://dx.doi.org/10.1109/jcn.2011.6157411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16342046&dopt=Abstract
https://drum.lib.umd.edu/handle/1903/9857
http://europepmc.org/abstract/MED/12807803
http://dx.doi.org/10.1197/jamia.M1345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12807803&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


56. Woldaregay AZ, Årsand E, Botsis T, Albers D, Mamykina L, Hartvigsen G. Data-driven blood glucose pattern classification
and anomalies detection: machine-learning applications in type 1 diabetes. J Med Internet Res 2019 May 1;21(5):e11030
[FREE Full text] [doi: 10.2196/11030] [Medline: 31042157]

57. Oviedo S, Vehí J, Calm R, Armengol J. A review of personalized blood glucose prediction strategies for T1DM patients.
Int J Numer Method Biomed Eng 2017 Jun;33(6):---. [doi: 10.1002/cnm.2833] [Medline: 27644067]

58. Yki-Järvinen H, Sammalkorpi K, Koivisto VA, Nikkilä EA. Severity, duration, and mechanisms of insulin resistance during
acute infections. J Clin Endocrinol Metab 1989 Aug;69(2):317-323. [doi: 10.1210/jcem-69-2-317] [Medline: 2666428]

59. Rayfield EJ, Curnow RT, George DT, Beisel WR. Impaired carbohydrate metabolism during a mild viral illness. N Engl
J Med 1973 Sep 20;289(12):618-621. [doi: 10.1056/NEJM197309202891207] [Medline: 4198822]

60. McGuinness OP. Defective glucose homeostasis during infection. Annu Rev Nutr 2005;25:9-35. [doi:
10.1146/annurev.nutr.24.012003.132159] [Medline: 16011457]

61. Brealey D, Singer M. Hyperglycemia in critical illness: a review. J Diabetes Sci Technol 2009 Nov 1;3(6):1250-1260
[FREE Full text] [doi: 10.1177/193229680900300604] [Medline: 20144378]

62. Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab 2001
Dec;15(4):533-551. [doi: 10.1053/beem.2001.0168] [Medline: 11800522]

63. Tax DM, Duin RP. Characterizing One-Class Datasets. CiteSeerX. 2005. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.460.8322&rep=rep1&type=pdf [accessed 2019-07-10]

64. Wang D, Yeung DS, Tsang EC. Structured one-class classification. IEEE Trans Syst Man Cybern B Cybern 2006
Dec;36(6):1283-1295. [doi: 10.1109/tsmcb.2006.876189] [Medline: 17186805]

65. Janssens JH. Outlier Selection and One-Class Classification. Netherlands: Embedded Systems Institute, Tilburg University;
2013.

66. Wang B, Mao Z. One-class classifiers ensemble based anomaly detection scheme for process control systems. T I Meas
Control 2017 Sep 21;40(12):3466-3476 [FREE Full text] [doi: 10.1177/0142331217724508]

67. Samerski S. Individuals on alert: digital epidemiology and the individualization of surveillance. Life Sci Soc Policy 2018
Jun 14;14(1):13 [FREE Full text] [doi: 10.1186/s40504-018-0076-z] [Medline: 29900518]

68. Radin JM, Wineinger NE, Topol EJ, Steinhubl SR. Harnessing wearable device data to improve state-level real-time
surveillance of influenza-like illness in the USA: a population-based study. Lancet Digit Health 2020 Feb;2(2):e85-e93
[FREE Full text] [doi: 10.1016/s2589-7500(19)30222-5]

69. Woldaregay A, Årsand E, Giordanengo A, Albers D, Mamykina L, Botsis T, et al. EDMON-A Wireless Communication
Platform for a Real-time Infectious Disease Outbreak Detection System Using Self-recorded Data From People With Type
1 Diabetes. In: The 15th Scandinavian Conference on Health Informatics. 2017 Presented at: SHI'17; August 29, 2017;
Kristiansand, Norway URL: https://ep.liu.se/konferensartikel.aspx?series=ecp&issue=145&Article_No=3

70. Coucheron S, Woldaregay AZ, Årsand E, Botsis T, Hartvigsen G. EDMON - A System Architecture for Real-Time Infection
Monitoring and Outbreak Detection Based on Self-Recorded Data from People with Type 1 Diabetes: System Design and
Prototype Implementation. In: The 17th Scandinavian Conference on Health Informatics. 2019 Presented at: CHI'19;
November 12-13, 2019; Oslo, Norway URL: https://ep.liu.se/ecp/161/007/ecp19161007.pdf

71. Yeng PK, Woldaregay AZ, Solvoll T, Hartvigsen G. Cluster detection mechanisms for syndromic surveillance systems:
systematic review and framework development. JMIR Public Health Surveill 2020 May 26;6(2):e11512 [FREE Full text]
[doi: 10.2196/11512] [Medline: 32357126]

Abbreviations
AUC: area under the receiver operating characteristic curve
COF: connectivity-based outlier factor
IncSVDD: incremental support vector data description
K-NN: K-nearest neighbor
LOF: local outlier factor
MCD: minimum covariance determinant
MOG: mixture of Gaussian
MST: minimum spanning tree
NN: nearest neighbor
PCA: principal component analysis
SOM: self-organizing maps
SVDD: support vector data description
ROC: receiver operating characteristic curve
V-SVM: one-class support vector machine

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 34https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2019/5/e11030/
http://dx.doi.org/10.2196/11030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31042157&dopt=Abstract
http://dx.doi.org/10.1002/cnm.2833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27644067&dopt=Abstract
http://dx.doi.org/10.1210/jcem-69-2-317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2666428&dopt=Abstract
http://dx.doi.org/10.1056/NEJM197309202891207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4198822&dopt=Abstract
http://dx.doi.org/10.1146/annurev.nutr.24.012003.132159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16011457&dopt=Abstract
http://europepmc.org/abstract/MED/20144378
http://dx.doi.org/10.1177/193229680900300604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20144378&dopt=Abstract
http://dx.doi.org/10.1053/beem.2001.0168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11800522&dopt=Abstract
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.8322&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.8322&rep=rep1&type=pdf
http://dx.doi.org/10.1109/tsmcb.2006.876189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17186805&dopt=Abstract
https://doi.org/10.1177/0142331217724508
http://dx.doi.org/10.1177/0142331217724508
http://europepmc.org/abstract/MED/29900518
http://dx.doi.org/10.1186/s40504-018-0076-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29900518&dopt=Abstract
https://doi.org/10.1016/S2589-7500(19)30222-5
http://dx.doi.org/10.1016/s2589-7500(19)30222-5
https://ep.liu.se/konferensartikel.aspx?series=ecp&issue=145&Article_No=3
https://ep.liu.se/ecp/161/007/ecp19161007.pdf
https://publichealth.jmir.org/2020/2/e11512/
http://dx.doi.org/10.2196/11512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32357126&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 26.03.20; peer-reviewed by S Sarbadhikari, M Nomali; comments to author 13.04.20; revised
version received 06.06.20; accepted 11.06.20; published 12.08.20

Please cite as:
Woldaregay AZ, Launonen IK, Albers D, Igual J, Årsand E, Hartvigsen G
A Novel Approach for Continuous Health Status Monitoring and Automatic Detection of Infection Incidences in People With Type 1
Diabetes Using Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease Detection Mechanism
J Med Internet Res 2020;22(8):e18912
URL: https://www.jmir.org/2020/8/e18912
doi: 10.2196/18912
PMID: 32784179

©Ashenafi Zebene Woldaregay, Ilkka Kalervo Launonen, David Albers, Jorge Igual, Eirik Årsand, Gunnar Hartvigsen. Originally
published in the Journal of Medical Internet Research (http://www.jmir.org), 12.08.2020. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of
Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on
http://www.jmir.org/, as well as this copyright and license information must be included.

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18912 | p. 35https://www.jmir.org/2020/8/e18912
(page number not for citation purposes)

Woldaregay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2020/8/e18912
http://dx.doi.org/10.2196/18912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32784179&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

