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Abstract

Background: As the need for sharing genomic data grows, privacy issues and concerns, such as the ethics surrounding data
sharing and disclosure of personal information, are raised.

Objective: The main purpose of this study was to verify whether genomic data is sufficient to predict a patient's personal
information.

Methods: RNA expression data and matched patient personal information were collected from 9538 patients in The Cancer
Genome Atlas program. Five personal information variables (age, gender, race, cancer type, and cancer stage) were recorded for
each patient. Four different machine learning algorithms (support vector machine, decision tree, random forest, and artificial
neural network) were used to determine whether a patient's personal information could be accurately predicted from RNA
expression data. Performance measurement of the prediction models was based on the accuracy and area under the receiver
operating characteristic curve. We selected five cancer types (breast carcinoma, kidney renal clear cell carcinoma, head and neck
squamous cell carcinoma, low-grade glioma, and lung adenocarcinoma) with large samples sizes to verify whether predictive
accuracy would differ between them. We also validated the efficacy of our four machine learning models in analyzing normal
samples from 593 cancer patients.

Results: In most samples, personal information with high genetic relevance, such as gender and cancer type, could be predicted
from RNA expression data alone. The prediction accuracies for gender and cancer type, which were the best models, were
0.93-0.99 and 0.78-0.94, respectively. Other aspects of personal information, such as age, race, and cancer stage, were difficult
to predict from RNA expression data, with accuracies ranging from 0.0026-0.29, 0.76-0.96, and 0.45-0.79, respectively. Among
the tested machine learning methods, the highest predictive accuracy was obtained using the support vector machine algorithm
(mean accuracy 0.77), while the lowest accuracy was obtained using the random forest method (mean accuracy 0.65). Gender
and race were predicted more accurately than other variables in the samples. On average, the accuracy of cancer stage prediction
ranged between 0.71-0.67, while the age prediction accuracy ranged between 0.18-0.23 for the five cancer types.

Conclusions: We attempted to predict patient information using RNA expression data. We found that some identifiers could
be predicted, but most others could not. This study showed that personal information available from RNA expression data is
limited and this information cannot be used to identify specific patients.
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Introduction

High-throughput sequencing and array technologies, such as
next-generation sequencing and microarrays, can be applied to
personalized genomics and for medical purposes. These
technologies will enable comprehensive multiomics analysis at
various levels, including genomics, transcriptomics, and
proteomics. In the last decade, the ability to collect and store
personal data has increased significantly. A growing number
of studies around the world have used multidimensional cancer
genome data sets to obtain biological insights and develop
clinical applications [1]. The ability to collect and store personal
data has exploded, making genomic analysis a viable method
for improving diagnostic accuracy and personalized medicine.

These advances require both the collection and sharing of
high-resolution genetic profiles among researchers and
institutions. However, this large-scale use of detailed
individual-level data raises legitimate privacy concerns. It has
been proposed that genetic profiles should not be collected and
shared due to the potential for privacy breaches and risk of
participant identification. There are standards outlined by
modern data protection laws, such as the General Data
Protection Regulation in the European Union, for the
anonymization of data before sharing. The new General Data
Protection Regulation explores the major provisions of this new
regulation with regard to processing genetic data and includes
it as a special category of sensitive data [2]. The Privacy Rule
of the Health Insurance Portability and Accountability Act
(HIPAA) sets standards for the privacy and security of health
records in the United States [3]. Public databases such as The
Cancer Genome Atlas (TCGA) obtain patient consent to share
their genetic data. Consent is obtained due to the possible risk
of exposing patient information obtained from multiomics data
[4].

We have yet to discover everything there is to learn from
genomes [5]. The study of personal genome interpretation using
genomic data has continued to evolve and has now reached the

point of being able to explain individual characteristics [6,7].
RNA expression data, a next-generation sequencing-based
method for analysis of transcription, provides valuable
information on the expression of specific genes [8], and it is
also considered to be sensitive data [9,10]. RNA expression
analysis is performed on bulk tissue samples or cell populations.
Differences in cellular RNA expression profiles are caused by
various factors such as cell cycle status, differentiation, and
morphologic position. Despite increasing research using
genomic data, there is a lack of research to determine the
appropriate level of data sharing based on the predictability of
personal information.

In order to protect personal information while sharing genomic
data, it is necessary to evaluate all patient information that could
be revealed by genomic data only. Since 2000, numerous papers
that use machine learning algorithms in genome-wide analyses
have been published [11]. The aim of this study is to assess
whether machine learning algorithms can use RNA expression
data from a public cancer genome database (TCGA) to identify
patients’ personal information.

Methods

Study Design
We selected five personal data features from 9538 RNA
expression samples for identification: gender, age, cancer type,
race, and pathologic (cancer) stage. Information on these five
features was extracted from the clinical data and separately
predicted for each sample. Our data processing workflow is
summarized in Figure 1. Gender consisted of two groups (male
and female), age was classified into nine groups (each ranging
10 years of age), cancer type consisted of 32 groups, race
consisted of five groups, and cancer stage consisted of four
groups (stages I to IV). Since gender, age, cancer type, and race
are typical variables, patient data with all four variables were
included. However, cancer stage data were missing from many
samples, and its definition differs according to cancer type, thus
patient data missing this information were still included.
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Figure 1. Patient inclusion and exclusion criteria (white boxes) and flowchart of the study design. The dashed lines indicate RNA expression data used
to develop machine learning models. The gray boxes show machine learning models. *Demographic information: age, gender, and race.

Availability of Data and Materials
All RNA expression data were generated as part of The Cancer
Genome Atlas [12]. These data were obtained from the
FireBrowse website [13].

Database
Gene expression information (level 3) from TCGA was
downloaded from the Firehose analysis infrastructure (Broad
Institute Genome Data Analysis Center). The RNA expression
level 3 data contained reads per kilobase million mapped reads
[14], RNA expression by expectation-maximization [15], read
count, and clinical data. The TCGA level 3 RNA expression
data set contained quantifications of transcript levels by
normalized counts calculated using the
expectation-maximization method.

We used 7828 primary tumor samples from 32 cancer types and
593 normal samples from 22 cancer types. Samples where
clinical data did not exist were excluded. We used HiSeq (HiSeq
2000; Illumina Inc) RNA expression values for 12,897 genes
(12,883 genes excluding the expression values of the genes on
the Y chromosome) in our machine learning platforms to predict
gender. In addition to the data set with samples from multiple
cancer types, we created five separate data sets, each consisting
of samples from a single cancer, in order to compare
predictability between cancer types. These five data sets
represented breast carcinoma (957/7828, 12.24%), kidney renal
clear cell carcinoma (519/7828, 6.64%), head and neck

squamous cell carcinoma (496/7828, 6.35%), low-grade glioma
(486/7828, 6.23%), and lung adenocarcinoma (416/7828,
5.34%). These data sets were used to determine whether personal
information was able to be predicted in each cancer type.
Specifically, the data sets were used to determine whether the
stage was predictable and how the prediction accuracy of other
identifiers would change.

Processing of RNA-Sequence Data
Level 3 RNA expression data processing and quality control
were performed by the Broad Institute TCGA workgroup. Data
were processed in R (version 3.6.0; packages: edgeR, limma).
Expectation maximization–normalized data were preprocessed
using the DGEList function (edgeR), and only genes expressed
with counts per million above zero in at least 20% of samples
were retained using the CPM function (edgeR) [16]. Level 3
RNA expression data were normalized within each cancer type.
We performed preprocessing of level 3 RNA expression data
of primary tumor samples and normal samples using the voom
function (limma), which is also an alternative
variance-stabilizing multiple-testing framework for RNA
expression data [17]. Comparison of gene expression between
cancer types was performed using linear regression models and
the transformed data were then used to derive the final
differential gene expression list (voom; limma). Our integrated
data set contained expression values of 12,897 genes from 9538
samples.
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Personal Health Identifiers
Under the HIPAA privacy rules, personal information typically
includes information that can be used to identify or track an
individual, such as their name, social security number, or
biometric records, either alone or in combination with other
information linkable to a specific individual, such as a date or
place of birth [18]. Among the available patient data, we selected
five informative features that could be connected to a specific
individual. HIPAA provides 18 identifiers; however, the
personal information identifiers provided by TCGA are
restricted. There were 29 variables associated with TCGA
patient information data, from which we excluded the sample
barcode, version, and survival variables. Additionally, variables
missing more than 60% of data were excluded. TCGA-provided
identifiers existed only for age, and we added the demographic
information (ie, gender, race, stage, and cancer type) to the
personal information.

Selection of Significant Genes for Predicting Personal
Information
The genes in the primary tumor data set relating to gender were
analyzed using two-tailed t tests [19,20] with Bonferroni
correction for any two-group comparisons. Other genes in the
primary tumor data set relating to the remaining variables were
analyzed using a one-way analysis of variance (ANOVA)
[21,22] and Bonferroni posthoc tests for multiple comparisons.
In addition to the 12,897 genes in the primary tumor data set,
which included RNA gene expression levels, we created two
data sets for each gene (P value≤.01) based on the P values of
the ANOVA and t tests (Multimedia Appendix 1). The purpose
of creating these data sets was to provide alternative data sets
for evaluating whether personal information could be identified
by selecting significant genes.

Supervised Machine Learning Algorithms
We used four different supervised machine learning algorithms
to generate classification models. Support vector machines are
a group of related supervised learning methods used for
classification and regression [23,24]. Decision tree structures
use leaves to represent classifications, while branches represent
conjunctions of features that lead to those classifications [23,25].

Random forest is a classifier consisting of many decision trees
and determines the class, which is the mode of classes generated,
by individual trees [25,26]. Artificial neural networks are an
interconnected group of nodes that use a computational model
for information processing. Its structure changes based on
external or internal information that flows through the network.
Artificial neural networks can be used to model complex
relationships between inputs and outputs and find patterns in
data [25,27].

The four supervised machine learning algorithms were trained
on the five features subsets and cross-validated. Random forest
models were generated using 100 trees. The support vector
machines used linear kernels while artificial neural networks
used four-layer networks. To compare the models of the four
supervised machine learning algorithms, the study population
was randomly stratified and split into 70% training and 30%
independent testing data sets.

Performance Evaluation
To evaluate the generated prediction models, we employed
various metrics recommended for evaluating classifier
performance such as accuracy, precision, recall, F1 score, and
area under the receiver operating characteristic curve (AUROC).
The multiclass AUROC was the mean of several AUROC
classes. Quantitative measures of accuracy and AUROC were
used to assess the overall performance of each classifier.
AUROC is a measure of model performance, which is based
on the receiver operating characteristic curve that plots the
tradeoff between sensitivity and specificity of these values using
commonly accepted criteria [27].

Results

Description of the RNA Expression Data Set
A total of 7828 primary tumor samples consisting of 32 cancer
types were collected from TCGA to construct and test five
personal information prediction models (Table 1). To compare
tumor samples with normal samples, we extracted data from
593 normal samples from TCGA (Multimedia Appendix 2).
The primary tumor data set and normal data set are structurally
analogous.
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Table 1. Personal information of the study population.

Total, n (%)Male, n (%)Female, n (%)Data set information

7828 (100)3782 (48.31)4046 (51.69)Participants

Age (years)

30 (0.38)16 (0.2)14 (0.18)10-19

261 (3.33)134 (1.71)127 (1.62)20-29

586 (7.49)256 (3.27)330 (4.22)30-39

1080 (13.8)451 (5.76)629 (8.04)40-49

1828 (23.35)882 (11.27)946 (12.08)50-59

2095 (26.76)1100 (14.05)995 (12.71)60-69

1509 (19.27)737 (9.41)772 (9.86)70-79

425 (5.42)200 (2.55)225 (2.87)80-89

14 (0.18)6 (0.08)8 (0.1)90+

Race

20 (0.26)7 (0.09)13 (0.17)American or

Alaska Native

599 (7.65)346 (4.42)253 (3.23)Asian

780 (9.96)261 (3.33)519 (6.63)Black or

African American

7 (0.09)1 (0.01)6 (0.08)Hawaiian or

Pacific Islander

6422 (82.04)3167 (40.46)3255 (41.58)Caucasian

Cancer stagea

1376 (31.32)638 (14.52)738 (16.8)Stage I

1418 (32.28)552 (12.57)866 (19.71)Stage II

1060 (24.13)491 (11.18)569 (12.95)Stage III

539 (12.27)355 (8.08)184 (4.19)Stage IV

aThe percentages may not add up to 100% because of missing values.

Prediction of the Five Personal Variables Using Four
Machine Learning Algorithms in Multiple Cancers
Figure 2 presents the performance of the four machine learning
algorithms using 12,897 genes to predict target outcomes. The
accuracies of the five personal information variables in the
independent data set were 0.93-0.99 (gender), 0.0026-0.29 (age),
0.76-0.96 (race), 0.78-0.94 (cancer type), and 0.45-0.79 (stage).

The AUROC of the five personal information variables in the
independent data set were 0.94-0.99 (gender), 0.50-0.75 (age),
0.51-0.91 (race), 0.84-0.96 (cancer type), and 0.71-0.87 (stage).
The accuracy of all models in predicting the five personal
information variables ranged variedly, the lowest being in
random forest and the highest being in support vector machine
(Multimedia Appendix 3).
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Figure 2. Prediction performance of personal identifiers according to independent gene sets: (a) accuracy and (b) AUROC of the personal information
classifiers from a training dataset consisting of 12,897 genes; (c) accuracy and (d) AUROC of the personal information classifiers as analyzed by
prediction models made from a training dataset consisting of significant genes selected through statistical analysis. ANN: artificial neural network; DT:
decision tree; RF: random forest; SVM: support vector machine.

For gender, accuracy and AUROC were the highest compared
to other variables: precision and recall ranges were 0.98-1.00
and 0.91-1.00, respectively. We also applied the RNA
expression data of the remaining genes (excluding genes on the
Y chromosome) using the machine learning algorithms, and the
ranges of prediction accuracy and AUROC for gender were
0.91-0.98 and 0.96-0.99, respectively (Multimedia Appendix
4). For age, accuracy and AUROC were low, and precision and
recall were less than 0.20. The accuracy and AUROC were
lower for race than for gender. In the Caucasian group alone,
the F1 scores were high, in the range of 0.86-0.98. However,
other groups representing smaller percentages of the population
were difficult to predict. Despite the multilayered structure of
the 32 cancer types, the accuracy of cancer type and AUROC
were lower than those of the gender variable. The accuracy and
AUROC of cancer stage were lower than those of the cancer
type variable, due to the multilayered structure of the 19 cancer
types (Multimedia Appendix 5).

In addition to the gene data sets, results for data sets compiled
with significant genes based on the P values were obtained.

Most results were similar for all gene data sets, with accuracy
and AUROC decreasing for all personal information variables,
except for the cancer stage variable (Figure 2, Multimedia
Appendix 5, and Multimedia Appendix 6). Thus, personal
information variables such as age, cancer stage, race, cancer
type, and gender were difficult to predict using the prediction
models generated by machine learning.

Prediction of Personal Information Using Four
Machine Learning Algorithms in the Top Five Cancer
Types
We selected five types of cancers with large samples sizes from
the primary tumor data set and developed predictive models for
the four personal information variables from each cancer data
set (Multimedia Appendix 7). To achieve this, we generated
data sets for breast carcinoma, kidney renal clear cell carcinoma,
head and neck squamous cell carcinoma, low-grade glioma, and
lung adenocarcinoma, and predicted the personal information
through machine learning algorithms (Figure 3). This analysis
compared whether personal information was predicted
differently depending on the type of cancer.
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Figure 3. Results of model evaluation based on accuracy and AUROC for one type of cancer: (a) breast carcinoma, (b) kidney renal clear cell carcinoma,
(c) head and neck squamous cell carcinoma, (d) low-grade glioma, and (e) lung adenocarcinoma. ANN: artificial neural network; DT: decision tree;
RF: random forest; SVM: support vector machine.

Gender accuracy was low and cancer stage accuracy was high
when comparing the average accuracy of all cancers and the
five specific cancers; when comparing the accuracy averages
of the four machine learning algorithms, the lowest for gender
was 0.85, the lowest for age was 0.14, the lowest for race was
0.83, and the lowest for cancer stage was 0.67 (Figure 3,
Multimedia Appendix 8).

Validation Through Normal Tissue Samples
We also conducted a study to compare the predicted results for
cancer samples with those for normal samples. We evaluated
the optimized model using 593 normal tissue samples belonging
to cancer patients from TCGA. Prediction of gender, age, and
race had similar accuracies in normal samples as in tumor
samples, but prediction of cancer type was less accurate in
normal samples than prediction of cancer type in tumor samples
(Figure 4).
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Figure 4. Results of model evaluation based on accuracy and AUROC when applying normal samples as a test to model personal information. ANN:
artificial neural network; DT: decision tree; RF: random forest; SVM: support vector machine.

Expression of Specific Genes Depending on Personal
Information
Using the RNA expression data of primary tumors, prediction
models of the five personal information variables were created
using four machine learning algorithms. The genes for predicting
personal information were compared using important features
provided by random forest and decision tree.

To facilitate the comparison of genes associated with personal
information, we compared genes that play an important role
when creating models for personal information retrieval. Each
of the five personal information variables had a separate list of
corresponding important genes; we selected the top 100 genes
in these lists, based on the P values generated by random forest
and decision tree. The results showed a low level of association
between genes and personal information: only gender showed
gene-relatedness in random forest. Of the top 10 genes in the
list of important genes to predict the gender provided by random
forest, 9 genes were located on the Y chromosome. However,
of the top 10 genes in the list of important genes to predict the
gender provided by decision tree, only 2 genes were located on
the Y chromosome.

Discussion

Principal Results
The prediction of personal information using RNA
expression–based approaches is a rapidly developing subfield
of cancer epigenetics that has great potential to provide accurate
predictive outcomes. However, there is a risk that patient
information might be disclosed, thereby limiting data collection
and sharing. For accurate regulation of the use of genomic data,
it is necessary to examine the possibility of private information
leaking. In this study, we verified personal information
predictability using RNA expression profiling and presented a
new direction for studies on genomic data sharing.

When predicting personal information from RNA expression
data using the four machine learning algorithms, we found that
most personal information could not be predicted using RNA

expression data, with the exceptions being gender and cancer
type. Gender could be easily predicted by analyzing the
expression of sex chromosome genes, as expected [28].
Furthermore, we confirmed whether gender could be predicted
by RNA expression data of the remaining genes (excluding the
genes on the Y chromosome) through machine learning. Since
there is a regulatory network between genes located on
chromosome X or Y and chromosome 1-22, gender could still
be predicted by genes located on chromosomes 1-22 [29]. In
addition, several studies have shown that there are marked
differences in RNA expression between different cancer types
[30-32]. Personal information can be more accurately predicted
when combined with other information [33], which slightly
increased the accuracy of the prediction when information about
cancer type was provided (increased by 0.004-0.14). However,
it is still difficult to say that personal information, such as age,
race, and cancer stage, could be predicted.

Aging is a very complex process that is influenced by various
genetic, lifestyle, and environmental factors [34]. It causes a
variety of molecular modifications and adjustments in tissues
and organs that accumulate over an individual’s lifetime,
including chemical modifications and alterations to gene
expression [35]. Thus, it is difficult to predict age from RNA
expression data alone, because of the influence of these
molecular modifications and adjustments throughout the
individual’s lifetime. Although HIPAA describes birth date as
an identifiable variable, it is an identifier virtually impossible
to predict using RNA expression data. To predict a patient's
age, epigenomic data such as DNA methylation profiles, which
reflects the patient's age, should be used [34,35].

The race data set was not suitable for the machine learning
algorithms because the sample ratios between group populations
were unbalanced. Caucasians accounted for 82% of patient
samples in the RNA expression data set. For this reason, the
accuracy and recall results were higher for the Caucasian group
and lower for the other groups. Machine learning algorithms
can suffer a performance bias in relation to classification when
data sets are unbalanced [36]. On the other hand, with regard
to the cancer stage data set, predictions had low accuracy across
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all machine learning platforms, findings that coincide with those
of other studies [37,38].

Genomic data are sensitive data that can be used to identify
individuals or for other purposes [39,40]. The individuality of
some of the genomic data has been verified [34,35,41], but little
has been studied for RNA data. Our study is thus the first to
verify individual identification in RNA expression data testing
the identification of personal information using RNA expression
data provided by the public database TCGA. The prediction
was rarely successful.

This study is the first paper to suggest determining the level of
data sharing should be based on predictability of personal
information. Clearly, data sharing will have a pivotal role in
precision oncology. By promoting cancer genomic data sharing,
researchers and clinicians will gather the information needed
to improve our understanding of cancer genome and improve
patient care and outcomes. Currently, projects that use genomic
data use complex procedures to collect the genomic data or use
previously published genomic data. Genomic data collected for
a given project is often difficult to reuse in other projects. We
believe that studying whether the personal information of the
patient can be predicted when genomic data is shared can help
determine the appropriate level of genome data sharing.

Limitations
Our study has several limitations. First, the study was limited
in terms of scope of personal information studied; we used RNA

expression data and machine learning algorithms to perform
predictions regarding only five personal information variables.
Limited information to predict personal characteristics can be
retrieved from the available TCGA data. Thus, large-scale
studies employing personal information are needed to gain
further insights in this field. Second, the race data were
unbalanced in the TCGA primary tumor data set, with
predominantly Caucasian data. Therefore, the predictive ability
of the machine learning algorithms in relation to race might be
reduced or biased. To clarify whether RNA expression data can
predict race, further research using genomic data from diverse
and balanced races is needed. Third, this study used only RNA
expression data to assess the predictability of personal
information using machine learning algorithms. Future research
should explore the possibility of predicting personal information
using other genomic information, such as DNA methylation
data. Fourth, this study was done without considering clinical
data, because there was little clinical information in the TCGA
public database. Further research will be needed considering
clinical data is sensitive information.

Conclusions
In this study, we analyzed the ability of RNA expression data
to predict patients’personal information using machine learning
algorithms. We verified that RNA expression alone is not
sufficient to identify personal information using the analysis
techniques employed herein. These tentative conclusions await
further validation by future similar studies.
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Prediction performances of personal information according to independent gene sets consisting of significant genes selected
through statistical analysis.
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Multimedia Appendix 7
Five types of cancers with large sample sizes from the primary tumor dataset.
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