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Abstract

Background: Type 1 diabetes is a chronic condition of blood glucose metabolic disorder caused by a lack of insulin secretion
from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that
patients increasingly gather data about themselves, there are no solid findings that uncover the effect of infection incidences on
key parameters of blood glucose dynamics to support the effort toward developing a digital infectious disease detection system.

Objective: The study aims to retrospectively analyze the effect of infection incidence and pinpoint optimal parameters that can
effectively be used as input variables for developing an infection detection algorithm and to provide a general framework regarding
how a digital infectious disease detection system can be designed and developed using self-recorded data from people with type
1 diabetes as a secondary source of information.

Methods: We retrospectively analyzed high precision self-recorded data of 10 patient-years captured within the longitudinal
records of three people with type 1 diabetes. Obtaining such a rich and large data set from a large number of participants is
extremely expensive and difficult to acquire, if not impossible. The data set incorporates blood glucose, insulin, carbohydrate,
and self-reported events of infections. We investigated the temporal evolution and probability distribution of the key blood glucose
parameters within a specified timeframe (weekly, daily, and hourly).

Results: Our analysis demonstrated that upon infection incidence, there is a dramatic shift in the operating point of the individual
blood glucose dynamics in all the timeframes (weekly, daily, and hourly), which clearly violates the usual norm of blood glucose
dynamics. During regular or normal situations, higher insulin and reduced carbohydrate intake usually results in lower blood
glucose levels. However, in all infection cases as opposed to the regular or normal days, blood glucose levels were elevated for
a prolonged period despite higher insulin and reduced carbohydrates intake. For instance, compared with the preinfection and
postinfection weeks, on average, blood glucose levels were elevated by 6.1% and 16%, insulin (bolus) was increased by 42%
and 39.3%, and carbohydrate consumption was reduced by 19% and 28.1%, respectively.

Conclusions: We presented the effect of infection incidence on key parameters of blood glucose dynamics along with the
necessary framework to exploit the information for realizing a digital infectious disease detection system. The results demonstrated
that compared with regular or normal days, infection incidence substantially alters the norm of blood glucose dynamics, which
are quite significant changes that could possibly be detected through personalized modeling, for example, prediction models and
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anomaly detection algorithms. Generally, we foresee that these findings can benefit the efforts toward building next generation
digital infectious disease detection systems and provoke further thoughts in this challenging field.

(J Med Internet Res 2020;22(8):e18911) doi: 10.2196/18911
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Introduction

The incidence of infectious disease outbreaks can create panic
in society and is a threat to local and global health security.
Such outbreaks require immediate detection and appropriate
response during the initial phase of the incidence to reduce
fatality and save lives [1]. The timeliness of outbreak detection
defines the success of the appropriate response by the concerned
bodies. The state-of-the-art syndromic surveillance systems
have been improved compared with the traditional surveillance
system, which is generally passive and dependent on laboratory
confirmation [2]. Syndromic surveillance makes use of features
that come before diagnosis, including different activities
triggered by the onset of symptoms, such as Google search,
Twitter, school and work absenteeism, pharmacy drug sells,
and other sources as a signal of change in individual and
population health [2]. These signals are mainly acquired from
the secondary source of information, typically built for other
purposes. However, to keep up the pace with the rapidly
changing social and biological dynamics, novel outbreak
detection mechanisms are highly sought [2].

The advancement and omnipresence of smartphones, Internet
of Things (IoT) devices, wearables, and sensors have enabled
individuals to easily self-record health-related events often for
self-tracking or self-managing their disease [3,4]. The recent
movement known as quantified self and lifelogging is the result
of such technological advancement, where people collect various
kinds of health-related events and data for personal informatics
purposes, that is, self-surveillance and self-management [5-8].
To this end, people with diabetes are not an exception, where
they self-record detailed information as part of their
self-management, including blood glucose levels, diet and
insulin intake, physical activity, medication, and other
information [4,9,10]. Consequently, a huge amount of
self-recorded, personal health-related data is generated each
day that have great potential to be used as a secondary source
of information for other purposes such as digital epidemiology
[11,12]. According to recent reports, personal health data or
self-collected health-related data have provided an enormous
opportunity to enhance the possibility of detecting infection
incidence during the presymptomatic stage (improved sensitivity
and timeliness), specifically during the incubation period, where
most of the existing systems neglect from their process [13].

Type 1 diabetes is a chronic condition of blood glucose
metabolic disorder caused by lack of insulin secretion from
pancreas cells [14]. These patient groups are recommended to
maintain their blood glucose levels within a specified range
through self-management practice [14,15]. Blood glucose levels
are controlled by balancing insulin and meal intake along with

other contexts such as physical activity, medications, and others.
Blood glucose dynamics are affected by various factors that can
be categorized as common, individual, and unpredictable factors
[16]. These factors could be further categorized as
patient-controllable and patient-uncontrollable parameters [17].
Patient-controllable parameters incorporate factors on which
the patient has direct control and can roughly understand their
immediate effect on blood glucose dynamics. However,
patient-uncontrollable parameters include factors in which the
patient does not have direct control and faces a challenge to
understand their immediate effect on blood glucose levels. From
the patient perspective, usually patient-controllable parameters
induce reasonable deviations on blood glucose levels; however,
patient-uncontrollable parameters induce unreasonable blood
glucose deviations and usually differ from the usual norm of
blood glucose dynamics [18]. The total number of people living
with diabetes is increasing worldwide. According to recent
reports [14], there were 415 million people between the ages
of 20 and 79 years in 2015, and this value is projected to
increase by 54% in 2040. From this figure, 5% are believed to
have type 1 diabetes. In these patient groups, infection incidence
often results in complications and difficulties in controlling
blood glucose levels within the recommended range [19-21].
As a result, early detection of infection incidence among these
patient groups could provide a way to assist the individual and
at the same time can be used to realize a digital infectious
disease detection system.

Currently, with the advancement of technology, the need to
have a system that is able to detect infection incidence at the
presymptomatic stage is highly sought [13]. In this regard, there
are some previous investigations that have showcased the use
of self-recorded data from people with diabetes as surveillance
events (indicators) by uncovering the effect of infection
incidence on blood glucose levels and glycemic control in
real-life settings [18,22-36]. These studies reported the presence
of prolonged hyperglycemia episodes as a result of infection
incidence, thereby revealing the potential of self-recorded data
as a secondary source of information for realizing a digital
infectious disease detection system. For instance, Botsis et al
[22] conducted a proof-of-concept study based on daily glycemic
control data of 248 people with type 2 diabetes and concluded
that blood glucose levels, insulin dosage, diet (carbohydrate
consumption), physical activity, and other physiological
parameters could be used as potential event indicators of
infection incidence but calls for further investigations.
Furthermore, Botsis et al [18] also reported elevated glycated
hemoglobin (HbA1c) levels after infections regardless of tight
blood glucose control, which only settled down to normal levels
after the patient recovered. Moreover, other studies conducted
in hospital settings also reported similar results in this direction
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[37,38]. Despite reporting the potential of using self-recorded
data as a surveillance event indicator, none of these studies
demonstrated the extent to which each parameter is affected at
an individual level as a result of infection incidence. Therefore,
the purpose of this study was to retrospectively analyze the
effect of infection incidence at an individual level and pinpoint
optimal parameters that can effectively be used as input variables
for developing an infection detection algorithm, thereby
illustrating how these patient groups can assist in detecting
infectious disease outbreaks. Moreover, this study provides a
general framework regarding how a digital infectious disease
detection system can be designed using self-recorded data from
people with type 1 diabetes as a secondary source of
information. Furthermore, this sheds light on the possibility of
assisting the individual during such an incident. To this end,
we analyzed temporal trends and probability distributions of
different diabetes profile parameters (ie, blood glucose, insulin,
carbohydrate, and others) to uncover the effect of infection
incidence on the blood glucose dynamics, thereby identifying
parameters that can effectively be used as potential events
(indicators) of infection incidence. In addition, a framework is
presented depicting the necessary structure to properly exploit
self-recorded data from these patient groups to realize a real-time
digital infectious disease detection system. This paper is
structured as follows: the Methods section describes the
materials and methods used to analyze the data sets. The Results
section presents the results depicting the effect of acute infection
incidence in comparison with regular or normal situations. The
Discussion section presents the overall findings and proposes
a framework for designing and developing a real-time digital
infectious disease detection system using self-recorded data

from these patient groups. The final section of Discussion
presents our concluding remarks.

Methods

Materials
High precision self-recorded data of 10 patient years collected
from 3 real subjects (2 males and 1 female) with type 1 diabetes
were used. The patients were free from any other chronic or
other form of disease, except the self-reported acute infection
incidence throughout the entire data collection period. The data
sets consisted of blood glucose measurements (self-monitoring
of blood glucose [SMBG] and continuous glucose monitoring
[CGM]), injected insulin (basal and bolus), diet (carbohydrate
in grams), and self-reported events of acute infection. The
patients used different diabetes self-management technologies
throughout the data collection period to gather these data sets
including the Diabetes Diary app (Norwegian Centre for
E-health Research) [39], the Spike app [40], the xDrip with app,
Dexcom CGM, insulin pens, and insulin pumps, as shown in
Table 1. The data sets consist of both normal years, without any
significant acute infection incidence, and years with at least one
or more acute infection incidence. The normal (without
infection) patient years were used as a baseline to compare the
effect of all patient-controllable parameters and
patient-uncontrollable parameters against the self-reported
incidence of acute infection. The self-reported incidences of
acute infections were a case of influenza (flu) and mild and light
common cold without fever. All the experiments and analyses
were conducted using MATLAB version 2018a (Mathworks).

Table 1. Equipment used in diabetes self-management.

Self-managementPatients

DietInsulin administrationBGa

Carbohydrate in grams recorded in
the Diabetes Diary mobile app

Insulin pen (multiple bolus and one-time basal in the
morning) recorded in the Diabetes Diary mobile app

SMBGb—finger pricks recorded in the
Diabetes Diary mobile app and Dexcom

CGMc

Subject 1

Carbohydrate in grams recorded in
the Spike mobile app

Insulin pen (multiple bolus [Humalog] and one-time
basal [Toujeo] before bed) recorded in the Spike
mobile app

SMBG—finger pricks recorded in the
Spike mobile app and Dexcom G4 CGM

Subject 2

Carbohydrate in grams recorded in
pump information

Medtronic MinMed G640 insulin pump (basal rates
profile [Fiasp] and multiple bolus [Fiasp])

Enlite (Medtronic) CGM and Dexcom G4
CGM

Subject 3

aBG: blood glucose.
bSMBG: self-monitoring of blood glucose.
cCGM: continuous glucose monitoring.

Patient Characteristics
The participants were highly motivated individuals with type
1 diabetes who had advanced knowledge and understanding of
several diabetes-related technologies. Hence, the self-recorded

data can be regarded as highly precise and accurate. All the
participants had advanced knowledge of carbohydrate counting,
which can be considered as level 3 (advanced) [41]. The
long-term average HbA1c and characteristics of the participants
are given in Table 2.
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Table 2. Participants characteristics.

ValuesVariables

Gender, n

2Male

1Female

34 (13.2)Age (years), mean (SD)

Body weight (kg)

83Subject 1

77Subject 2

70Subject 3

HbA1c
a(%)

6.0Subject 1

7.3Subject 2

6.2Subject 3

Level 3 (advanced)Carbohydrate counting

aHbA1c: glycated hemoglobin.

Data Collection and Ethics
The study protocol has been submitted to the Norwegian
Regional Committees for Medical Health Research Ethics
Northern Norway (REK) for evaluation and was found exempted
from regional ethics review because it resides outside of the
scope of medical research (reference number: 108435). Written
consent was obtained and the participants donated the data sets.
All data from the participants were anonymized.

Approaches
We retrospectively assessed and analyzed the diabetes profile
(blood glucose, insulin, carbohydrate, and
insulin-to-carbohydrate ratio) to uncover the nature, size, and
shape of the infection-induced shift in the operating region of
the blood glucose dynamics. A data size of 10 patient years
incorporating blood glucose levels (SMBG and CGM), insulin
(bolus and basal), diet (carbohydrate in grams), and self-reported
events of acute infection was used. The analysis was performed
based on specified timeframes (weekly, daily, and hourly) to
reveal the effect of acute infection development on blood
glucose dynamics. The data set incorporates 5 normal patient
years without any infection incidence and 5 patient years each
with at least one case of self-reported incidence of acute
infection. Normal patient years were used as a baseline for
comparison purposes. We analyzed the temporal evolution and
probability distribution of blood glucose levels, injected insulin,
carbohydrate intake (grams), and insulin-to-carbohydrate ratio
within the stated timeframe. For the daily and hourly timeframes,
a moving-average filter and nonparametric density estimation
techniques, the kernel density estimator, were used to analyze
the trend and data distribution before, during, and after the
infection incidence. A moving-average filter with a window
size of 2 days was employed to remove fast timescale features
through smoothing. The window size includes N−1 observations
from the previous data points and the current data point, where
N is the window size. Generally, the window size of a

moving-average filter is determined based on complementary
issues of better smoothing and the cost of significant delay
(shift) incurred [42,43]. A small window size often generates
less delay (shift) but at the cost of more short-term features and
having a larger window size will smoothen the data in a better
manner but at the cost of significant delay in the timeliness of
detecting the infection incidence. Therefore, the window size
was determined based on these complementary issues, and more
importance was given to minimize the inherent delay (shift)
incurred due to the window size. To this end, window sizes of
1, 2, 3, and 4 days were applied and tested to choose the optimal
size of the window, and as a result, a window size of 2 days
was found to be satisfactory. The preinfection, infection, and
postinfection week analyses were carried out on the raw data
set based on the week’s daily average and SD of blood glucose
levels and daily sum and SD of insulin and carbohydrate. A
statistical boxplot was used to depict the comparison during
preinfection, infection, and postinfection weeks.

Data Resampling, Imputation, and Preprocessing
The features of the self-collected data from individuals with
type 1 diabetes are shown in Table 3. The raw data were
resampled at a uniform rate by assigning each measurement
into the nearest time-bin based on its time stamp. Generally,
whenever there is more than one measurement within each
time-bin, the measurements are combined into a single
measurement by either summing or averaging the elements. For
blood glucose levels (both CGM and SMBG), the measurements
were averaged into their respective sampling time-bins.
However, regarding carbohydrate consumption and insulin
injections, the sum of the elements in their respective sampling
time-bin was computed, as shown in Table 4. In each time-bin,
the effect of total insulin and total carbohydrate on the average
blood glucose level was considered. The resampled data were
further preprocessed using a moving-average filter with a 2-day
(48-hour) window size to capture only the important
patterns—long-term variation, while filtering and smoothing
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local and short-term variations. Moreover, for narrower time-bin
resampling, for example, an hour, there are more frequent zeros
of measurement, especially for carbohydrate and insulin
measurements, which poses a significant challenge to compute
the insulin-to-carbohydrate ratio as the ratio goes to infinity
given that the carbohydrate amount is zero. Therefore, in such

cases of a narrower time-bin, the ratio was computed only after
computing the moving-average value of insulin and carbohydrate
based on a window size of 48 hours. Regarding the missing
blood glucose values during the hourly computations, a cubic
spline interpolation was used to estimate the missing values.

Table 3. Self-collected user data.

Subject’s record variablesVariable names

UnitsDescription

mg/dLContinuous glucose reading

mg/dLSelf-management blood glucose reading

UnitsInjected insulin (bolus)

UnitsInjected insulin (basal)

GramsIngested carbohydrate
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Table 4. Data preprocessing.

Preprocessed variablesVariable name

UnitsDescription

mg/dLAverage continuous glucose reading

mg/dLAverage self-management blood glucose reading

UnitsSum injected insulin (bolus)

UnitsSum injected insulin (basal)

GramsSum ingested carbohydrate

Units/gramsRatio of insulin (bolus) to carbohydrate

Units/gramsRatio of insulin (basal) to carbohydrate

Kernel Density Estimation
Nonparametric density estimation is an alternative to the
parametric approach, which involves specifying a model using
a number of parameters that can be estimated through the
likelihood principle [44,45]. In this study, we used kernel density
estimation techniques [46-48] to estimate the probability
distribution of the diabetes profile key parameters to uncover
the deviation incurred by the acute infection incidence. In this
regard, both univariate and bivariate kernel density estimators
are used to assess and analyze the insulin-to-carbohydrate ratio

(univariate) and blood glucose levels along with the
insulin-to-carbohydrate ratio (bivariate), respectively. An
adaptive kernel density estimator with a Gaussian kernel was
used in both cases. For the univariate kernel density estimator
[49], bandwidth selection is based on the suggestion from Botev
et al [44], which is a data-driven and plug-in bandwidth selector
that does not use normal reference rules. For the bivariate
estimator, a rule-of-thumb bandwidth selection suggested by
Bowman et al [50,51] was used to determine the appropriate
bandwidth [52]. These computations are carried out based on
the procedures given in Textboxes 1 and 2.

Textbox 1. One-dimensional adaptive kernel density estimation.

Approach: one-dimensional adaptive kernel density estimation

• Given: time series data sets of the insulin-to-carbohydrate ratio X ε D and an adaptive kernel density estimator M – one – dimensional

• Remove the reported days of infection from the time series data sets D and form a new data set X ε Q

• Compute the one dimensional density based on the kernel density estimator M using D and Q

• Compare the distribution from M
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Textbox 2. Two-dimensional adaptive kernel density estimation.

Approach: two-dimensional adaptive kernel density estimation

• Given: time series data sets of blood glucose level and the insulin-to-carbohydrate ratio X, Y ε D and an adaptive kernel density estimator N –
two - dimensional

• Remove the reported days of infection from the time series data sets D and form a new data set X, Y ε Q

• Compute the two-dimensional density based on the kernel density estimator N using D and Q

• Compare the distribution from N

Results

Overview
The analysis was conducted based on an hourly, daily, and
weekly basis to reveal the deviations incurred due to the
infection incidence. A total of 10 patient years were analyzed,
and 5 of these years were found to include at least one incidence
of acute infection lasting around 1-2 weeks. The proposed
approach is designed to smooth out short-duration variations
and include the 2 major patient-controllable factors, insulin and
diet intake. Normal patient years were used to compare the
effect of all patient-controllable parameters and
patient-uncontrollable parameters against the self-reported
incidence of acute infection. The trend analysis for both the
normal patient years and patient years with acute infections
using the proposed approach is presented below along with the
nonparametric probability distribution. The weekly mean
deviations of key diabetes parameters (blood glucose, insulin,
and diet) during the preinfection, infection, and postinfection
weeks are given in Multimedia Appendix 1.

Trend Analysis

Trend Comparison for Normal Patient Years
During normal years when patients do not have any significant
illness or infections (Multimedia Appendix 2), the
insulin-to-carbohydrate ratio follows a similar trend in all the
subjects, where the insulin-to-carbohydrate ratio lies between
0.05 and 0.2. An elaborate analytical plot of a typical patient
year without infection incidence showing the phenomena is
depicted in Figures 1 and 2. A detailed analytical plot of the 5
patient years depicting the same phenomena can be found in
Multimedia Appendix 2. The insulin-to-carbohydrate ratio
conveys interesting information about the usual operating point
of the patient, depicting the necessary amount of insulin (bolus)
required for every gram of carbohydrate consumed to maintain
the blood glucose levels within a healthy range (typically
recommended to be between 70 and 180 mg/dL). As can be
seen from the yearlong trend analysis of the regular or normal
patient years (Multimedia Appendix 2), despite the presence of
various factors that are known to disturb blood glucose
dynamics, both patient-controllable parameters and
patient-uncontrollable parameters except infection incidence,
the insulin-to-carbohydrate ratio remains to be relatively stable.

Figure 1. The first patient year, where there is no incidence of acute infections. The figure depicts the daily variation of average blood glucose levels,
total insulin (bolus), total carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio
through these regular or normal days is between 0.05-0.2.
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Figure 2. The first patient year, where there is no incidence of acute infections. The figure depicts variation of average blood glucose levels, total
insulin (bolus), total carbohydrate, and total insulin-to-carbohydrate ratio during each hours of the day. The operating point of the patient’s
insulin-to-carbohydrate ratio through these regular or normal hours is between 0.05-0.2.

Trend Comparison of Patient Years With Acute Infection
The trend analysis of the key diabetes parameters, blood glucose,
insulin, and carbohydrate, during acute infection suggests that
there is a dramatic shift in the evolution of blood glucose,
insulin, and carbohydrate (for detailed information, see
Multimedia Appendices 1 and 3). Infection incidence brought
about a dramatic increase in blood glucose levels, insulin intake,
and reduction in carbohydrate consumption. The detailed
analysis and the shift incurred on a weekly, daily, and hourly
basis are presented in the following section.

Weekly Analysis
The weekly analysis of the patient years was conducted by
analyzing the deviation incurred on the key parameters of the
blood glucose dynamics during the infection week in comparison
with before and after the infection incidence. The raw data were
used to estimate the deviations incurred due to infection
incidence. The mean and SD of blood glucose levels, total
insulin (bolus), and total carbohydrate were computed and used
for comparison of the infection-induced deviations. As shown

in Figures 3-5 and Table 5, in all the infection cases, the weekly
analysis demonstrated that blood glucose levels were elevated
despite higher insulin injection and reduced carbohydrate
consumption. In all of these cases, it is clear that the incidence
of infection has brought unreasonable deviation, with respect
to the patient-controllable parameters, in the operation of the
overall blood glucose dynamics as compared with the usual
norm of the blood glucose dynamics. The presence of elevated
blood glucose levels in the infection week, regardless of the
high amount of insulin injections and lower carbohydrate
consumption, clearly violated the norm of the blood glucose
dynamics, where during normal situations the blood glucose
levels are expected to drop with high insulin and reduced
carbohydrate consumption. The fact that the blood glucose
remains elevated during the infection incidence despite higher
insulin injections and low carbohydrate consumption is highly
associated with the infection phenomenon, which enhances the
production of glucose and increased insulin resistance within
the body to deliver more energy for the body to fight the
pathogens. A more detailed description of the weekly analysis
can be found in Multimedia Appendix 1.
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Figure 3. Analysis of blood glucose levels during the preinfection week, infection week, and postinfection week based on the first case of infection
(flu). The asterisk shows the mean value, and the red line depicts the median value for the week.

Figure 4. Analysis of total insulin (bolus) intake during preinfection week, infection week, and postinfection week based on the first case of infection
(flu). The asterisk shows the mean value, and the red line depicts the median value for the week.
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Figure 5. Analysis of total carbohydrate (grams) intake during preinfection week, infection week, and postinfection week based on the first case of
infection (flu). The asterisk shows the mean value, and the red line depicts the median value for the week.

Table 5. Mean and standard deviation of blood glucose levels, total insulin (bolus), and total carbohydrate during the preinfection week, infection
week, and postinfection week.

Postinfection week, mean (SD)Infection week, mean (SD)Preinfection week, mean (SD)Parameters

The first case of infection (flu)

119.16 (7.39)141.95 (14.37)130.74 (16.89)BGa (mg/dL)

21.32 (4.61)35.30 (6.11)23.39 (4.91)Total insulin (bolus)

241.18 (37.63)178.80 (65.69)241.11 (57.27)Carbohydrate (grams)

The second case of infection (flu)

126.17 (11.70)155.36 (21.99)143.01 (19.53)BG (mg/dL)

25.36 (6.93)41.07 (9.44)28.07 (8.85)Total insulin (bolus)

214.57 (34.66)161.14 (58.43)190.14 (43.93)Carbohydrate (grams)

The third case of infection (flu)

134.18 (11.96)144.12 (20.30)136.93 (18.58)BG (mg/dL)

22.83 (3.86)31.50 (10.84)20.08 (5.44)Total insulin (bolus)

195.83 (42.59)144.83 (37.63)178.0 (45.87)Carbohydrate (grams)

The fourth case of infection (flu)

138.57 (19.83)161.34 (19.88)157.74 (31.12)BG (mg/dL)

29.29 (5.22)32.14 (7.01)24.43 (5.26)Total insulin (bolus)

226.07 (18.23)167.04 (44.94)199.06 (53.45)Carbohydrate (grams)

The fifth case of infection (flu)

122.87 (14.49)139.88 (15.54)135.21 (14.58)BG (mg/dL)

33.36 (7.94)40.37 (8.31)32.80 (4.59)Insulin (bolus)

18.68 (1.56)20.42 (2.06)19.20 (1.21)Insulin (basal)

52.46 (8.47)61.21 (8.26)52.33 (5.14)Total insulin

aBG: blood glucose.
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Blood Glucose Levels
In all these infection incidences, the individual blood glucose
levels remain elevated for a prolonged period of time despite
low carbohydrate consumption and increased insulin injections
as compared with the regular or normal days. Blood glucose
levels were elevated during the infection week as compared
with the preinfection and postinfection weeks.

• During the first case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 8.57% over the preinfection week and 19.12%
over the postinfection week, as shown in Table 5.

• During the second case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 8.63% over the preinfection week and 23.13%
over the postinfection week, as shown in Table 5.

• During the third case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 7.26% over the preinfection week and 7.41%
over the postinfection week, as shown in Table 5.

• During the fourth case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 2.28% over the preinfection week and 16.43%
over the postinfection week, as shown in Table 5.

• During the fifth case of infection, the overall mean
percentage increase in the infection week’s blood glucose
levels was 3.45% over the preinfection week and 13.84%
over the postinfection week, as shown in Table 5.

Insulin Intake
The comparison of infection week insulin injections with
preinfection and postinfection weeks revealed that there was a
dramatic increase in the amount of insulin intake during the
infection period.

• During the first case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 50.93% over the preinfection week and
65.59% over the postinfection week, as shown in Table 5.

• During the second case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 46.31% over the preinfection week and
61.94% over the postinfection week, as shown in Table 5.

• During the third case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 56.87% over the preinfection week and
37.98% over the postinfection week, as shown in Table 5.

• During the fourth case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 31.56% over the preinfection week and 9.7%
over the postinfection week, as shown in Table 5.

• During the fifth case of infection, the overall mean
percentage increase in the infection week’s insulin (bolus)
injection was 23.08% over the preinfection week and
21.01% over the postinfection week, as shown in Table 5.

Carbohydrate Consumption
Comparison of the amount of carbohydrate consumption during
the infection week with the preinfection and postinfection weeks

revealed that there was a significant reduction during the
infection period.

• During the first case of infection, the overall mean
percentage reduction in the infection week’s carbohydrate
consumption was 25.84% below the preinfection week and
25.87% below the postinfection week, as shown in Table
5.

• During the second case of infection, the overall mean
percentage reduction in the infection week’s carbohydrate
consumption was 15.25% below the preinfection week and
24.90% below the postinfection week, as shown in Table
5.

• During the third case of infection, the overall mean
percentage increase in the infection week’s carbohydrate
consumption was 18.63% below the preinfection week and
26.04% below the postinfection week, as shown in Table
5.

• During the fourth case of infection, the overall mean
percentage increase in the infection week’s carbohydrate
consumption was 16.09% below the preinfection week and
35.34% below the postinfection week, as shown in Table
5.

Insulin-to-Carbohydrate Ratio
The insulin-to-carbohydrate ratio defines the amount of insulin
a patient needs to take for every gram of carbohydrate
consumed. The value of the insulin-to-carbohydrate ratio usually
lies between 0.05 and 0.2 on normal occasions. However, it has
dramatically increased upon the incidence of infection.

• During the first case of infection, the overall mean
percentage increase in the infection week’s
insulin-to-carbohydrate ratio was around 125.84% above
the normal operating point of the patient, as shown in Table
5.

• During the second case of infection, the overall mean
percentage increase in the infection week’s
insulin-to-carbohydrate ratio was approximately 144.43%
above the normal operating point of the patient, as shown
in Table 5.

• During the first case of infection, the overall mean
percentage increase in the infection week’s
insulin-to-carbohydrate ratio was around 93.75% above the
normal operating point of the patient, as shown in Table 5.

• During the fourth case of infection, the overall mean
percentage increase in the infection week’s
insulin-to-carbohydrate ratio was approximately 70.84%
above the normal operating point of the patient, as shown
in Table 5.

Daily and Hourly Analysis
Hourly and daily analyses were conducted by analyzing the
deviations incurred on the key diabetes parameters, blood
glucose levels, insulin, carbohydrate, and the
insulin-to-carbohydrate ratio as a result of infection incidence
in contrast to the whole patient year. The comparison was carried
out based on the smoothed version of the data, that is, 2 days
window moving-average filter. Similar to the weekly analysis,
the infection-induced shift of the blood glucose dynamics, that
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is, higher glucose production and increased insulin resistance,
is clearly shown in both the daily and hourly analyses. As can
be seen in Figures 6-11, the insulin-to-carbohydrate ratio of the
patient has drastically shifted to a higher value to account for
the effect of increased glucose production and insulin resistance
(see Multimedia Appendix 3 for a detailed plot of the hourly

analysis in all the infection cases). In all of these cases, the
insulin-to-carbohydrate ratio increases from the usual values of
0.05 to 0.2 during the normal period to higher values reaching
0.6, depending on the degree of severity of the infection
incidence, type of pathogens involved, and the individual
immunity.

Figure 6. Daily analysis of the first infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and reach a top around 0.5 upon midinfection week.

Figure 7. Hourly analysis of the first infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and reach a top around 0.5 upon midinfection week.
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Figure 8. Daily analysis of the second infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and reach a top around 0.45 upon midinfection week.

Figure 9. Daily analysis of the third infection case (flu). The figure depicts variation of average blood glucose levels, total insulin (bolus), total
carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of the patient’s insulin-to-carbohydrate ratio had dramatically shifted
and raised above the regular or normal days and topped around 0.4 upon midinfection week.
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Figure 10. Daily analysis of the fourth infection case (mild common cold without fever, light common cold without fever, and flu). The figure depicts
variation of average blood glucose levels, total insulin (bolus), total carbohydrate, and total insulin-to-total carbohydrate ratio. The operating point of
the patient’s insulin-to-carbohydrate ratio had dramatically shifted and raised above the regular or normal days and reach a top around 0.28 upon
midinfection week. A light common cold without fever seems to not significantly affect the operating point.

Figure 11. Daily analysis of the fifth infection case (flu). The figure depicts variation of average blood glucose levels, total insulin including both bolus
and basal insulin, daily average rate of change of CGM and, absolute value of rate of change of CGM (computed based on CGM direction from the
pump information), percentage of basal and bolus per total insulin units. As can be seen, as a result of the ongoing infection incidence, there is clear
and dramatic rise in the amount of insulin, while blood glucose levels remain elevated.

Kernel Density Estimation–Probability Distribution
Kernel density was estimated to study and characterize the
nature, shape, and degree of severity of the deviations incurred
due to infection incidence by analyzing the probability
distribution of the individual key parameters of the blood
glucose dynamics. A univariate and bivariate kernel density
estimation based on the insulin-to-carbohydrate ratio and blood

glucose levels was carried out on the yearlong data, as shown
in Figures 12 and 13 (a detailed plot for all the infection cases,
both hourly and daily, can be found in Multimedia Appendix
1). As can be seen from the figures, the infection incidence has
brought a significant change in the probability distribution.
However, the nature, shape, and degree of outlierness depend
on the type of pathogen involved, severity of infection, and
individual immunity.
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Figure 12. Univariate kernel density estimation of a patient year using the daily insulin-to-carbohydrate ratio. As can be seen from the tail of the
distribution, during regular or normal days (the green shaded region), the yearly distribution of the patient’s insulin-to-carbohydrate ratio lies within
the values of 0.005 and 0.2. However, during infection incidence (the red shaded region), there is a clear deviation in the tail of the distribution, where
the values reaches around 0.58.

Figure 13. Bivariate kernel density estimation of a patient year using both the daily average blood glucose levels and insulin-to-carbohydrate ratio. As
can be seen from the bivariate distribution, during regular or normal days (the top light green figure), the distributions are concentrated around the high
density regions. However, during infection incidence (the lower figure), there is a clear bump far from the high density regions.

Discussion

Principal Findings
Presently, in relation to people’s mobility and travel, there is a
growing concern regarding an infectious disease outbreak. Such
an incident can be a menace to our global health security, which
calls for early detection and immediate response. Thus, there is
a growing need for new approaches and technologies to upgrade
the existing surveillance system for early detection of emerging
infectious diseases [1]. Existing disease surveillance systems
detect the incidence of outbreaks long after the incidence of the
first symptoms. Therefore, the purpose of this study was to

demonstrate how people with type 1 diabetes can assist in
outbreak detection and further to shed light upon the possibility
of assisting the individual during such an incident.

The advancement and omnipresence of smartphones, IoT
devices, wearables, and sensors have enabled individuals to
easily self-record health-related events often for self-tracking
or self-managing their disease [5,6,53]. People with diabetes
self-record detailed information including blood glucose levels,
diet and insulin intake, physical activity, medication, and other
parameters. The presence of such large self-recorded health data
presents an opportunity to be used as a secondary source of
information for other purposes such as digital epidemiology
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and decision support applications. According to recent reports,
the use of personal health information or self-collected data
could mitigate the possibility of detecting infection incidence
during the presymptomatic stage (improved sensitivity and
timeliness), specifically during the incubation period, of which
most of the current systems neglect from their process [13]. Our
findings demonstrated that upon infection incidence, there is a
dramatic shift in the operating point of the individual’s blood
glucose dynamics, which clearly violates the usual norm of
blood glucose dynamics. During regular or normal days, blood
glucose levels usually decrease when there is a significant
increase in insulin injection and reduction in carbohydrate
consumption. However, in all of the infection cases we analyzed,
compared with the preinfection and postinfection weeks, the
following were noticed:

• Blood glucose levels were elevated by an average of 6.1%
and 16% over the preinfection and postinfection weeks,
respectively.

• Insulin injection (bolus) increased by 42% and 39.3% over
preinfection and postinfection weeks, respectively.

• Carbohydrate consumption was reduced by 19% and 28.1%
compared with preinfection and postinfection weeks,
respectively.

• The insulin-to-carbohydrate ratio increased by 108.7% on
average in all cases.

In general, all of these findings confirm that during infection
incidence, blood glucose levels are elevated despite injecting
higher amounts of insulin and reduced carbohydrate
consumption. The identified changes are quite significant
anomalies compared with the regular or normal days and could
potentially be detected with a dedicated personalized
(individualized) computational health model. Various algorithms
that span from prediction models to anomaly detection
algorithms can be investigated to detect such infection-induced
changes in blood glucose dynamics. Apart from the potential
use of these findings in personalized digital infectious disease
detection systems, it could also be used for decision support in
self-management during infection and illness. As presented
earlier, during the course of infection, individuals with diabetes
usually struggle with severe hyperglycemia. Managing blood
glucose levels during infection incidence is not an easy task,
given the fact that it is caused by a mixed effect of both
patient-controllable and patient-uncontrollable parameters. The
patient can only estimate the disturbance caused by the amount
of carbohydrate consumption, insulin injection, and physical
activity load, which is not the case during infection incidence.
Apart from these known major factors, that is,
patient-controllable parameters, there is an underlying and
unknown disturbance caused by the patient’s uncontrollable
parameters, such as counterregulatory hormones (CRHs), as a
result of infection incidence. This unknown disturbance mainly
increases glucose production from the liver and reduces insulin
sensitivity. To this end, people with type 1 diabetes face a very
difficult challenge to estimate the necessary amount of insulin
for a given amount of carbohydrate consumption. In this regard,
providing real-time decision support could reduce the burden
during such a crisis. One possible approach could be
characterizing the effect of different pathogens on blood glucose

dynamics, mainly on insulin resistance and its sensitivity change
over the course of infection. However, a large set of
infection-related self-recorded data need to be analyzed for
investigating how each pathogen affects the key parameters of
blood glucose dynamics during the entire course of infection.
This requires collecting and analyzing infection-related data,
and estimating the overall changes each pathogen could bring
on insulin sensitivity during the course of infection. To this end,
the presented result reflects a promising result that can be geared
toward decision support during infection or illness. For example,
the change in insulin–to-carbohydrate ratio can be used to
provide general information related to each pathogen on what
to expect, such as the percentage of insulin resistance during
the first days, in the middle, and at the final days of the infection.

Infection-Induced Shift of Operating Point in Blood
Glucose Dynamics
During infection incidence, people with diabetes usually struggle
with severe hyperglycemia and critical hypoglycemia if not
properly managed. However, during regular or normal days,
the patient can manage the incidence of hyperglycemia, which
is mostly diet-induced, by properly controlling the
patient-controllable parameters, for example, amount of
carbohydrate consumption, insulin injection, and performing
balanced physical activity or exercise. Yet, during infection
incidence, it turns out to be very difficult to manage the
hyperglycemia incidence due to the fact that it is caused by a
mixed effect of both patient-controllable and
patient-uncontrollable parameters. The patient’s uncontrollable
parameters define the action of hormonal effects such as CRH
induced by either physiological stress or emotional stress. The
hormonal effect is two-sided, which is a higher glucose
production from the liver and inhibiting insulin production and
reducing sensitivity [54,55]. A detailed study conducted by
Waldhausl et al [56] demonstrated the significant effect of stress
hormones on the production of glucose and insulin resistance.
The study was conducted by infusing different stress hormones
to investigate the effect of exposure to these hormones on blood
glucose response [55]. The extent and degree of hyperglycemia
events and insulin resistance during infection incidence directly
correlate with the type of pathogen, the type of hormone
involved and the severity of the infection [37,38,55]. Generally,
the phenomenal effect of infection incidence on blood glucose
dynamics in people with diabetes can be simply described using
the following relationships:

Where φ is an insulin sensitivity factor, BG is the blood glucose
level, CH is the amount of carbohydrate consumption, IN is the
amount of insulin injection, PA is the amount of physical activity
session or exercise load, and CRH is the effect of CRHs. The
equation depicts the phenomena that occur during infection
incidence, where blood glucose levels are raised by the action
of both patient-controllable parameters (CH) and
patient-uncontrollable parameters (CRHs, such as cortisol and
adrenalin). Thus, consumption of any regular diet in an
individual can induce severe hyperglycemia due to the added
effect of glucose production from the liver as a result of the
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CRH effect [55]. For this reason, the patient is expected to
reduce the amount of carbohydrate intake to a certain extent to
optimally manage the hyperglycemia crises and at the same
time avoiding any critical hypoglycemia incidences (for more
information, see Multimedia Appendix 1). By the same token,
blood glucose levels can be lowered to euglycemia by the
patient-controllable parameters (insulin [IN] and physical
activity session or exercise load [PA]). However, due to the
change in insulin sensitivity, the action of insulin is reduced (φ
is affected by infection incidence), and the patient is expected
to deliver more insulin injections to counterbalance the effect
of insulin resistance [57]. According to our results, all these
scenarios are reflected in the individual’s blood glucose dynamic
infected with flu (influenza), where a dynamic shift occurred
from the usual operating point of the blood glucose dynamics.
There are elevated blood glucose levels, despite injecting a
higher amount of insulin and consuming less carbohydrate than
the regular or normal days. These characteristics are clearly
demonstrated on the shift incurred on the individual’s
insulin–to-carbohydrate ratio as compared with the regular or
normal days. Therefore, blood glucose, amount of injected
insulin, diet intake, and insulin-to-carbohydrate ratio and other
supporting physiological parameters such as body temperature
and blood pressure can be exploited to develop a personalized
health model for detecting infection incidence among people
with type 1 diabetes. Given the similarity, this result can also
be translated to other types of diabetes, such as people with type
2 diabetes. It is worth mentioning that apart from infection
incidence, other factors such as emotional stress could also
result in similar variable episodes of elevated blood glucose
levels [17]. This can obviously impact the detection performance
of the model. However, our results based on yearlong patients’
data demonstrated that the use of carbohydrate consumption,
insulin injections, and insulin-to-carbohydrate ratio along with
the blood glucose could solve this confounding nature.
Moreover, acute emotional stress, other than the chronic ones,
might have less influence on one’s meal appetite compared with
infection incidence to skew the insulin-to-carbohydrate ratio
[17].

Relevance of the Data
The informational values of the data, availability of the data,
and cost of the data are the 3 key metrics necessary to evaluate
the relevance of new surveillance data for a digital infectious
disease detection system [58]. The informational value of the
data assesses how informative the data are to facilitate the
detection or characterization of infectious disease outbreaks. In
this regard, the surveillance data must clearly indicate the
absence or presence of infections either on an individual or
population level or both in a timely manner. Furthermore, the
rate of false alarms derived from the data is an important factor
that dictates the acceptability of the surveillance data, which is
in turn governed by the signal-to-noise ratio defining the signal’s
strength depicting the infection period as compared to the regular
or normal period (baseline data) [58]. In this regard, our results
demonstrated that the infection-induced signal exhibits high
discriminative power from the baseline (normal or regular)
patterns. The availability of surveillance data is another crucial
indicator for screening potential types of data, which needs to

be addressed [58]. In this regard, given the widespread and
ubiquitous nature of mobile apps, and different sensors, people
with type 1 diabetes collect far more data than ever. For
example, many people with type 1 diabetes use continuous
glucose monitors and insulin pumps, which are predicted to
grow further in terms of both quality and quantity of data in the
coming years. The most crucial challenge in this direction
includes issues related to security, privacy, and confidentiality
of user data if there is a necessity to collect user data into a
central server than deploying the detection algorithm on the
user’s own mobile device. The cost of data delineates the
associated cost in relation to acquiring the data in question,
including the cost incurred for realizing the data collection
system [58]. In this regard, the individual’s self-recorded data
are solely collected for their own use and used as a secondary
source of information for disease surveillance purposes.
Providing tailored and valuable feedback to the individual
patient might further motivate them to participate on a large
scale (for further details, see the section Ethical and Motivational
Challenges).

Framework of a Personalized Digital Infectious Disease
Detection System
Epidemic intelligence encompasses activities directed toward
early detections, verification, and assessment of potential public
health threats to notify and recommend necessary measures for
the concerned bodies regarding the ongoing situation [56]. Early
detection systems such as Google Flu Trends and other existing
systems have certain limitations because they do not have the
mechanisms to identify or track individual cases through
diagnosis or screening based on a personalized health model.
This limitation has a major impact and certainly introduces bias
in disease outbreak prediction. Currently, a personalized health
model, which resembles the way clinicians and epidemiologists
classify an individual as normal, suspected, or confirmed case,
for screening and case detection doesn’t exist [58]. Having a
personalized health model can provide information for both
individual health-related decision support purposes and at the
same time can be used for tracking infectious disease outbreaks
among the public. The results of this study demonstrated that
commencement of infection in people with type 1 diabetes
significantly alters the individual blood glucose dynamics, and
such a change can potentially be detected through modeling of
the individual blood glucose dynamics. Moreover, incorporating
various physiological parameters, for example, heart rate and
body temperature, to a personalized health model will further
enable the capture of infection incidence as early as possible,
that is, incubation period. Therefore, the development of a
personalized health model–based digital infectious disease
detection system is vital for the success of next-generation public
health surveillance systems. The data sources and signal
exploited, outbreak detection algorithms employed, clustering
approaches, and visualization techniques used to play a central
role in any digital infectious disease detection systems by
determining its accuracy (sensitivity) and timeliness (lead time)
[56]. On the basis of the kind of data sources and signals
exploited, infectious disease surveillance systems can be
generally grouped into an indicator-based and event-based
system [56,59,60]. Event-based systems mainly rely on
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unstructured data collected through formal or informal sources
and is characterized by quick detection, reporting, and
assessments of public health events, including clusters of disease
[56,60]. On the other hand, indicator-based systems mainly use
structured data, which are collected following a standard case
definition and is characterized by routine reporting of disease
cases [56,60]. The proposed system [26,61], as shown in Figure
14, is categorized under event-based digital infectious disease
detection systems, where the events are grouped under

microevents and macroevents [56]. Under the umbrella of these
events and the proposed system in general, a framework of
several components such as infection detection algorithms (how
to develop an algorithm to detect infection incidence at the
individual level); clustering algorithms (how to group the
infected individuals to form a cluster); visualization techniques
(how to report and display the detected outbreak incidence) and
further ethical and motivation challenges are briefly discussed
below.

Figure 14. The Proposed System Architecture.

Microevent: Individual-Level Detection of Infection
Incidence
The detection of microevents as the name suggests is carried
out at an individual level by tracking the individual’s diabetes
profile including blood glucose levels, amount of insulin
injections, carbohydrate consumption, physical activity or
exercise sessions, and others. The presence of elevated blood
glucose levels despite injecting higher amounts of insulin and
consumption of less carbohydrates is regarded as a marker of
an event of infection incidence and hence can be defined as a
microevent for the event-based digital infectious disease

detection system. Detecting the incidence of these kinds of
deviation from the usual norm of blood glucose dynamics
requires a proper personalized health model, which can learn
from past history of the patient and judge whether the
information conforms with the usual trend. Hence, the proposed
personalized health model for detecting these types of
microevents incorporates 3 components: a data source,
personalized infection detection algorithm, and alarm
management module, as shown in Figure 15. As can be seen
from the figure, the personalized infection detection algorithm
can be modeled using either a prediction model–based approach
or a novelty or anomaly detection–based approach.
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Figure 15. The proposed personalized infection detection algorithms for detecting microevents (incidences of infections) in people with type 1 diabetes.
These approaches are alternative means of achieving the same objective, which is detecting infection incidences.

Data Sources and Input

The patient unit is a mobile health app, as shown in Figure 14,
which integrates data from different sensors and wearables that
record key diabetes parameters, such as blood glucose levels,
insulin dosage, diet, physical activity, and other optional
physiological parameters including body temperature, heart
rate, blood pressure, and others [26,61]. The app is also expected
to record the geographical location of the individual along with
the time of data registration. For example, one way of estimating
user location can be carried out based on global positioning
system (GPS) information from the mobile phone during data
registration [61]. The geographical location of the user can be
the geographical coordinates of longitude and latitude [62],
postal code address [63], or any local reference coordinates.

Personalized Infection Detection Algorithm

Detection of microevents can be carried out using individual
self-recorded historical data based on a personalized health
model, that is, either a prediction model [64,65] or novelty
detection algorithms [66-68], as shown in Figure 15. The
prediction model–based algorithm requires learning the
individual blood glucose dynamics for accurate prediction, and
for the purpose of detecting the microevents, it can be
implemented as either a residual-based [69-72] or a conformal
prediction–based approach [73-80]. In a similar fashion, novelty
detection–based algorithms can be other alternatives for
detecting novel microevents relying on either supervised,
semisupervised, and unsupervised approaches [4,66,67,81].
Different categories of novelty detection approaches could be
exploited for detecting infection-induced deviations in blood
glucose dynamics, including approaches based on statistical
techniques [68], prediction, density [82-85], distance [67,86],

classification or domain [4,62,63,87-92], clustering [62,93],
and ensemble [67,68,80-82,85,86,92-95].

Alarm Management (Decision Making)

The alarm management module accepts the score computed by
the personalized infection detection algorithm as input and
evaluates the degree of severity of the infection incidence. The
severity is evaluated based on the degree of abnormalities of
the anomalies score, and a label could be assigned to the
individual patient status as normal (0), suspicious (−1), and
infected (1). For example, a rule-based fuzzy logic with
membership functions of infected, normal, and suspicious can
be used to assign the label indicating the severity of the infection
incidence using the anomaly score. The output from the alarm
management will be directly fed to the cluster detection analysis,
which is used to detect a group of patients based on geography
(space) and time so as to revel if there is any ongoing infectious
disease outbreak.

Macroevents: Population-Level Infectious Disease
Outbreak Detection

Cluster Detection Mechanism

Cluster detection is defined as the process of identifying a group
of infected individuals with similar spatial, temporal, or
spatio-temporal attributes [96]. A spatial cluster analysis only
considers a patient’s geographical location, and a temporal
cluster analysis considers only the time aspect of the events.
However, a spatio-temporal cluster analysis is conducted to
look for aberrant patterns and detect a cluster of infected people
within a specified geographical region and predefined timeframe
[96,97]. The analysis of space time clusters is carried out based
on a couple of steps: geocoding and identification, which
transforms the patient address into meaningful coordinates and
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detecting the clusters based on the transformed location and
time. A space time cluster analysis is the most favored approach
when it comes to early detection of an infectious disease
outbreak. A space time cluster analysis can be designed by
performing a spatial analysis first and then superimposing the
temporal aspect [97]. Regarding the proposed system, the input
to the space time cluster detection analysis consists of the
individual patient status from alarm management, user location,
and time of data registration [26]. The status of the individual
patient at any time can be normal (0), infected (1), or suspicious
(−1), which comes from alarm management. The user’s
geographical location can be geographical coordinates of
longitude and latitude [98], postal code address [99], or any
local reference coordinates. Estimation of user location can be
carried out using GPS information from the user’s mobile phone,
which can be accessed during each data registration. The time
aspects depend on the requirement of detection frequency and
can be set to either an hourly or daily window. One optimal
approach could be tracking the individual during each hour of
the day for any statistically significant deviations and performing
a concluding analysis at the end of each day based on the daily
analysis. Various algorithms have been implemented in the
literature, including the density-based clustering algorithm,
Bayesian spatial scan statistics, K-NN with Haversian distance
(K-nearness), cumulative summation, space time scan statistics,
space time permutation scan statistic, and space scan statistics
[96,97,100], which can be further tested and adopted. The most
important challenge is the sparsity of the data set considering
the small proportion of people with type 1 diabetes that can be
under surveillance over a large region. Therefore, it is necessary
to adopt these cluster detection techniques to overcome data
sparsity and produce acceptable detection accuracy. In the
proposed system, the detected clusters, if there is any, can be
displayed and viewed based on real-time and interactive data
visualization tools.

Data Visualization

Data visualization is a mechanism by which detected clusters
of disease outbreaks, if there is any, are presented to the
responsible bodies for quicker public health actions and
responses. Generally, such a visualization tool could report
outbreaks of epidemic cases for investigation and follow-up,
and it could also report the duration of the epidemic (timing),
degree of severity of the epidemic, and the region under threat.
In the literature, there are various implemented visualization
tools and visual displays with regard to disease outbreak
detection systems, including ArcGIS, Google map API, TwiInfo,
OpenStreetMap, and JFreeChart, and display mechanisms such
as maps, time series, graphs, and color indicators [96]. These
visualization tools and display mechanisms can be further tested
and adopted in the proposed system. The real-time health status
of an individual from the ongoing tracking could be accessible
to the end user and can be displayed in a stand-alone software
app based on smartphones, tablets, and computers or a dedicated
website [26]. Generally, both the data providers (participants)
and the general population could benefit from the system in the
sense that they can take actions needed to avoid being infected.
Moreover, the individual patient could also receive analysis and
feedback from the system to learn the situation, such as the

degree and severity of deviation of different parameters,
including blood glucose, insulin, diet, and
insulin-to-carbohydrate ratio, along with their trend as compared
with the noninfection period.

Ethical and Motivational Challenges
The implementation of a digital infectious disease detection
system based on self-recorded data poses serious challenges
that require special attention, such as user privacy and security,
data confidentiality, user acceptance, and motivations [26,101],
especially during data collection, transmission, and data storage
[102,103]. Personal health–related data are sensitive, and the
data collection, transmission, and data storage procedure need
to follow the standards and regulations provided by the major
governing bodies, such as General Data Protection Regulation
(GDPR) and Health Insurance Portability and Accountability
Act (HIPAA) [104,105]. This includes privacy-preserving
mechanisms such as pseudonymization and anonymization to
meet the necessary data compliance requirement along with
user informed consent [102,103]. According to GDPR, the
deidentification procedure is one of the recommended
anonymization standards to preserve data confidentiality
[104,105]. Moreover, from the technology perspective, it is
necessary to look for a robust mechanism to ensure that user
privacy and security are respected during data collection,
transmission, and storage, as this is highly critical for successful
acceptance of the proposed system [26,106]. One such
alternative is to look for the possibility of deploying the infection
detection algorithm (app logic) on the user (client) mobile device
terminal to avoid transmission of patient data to a central server,
where only the timely computed infection status of the patient
will be sent to the central server for further cluster detection
processing. However, this choice requires further feasibility
studies to determine the cost, especially in terms of power
constraints related to the mobile device terminal, since the
detection algorithms need to continuously run in the background
to compute the individual’s infection status, at the most each
hour of the day [26]. In addition, users might also lack
willingness to adopt a new technology or system for various
reasons ranging from lack of trust, lack of motivation, lack of
perceived usefulness, and ease of use [26,101]. However, these
challenges can be mitigated by properly buying user trust by
developing state-of-the-art technology for preserving privacy,
security, and confidentiality of the user and addressing factors
that enhance user motivation, including usability knowledge,
simplicity and ease of use, reduced time and frequency of
interaction with the system, incentives, and others [101].

Conclusions
The relationship between infection incidents and elevated blood
glucose levels has been known for a long time. People with type
1 diabetes often experience prolonged episodes of elevated
blood glucose levels as a result of infection incidence. Despite
the fact that patients increasingly gather data about themselves,
there are no solid findings on how to use such self-recorded
data as a secondary source of information for other purposes,
such as self-management–related decision support during
infection incidence and digital infectious disease detection
systems. We presented the effect of infection incidence on key
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parameters of the blood glucose dynamics along with the
necessary framework to exploit the information for realizing a
digital infectious disease detection system and further shed light
on the possibility of assisting individuals during infection-related
blood glucose management crises. The results demonstrated
that despite tight blood glucose control, blood glucose level is
still elevated during infection incidence. The analysis shows
that infection incidences have a significant impact on blood
glucose dynamics as compared with the other
patient-uncontrollable factors. All of these findings indicate
that blood glucose levels were elevated despite a higher amount
of insulin injection and reduced carbohydrate consumption,
which are quite significant changes that could possibly be
detected through personalized modeling that spans from
prediction models to anomaly detection algorithms. However,
further large-scale studies are required to strengthen the findings.
Moreover, future research should investigate the possibility of
improving detection time and disease characterization. Early
detection, that is, during the incubation period, is a critical

component of any outbreak detection system and therefore needs
to be improved by analyzing how various features of CGM can
be used in context with other parameters, such as diet, insulin,
and physical activity data. For instance, different individuals
with type 1 diabetes often reported the experiences of an
elevated episode of blood glucose levels before the onset of the
first symptoms. Disease characterization involves determining
the type and nature of pathogens that cause the infection, which
is an important component of outbreak reporting. The extent
and degree of the impact of infection incidence on blood glucose
dynamics are highly correlated with the disease pathogens
involved. In this regard, carefully analyzing a large-scale
self-recorded data set containing several infection incidences
(different pathogens) could characterize them based on their
effect on blood glucose dynamics. Generally, we foresee that
these findings can benefit the efforts toward building
next-generation digital infectious disease surveillance systems
and provoke further thoughts in this challenging field.
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