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Abstract

Up to 95% of novel interventions demonstrating significant effects at the bench fail to translate to the bedside. In recent years,
the windfalls of “big data” have afforded investigators more substrate for research than ever before. However, issues with
translation have persisted: although countless biomarkers for diagnostic and therapeutic targeting have been proposed, few of
these generalize effectively. We assert that inadequate heterogeneity in datasets used for discovery and validation causes their
nonrepresentativeness of the diversity observed in real-world patient populations. This nonrepresentativeness is contrasted with
advantages rendered by the solicitation and utilization of data heterogeneity for multisystemic disease modeling. Accordingly,
we propose the potential benefits of models premised on heterogeneity to promote the Institute for Healthcare Improvement’s
Triple Aim. In an era of personalized medicine, these models can confer higher quality clinical care for individuals, increased
access to effective care across all populations, and lower costs for the health care system.

(J Med Internet Res 2020;22(8):e18044) doi: 10.2196/18044

KEYWORDS

medical Informatics; health equity; health care disparities; population health; quality improvement; precision medicine

Background

Philosopher Karl Popper commented in 1934 that
“non-reproducible single occurrences are of no significance to
science” [1]. Yet, 85 years since this statement was made,
science remains inundated with nonreproducible single
occurrences. John Ioannidis famously wrote in 2005 that “most
published research is false” [2]. Chalmers and Glasziou [3] later
quantified the false positive rate of published science at 85%;
the false positive rates in translational medicine may be even
higher than this estimate. Up to 89% of studies demonstrating
significant preclinical effects of novel molecules are
nonreplicable [4], and the translation failure rate of novel
interventions demonstrating significant effects preclinically that
are never approved for clinical use reaches up to 95% [5]. These

ranges may themselves be underestimates, since they are based
on molecules assessed by pharmaceutical companies and in
studies published in the highest-impact journals. The translation
failure rate of less promising molecules is likely higher still.

In recent years, the emergence of multidimensional “big data”
has endowed clinician investigators with more plentiful research
substrate than ever before. However, issues with translation
have persisted: despite innumerable statistically significant
biomarkers identified in the preclinical setting, few of these
generalize effectively. For example, 0% of proposed biomarkers
for rheumatoid arthritis have demonstrated generalizability [6].
In addition, since enormous samples contribute sufficient
statistical power capable of offsetting minute effect sizes,
increasingly voluminous data may cause translation failure to
become more rather than less of an endemic problem. Indeed,
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recent studies have noted a 36% deterioration of clinical
effectiveness for molecules in Phase II trials [5].

We do not believe that the “depth” of samples (ie, cohort size)
is responsible for the observed patterns in translation failure
associated with big data. Rather, we believe that the problem
is insufficient “breadth”; that is, the datasets used for discovery
and validation fail to represent the diversity observed in
distinctive real-world patient populations. In other words, by
failing to represent the extent of real-world population diversity,
we can define these datasets as inadequately heterogeneous.

There is already evidence for the effectiveness of translational
bioinformatics premised on heterogeneity for conditions
previously plagued by generalization failures, such as in the
derivation of host response–based gene panels to predict sepsis
and tuberculosis. These panels have outperformed all precedents
developed without accounting for heterogeneity (including those
using the most sophisticated machine-learning techniques); have
been validated across time points, disease severity cohorts, and
comorbidities; and have been generalizable across multiple
continents [7-9].

In this paper, we highlight the tendency toward homogeneity
in translational discovery and illuminate its negative
implications. In contrast, we present heterogeneity as an ally
rather than an enemy of meaningful translation. Finally, we
describe the potential impact of incorporating heterogeneity
into the process of translational bioinformatics for addressing
the Institute for Healthcare Improvement’s Triple Aim:
facilitating personalized medicine, alleviating a health care cost
crisis, and resolving health disparities [10,11].

Homogeneity Inherent to “Big”
Translational Datasets

The core benefits of big data can be summarized in terms of
volume (how much data are available), velocity (how quickly
data are accumulated), and variety (how heterogenous the data
are) [12]. Although the former two benefits have been harnessed
extensively in translational research, the latter has not.

Datasets used for translational research may lack variety owing
to three mechanisms: it may be absent, unevenly distributed, or
inaccessible. The absence of variety results from constricted
sourcing of data, leading to the funneling of homogenous
features. One example is the exclusive use of healthy subjects
for benchmarking, such as in immunocellular profiling for
autoimmune disease [13]. The uneven distribution of variety
within a dataset can lead to unintentional clustering of
homogeneity, thereby filtering out heterogeneous characteristics.
This is a digitized form of sampling bias: since heritability and
penetrance both vary within populations, the findings in
genome-wide association studies (GWAS) depend markedly
upon the sampled cohorts [14]. Finally, variety may be present
in the raw data but difficult to access, sequestering the
heterogeneity due to technical hurdles. As dataset complexity
increases, the risk of sequestration is amplified [15].

This becomes problematic in translational genomics, such as
by producing “missing heritability” that is unexplainable from

the processed dataset. It has been theorized that much of this
“dark matter” (ie, the factors invisible in the processed dataset)
relates to environmental influences. These environmental
influences produce endophenotypes (expression profiles
remaining latent until specific triggering exposures), which are
epigenetic traits that can have strong contributions to phenotypic
variation [16].

Homogenous datasets account poorly for differential
environmental exposures and thus tend to be unreflective of
transcriptomic diversity in broader populations. In turn, findings
derived from such datasets may not extrapolate routinely beyond
the experimental setting, thus precipitating translation failure.

Homogeneity Rendered From “Big”
Translational Datasets

Alternatively, homogeneity may be intentionally selected for
within the dataset. The contemporary system of science is
lubricated by two forms of currency—financial and
academic—both of which present disincentives to embracing
heterogeneity. On the one hand, budgetary constraints make
inclusive, comprehensive methodologies (for instance,
preclinical validation studies on multiple animal cohorts) either
impractical or unaffordable [13]. On the other hand, the
relentless pursuit of academic currency (reputation, garnered
through publication) is more easily facilitated by exclusive,
narrow methodologies. The inflation of effect sizes is readily
conjured in well-controlled experimental populations subjected
to investigator-dependent research methods [17].

This investigator-dependent variability—which produces what
has been deemed the “vibration of effects”—fosters significant
interstudy dissimilarity [17]. Investigator choices can fragment
broad baseline populations into discrete clusters subjected to
inconsistent exposures to create unbalanced terminal populations
[7]. As Kaptchuk [18] pointed out:

Facts do not accumulate on the blank slates of
researchers' minds and data simply do not speak for
themselves…[the] evaluative process is never totally
objective or completely independent of scientists’
convictions or theoretical apparatus.

Accordingly, one way to reframe the reproducibility crisis is as
an exclusivity crisis. Intrinsic homogeneity (native to datasets)
compounded by extrinsic homogeneity (rendered to datasets)
yields a sort of “private epidemiology,” in which discrete study
clusters are nonrepresentative of clinical diversity. This has
been observed both in vitro and in vivo, where physiologic
models poorly recapitulate real-world biology; up to 100% of
findings based on observational data (such as vast catalogs of
genetic signals) are not replicable [2,5,19]. Poor reproducibility
has also been observed in silico, as predictive models premised
on these limited feature sets have low external validity [12].

In short, the forces molding experimental homogeneity sculpt
what become N-of-none studies. These are reflective of realities
contained neatly within digital cells in spreadsheets rather than
organic realities in patients.
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Heterogeneity in Translational Big Data:
Today

More vivid depictions of organic (rather than spreadsheet)
realities can be drawn from the introduction of heterogeneity
to translational bioinformatics. Heterogeneity expands the
analytical spectrum beyond the monochromatic shades of
homogenous datasets to better represent real-world phenomena.

Just as meta-analyses mediate between-study biases in
evaluation of treatment effects, the introduction of heterogeneity
similarly allows for mediation of between-sample biases.
Crucially, heterogeneity does not eliminate differences but rather
synthesizes similarities [15]. The utility of heterogeneity comes
from deriving commonality across diverse subgroups by
including rather than excluding distinctive features.

This adheres to theories of systems biology (beyond Oslerian
pathophysiology), which contextualize biological interactions

in dynamic settings. Robust evidence has documented the
inconsistent behavior of unique biological entities (ie, genomic,
proteomic, and transcriptomic) “longitudinally” across time
points and “latitudinally” across milieu [20]. Accordingly,
cross-sectional studies in well-controlled samples seem to be
ill-suited for explaining—much less, solving—polygenic
diseases and polymechanistic syndromes.

Heterogeneity may be imputed experimentally by casting a wide
net of investigators or of data samples. For the former,
crowd-sourced collaboration has improved translational efforts
compared with independent analyses across multiple indications
(Table 1).

For the latter, construction of diverse datasets has yielded
durable findings relevant for translation across numerous
disorders previously plagued by false positives (Table 2).
Protocols for introduction of heterogeneity by the use of multiple
datasets are publicly available [21].

Table 1. Illustrative applications of crowd-sourced heterogeneity.

IndicationYearAuthorTitle

Rheumatoid arthritis2016Sieberts et al [22]Crowdsourced assessment of common genetic contribution to predicting anti-TNF treat-
ment response in rheumatoid arthritis

Alzheimer disease2016Allen et al [23]Crowdsourced estimation of cognitive decline and resilience in Alzheimer’s disease

Prostate cancer2017Guinney et al [24]Prediction of overall survival for patients with metastatic castration-resistant prostate
cancer: development of a prognostic model through a crowdsourced challenge with open
clinical trial data

Sepsis2018Sweeney et al [25]A community approach to mortality prediction in sepsis via gene expression analysis

Table 2. Illustrative applications of user-constructed heterogeneity.

IndicationYearAuthorTitle

Autoimmune disease (systemic lupus erythe-
matosus)

2018Vallania et al
[26]

Leveraging heterogeneity across multiple datasets increases cell-mixture
deconvolution accuracy and reduces biological and technical biases

Cardiomyopathy2006Barth et al [27]Identification of a common gene expression signature in dilated car-
diomyopathy across independent microarray studies.

Organ transplantation2013Khatri et al [28]A common rejection module (CRM) for acute rejection across multiple
organs identifies novel therapeutics for organ transplantation.

Upper respiratory infection2016Sweeney et al
[29]

Robust classification of bacterial and viral infections via integrated
host gene expression diagnostics.

Sepsis2018Sweeney et al
[24]

A community approach to mortality prediction in sepsis via gene ex-
pression analysis

Influenza2015Andres-Terre et
al [30]

Integrated, multi-cohort analysis identifies conserved transcriptional
signatures across multiple respiratory viruses.

Neurodegenerative disease2014Li et al [31]Integrated multi-cohort transcriptional meta-analysis of neurodegener-
ative diseases

Systemic sclerosis2016Lofgren et al [32]Integrated, multicohort analysis of systemic sclerosis identifies robust
transcriptional signature of disease severity.

(Pulmonary) tuberculosis2016Sweeney et al [8]Genome-wide expression for diagnosis of pulmonary tuberculosis: a
multicohort analysis

Chronic obstructive pulmonary disease
(COPD)

2017Scott et al [33]Meta-analysis of continuous phenotypes identifies a gene signature that
correlates with COPD disease status.

Sepsis2016Sweeney et al
[34]

A comprehensive time-course–based multicohort analysis of sepsis and
sterile inflammation reveals a robust diagnostic gene set
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Benefits to these strategies are exemplified by the studies
mentioned in the Background section addressing tuberculosis
and sepsis, respectively. The imputation of heterogeneity
allowed for a 3-gene tuberculosis panel to be generalizable
across 10 African countries [8,35] and an 11-gene panel capable
of forming distinctive sepsis patient clusters to be validated in
multiple nations [36]. Both of these panels, with their ability to
accurately guide care for diverse patient groups (within and
between populations), symbolize truly personalized medicine
[7].

Heterogeneity in Translational Big Data:
Tomorrow

General Prospects
Looking toward the future, the use of heterogeneity may play
a prominent role in the advancement of translational
bioinformatics by cultivating generalizability as a byproduct of
representativeness.

This bears substantial potential at the discovery stage, during
which statistical significance is useful but not sufficient for
predicting clinical effectiveness [2,19]. A myriad of
diagnostic/prognostic and therapeutic modalities are being
actively investigated for translation of personalized medicine,
and validation will be crucial to distinguish the wheat from the
chaff (Figure 1). Validation of novel diagnostics/prognostics
(such as biomarkers) stands to benefit from heterogeneity given
the aforementioned patient diversity across longitudinal and
latitudinal scenarios [20]. Validation of novel therapeutics
benefits from heterogeneity by enrichment of preclinical and
clinical trials [37].

Establishment of data inclusiveness standards to supplement
existing research guidelines (such as ARRIVE for preclinical
studies and STROBE for observational studies) can accelerate
the uptake of heterogeneity into best practices. The assimilation
of heterogeneity into research practice in turn bears implications
on personalized medicine, health care costs, and health
disparities.

Figure 1. Modalities currently under investigation using translational bioinformatics to promote personalized medicine.

J Med Internet Res 2020 | vol. 22 | iss. 8 | e18044 | p. 4https://www.jmir.org/2020/8/e18044
(page number not for citation purposes)

Cahan & KhatriJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Personalized Medicine
Leveraging heterogeneity in translational medicine may offer
the quickest path to personalized medicine. It has been noted
that increasing the number of datasets included in GWAS
samples, controlling for sample size, markedly improves the
predictive power of the obtained gene panels to a much greater
extent than expanding the sample size alone [15].

This model also incorporates “dark matter” contributing to
“missing heritability,” permitting the parsimonious identification
of key biological pathways in spite of environmental differences
between patient cohorts [16,38]. Moreover, observed differences
may be informative rather than confounding: outliers bilaterally
(such as weak or strong responders to interventions) are
instructive and fertile sources for future investigation rather
than “negligible.” N-of-one study becomes feasible within this
paradigm.

Finally, while heterogeneity is not necessarily a panacea for
discovery—studies utilizing heterogeneity to address acute
respiratory distress syndrome have failed to find robust
biomarkers—the utility of negative findings is bolstered by the
methodology [39]. Evidence-of-absence investigations benefit
greatly from additional rigor that more conclusively redirects
researchers toward clinically meaningful prospects [13].

Health Care Costs
Health care costs may be targeted from the sides of supply and
demand alike. On the supply side, from the perspective of
pharmaceutical companies, improved replicability of novel
molecules reduces research and development costs devoted
toward validation studies, which are currently estimated in the
millions of dollars per agent tested [5]. Theoretically, this can
allow for reduction in prices with preservation of profit margins.
On the demand side, from the payor perspective, improved
generalizability first enhances the cost-effectiveness of covered
interventions, as clinical effects approach experimental effects
[14]. Additionally, more reliable evidence-of-absence studies
empower decision making for minimization of overutilized,
misutilized, and ineffective interventions [13]. Finally, better

understanding of “outlier” pathophysiology can promote the
optimal management of “hot spotters”; that is, the oft-cited 1%
of the population accounting for 33% of expenditures [40].

Health Disparities
Reductions in payor costs, if passed on to consumers, improve
the accessibility of health care. For example, the demonstration
of predictive power for tuberculosis diagnosis using 3-gene
rather than 71-gene panels implies marked reductions in testing
costs (presuming proportional and consistent marginal costs).
Furthermore, to the extent that technological barriers for 3-gene
sequencing are lower, these diagnostics become available to
populations outside of high-resource settings alone [8]. As long
as more parsimonious models are adequately representative and
maintain predictive power across population groups (as was the
case in [8]), accuracy would be preserved in an equitable way
while access is simultaneously enhanced.

Heterogeneity may also support the resolution of health
disparities by virtue of inclusiveness. As previously discussed,
multiplicity of sample sets benefits all populations, with
disproportionately greater benefits for traditionally excluded
populations [15]. In this way, channeling the “wisdom of
crowds” refers not only to wisdom pulled by collaboration
between investigators but also to the wisdom pushed by the
comprehensiveness of study populations.

Conclusion

In summary, we believe that research practices premised on
sample homogeneity are important drivers of shortcomings in
contemporary bench-to-bedside informatics. We assert that
introduction of heterogeneity can favorably bend this trajectory.
Uptake promoted by informal research culture change and
formal inclusiveness criteria can lead to meaningful, sustainable,
and equitable patient care in the future. In other words, the
heterogeneity ethos echoes Osler’s original invocation for
personalized medicine: “Just listen to the patient. He is telling
you the diagnosis!”
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