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Abstract

Background: The discovery of the CRISPR-Cas9–based gene editing method has opened unprecedented new potential for
biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications.
Given the speed of technology development and the almost instantaneous global spread of news, it is important to follow evolving
debates without much delay and in sufficient detail, as certain events may have a major long-term impact on public opinion and
later influence policy decisions.

Objective: Social media networks such as Twitter have shown to be major drivers of news dissemination and public discourse.
They provide a vast amount of semistructured data in almost real-time and give direct access to the content of the conversations.
We can now mine and analyze such data quickly because of recent developments in machine learning and natural language
processing.

Methods: Here, we used Bidirectional Encoder Representations from Transformers (BERT), an attention-based transformer
model, in combination with statistical methods to analyze the entirety of all tweets ever published on CRISPR since the publication
of the first gene editing application in 2013.

Results: We show that the mean sentiment of tweets was initially very positive, but began to decrease over time, and that this
decline was driven by rare peaks of strong negative sentiments. Due to the high temporal resolution of the data, we were able to
associate these peaks with specific events and to observe how trending topics changed over time.

Conclusions: Overall, this type of analysis can provide valuable and complementary insights into ongoing public debates,
extending the traditional empirical bioethics toolset.

(J Med Internet Res 2020;22(8):e17830) doi: 10.2196/17830
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Introduction

Genome editing has many potential applications, ranging from
gene therapy [1] to crop enhancement [2] and production of
biomolecules [3,4]. While it has been possible to modify the
genomes of eukaryotic cells since the 1980s, traditional methods

have proven to be rather impractical, inaccurate, or impossible
to use at scale [5-8]. Accurately targeted gene editing has only
become possible within the last decade [9,10] using a
CRISPR-Cas9–based method. In 2013, the method was further
developed to be used on human cells [11,12], which allowed
for the first successful experiment to alter the human germline
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DNA of non-viable embryos in April 2015 [13]. The experiment,
conducted by a group of Chinese scientists, raised ethical
concerns among researchers and the general public about the
potential far-reaching consequences of introducing germline
modifications [14,15]. Such ethical concerns include unexpected
side effects on the evolution of humans, as well as cultural and
religious arguments. In November 2018, Jiankui He announced
the genetic editing of two viable human embryos with the goal
of introducing HIV resistance [16]. The work came to be known
to a global public under the term “CRISPR babies” and was
condemned by the scientific community as unethical,
unnecessary, and harmful to the two babies [17,18].

As the costs of the technology drop further and usage becomes
more widespread, governments and policy makers are faced
with the challenging task of posing adequate ethical restrictions
to prevent misuse. To gain time to introduce appropriate ethical
frameworks, some scientists have called for a moratorium on
genetically editing the human germline [19-21]. Previous studies
on opinion towards GMO plants highlight how certain events
or scandals (eg, with respect to food safety) may have a major
long-term impact on public opinion and later drive policy
decisions [22-25]. Understanding the public attitudes towards
topics such as CRISPR is therefore of paramount importance
for policy making [26,27].

Several surveys have been conducted with the goal of evaluating
the public’s perception of CRISPR and genetic engineering in
general [28-32]. Such surveys have found that participants are
largely in favor of the technology used for somatic purposes
(eg, in the context of treatment) but less so for germline editing,
especially if this is not for clearly medical purposes.
Additionally, the studies underline certain demographic
correlations (eg, that women, people belonging to ethnic
minorities, and religious communities are more critical about
the potential applications of CRISPR [28,30]). Somewhat
unsurprisingly, the surveys also show that public views are not
always aligned with expert opinions [32]. A recent study that
explored coverage of news articles on CRISPR in North America
between 2012 and 2017 found CRISPR to be overwhelmingly
portrayed as positive and potentially overhyped in news media
compared to the public’s views [33].

Social media platforms allow people to discuss a topic online
with other people around the globe, creating an abundance of
semistructured conversational data. Sentiment analysis provides
a way to study people’s perception of a topic, based on personal
statements, and to process large volumes of such data in an
automated way. Sentiment analysis has been used in the past
to analyze different features such as emotions and polarity in
several different contexts [34]. While traditional methods are
based on linguistic expert knowledge (eg, rule-based methods),

newer methods leverage machine learning, can be trained for
specific contexts, and dominate traditional methods on polarity
classification tasks [35]. Additionally, the supervised machine
learning approaches have the advantage that the performance
of a model for the specific context can be evaluated. The
adaption to a specific context is particularly useful for tweets,
which have a very specific, informal language [36]. Accordingly,
machine learning methods have been successfully used for
Twitter sentiment analysis [37,38]. Most classical supervised
machine learning algorithms for text classification (such as
Naive Bayes or support vector machines [SVMs]) rely on
manual feature extraction. Recently, a type of semisupervised
machine learning model called Bidirectional Encoder
Representations from Transformers (BERT) has been introduced
to natural language processing [39]. BERT models are pretrained
on large corpuses of raw text and can be adapted to a target task
in a process called transfer learning. BERT models are based
on the transformer, a neural network architecture that has been
shown to outperform previously mentioned models in most
natural language processing tasks, including text classification
and sentiment analysis [40,41]. BERT has also been used in
top-ranking submissions in the SemEval2019 challenges on
detection of hate speech and offensive language in social media
data [42,43].

In this study, we conducted the first analysis of a complete
dataset of all tweets about CRISPR published over a 6.5-year
period. The analyzed timespan includes the first experiment of
CRISPR on human cells in 2013 but also recent events, such
as the first genetic editing of viable human babies in November
2018. Furthermore, we make use of recent advances in text
classification models, such as BERT [39], which use
semisupervised machine learning to generate a high-resolution
temporal signal of the sentiment towards CRISPR over the
observed timespan. By combining multiple text classification
methods, we obtain results that can also be linked back to
previous studies conducted with traditional methods, such as
surveys.

Methods

Overview
Our analysis consisted of 4 different explorative approaches,
all of which build upon the sentiments of the tweets. Therefore,
sentiment analysis represents the core of our analysis. In order
to determine the sentiment for the entirety of tweets published
over the last 6.5 years, we trained a predictive model on a
previously manually annotated subset of the data. The process
can be divided into 5 main tasks, which we describe in the
following sections (see Figure 1 for an overview of the process):
data collection, preparation, annotation, training, and analysis.
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Figure 1. Overview of the data processing pipeline. Labels f0-7 denote filtering steps, D0-2 datasets, S0-1 samples, A0-2 annotation sets, and P0-2

predictions. MR, MS, and MO represent machine learning models. API: application programming interface.

Data Collection
The data set (denoted as D0 in Figure 1) for our analysis consists
of all tweets (including retweets, quoted tweets, replies, and
mentions) that match the character sequence CRISPR (in any
capitalization), have been detected to be in English language,
and were published between January 1, 2013 and May 31, 2019.
We retrieved these data either through the Twitter Streaming
API or through GNIP, a Twitter subsidiary that allows access
to historical data that were not retrievable through the Twitter
Streaming API. The 3 aforementioned filtering conditions were
used as parameters in the retrieval through Twitter APIs
(denoted as f0) as well as for the requested data from GNIP.

The number of tweets varied greatly over time, ranging from
4818 in 2013 to 445,744 in 2018, totaling 1,508,044 tweets by
348,502 distinct users (also refer to Multimedia Appendix 1).
Since the focus was on the overall evolution of the discourse
provided by aggregated information, this study considered only
the text in the tweet objects and ignored user-related information
(such as location) or media content (such as photos or videos).
In addition, any occurrences of Twitter handles and URLs in
the text were anonymized (replaced by @<user> and <url>,
respectively) to protect individuals.

Preparation
In a preparatory step, tweets suitable for annotation were
selected from D0. As an inclusion criterion, only tweets with
≥3 English words (after removal of stop words) were considered
(f1). Although a tweet with <3 non-stop words may express a
sentiment, we chose this threshold to ensure that the annotators
had at least a minimal context to determine if the tweet was in
fact relevant to the topic and what sentiment it expressed. The
word count was determined by the help of NLTK’s (Natural
Language Toolkit, a python library for natural language
processing) TweetTokenizer and English word and stop word
corpora [44]. The filtering and subsequent dataset operations
and analysis were carried out using pandas, a python package
for data analysis [45]. The resulting dataset D1 (n=1,334,114)
was used as the basis for the subsequent analysis. To avoid the
annotation of duplicates, all retweets, quoted tweets, and other

duplicates of tweets with the same text were removed, leading
to dataset D2 (n=433,930).

Next, we selected a random sample S0 (n=29,238), so that we
obtained a more or less evenly distributed number of tweets
over the observed timespan. This was achieved by binning the
data by all 77 months and selecting a constant number of tweets
from each monthly bin. In contrast to a fully random sample,
our sampling scheme contained no oversampling bias with
regard to very recent content. Therefore, the generated sample
was more representative of the whole observation period and
accounted for the possibility that the nature of the tweets
changed notably over time.

Annotation
After generating the sample, the selected tweets were annotated
through the Crowdbreaks platform [38,46], which uses
crowdsourcing to annotate social media data. The platform
allows for the creation of a question sequence that is then
submitted in combination with a tweet as a task to MTurk
(Amazon Mechanical Turk) [47]. The question sequence
contained 3 questions for each task. The first question was on
the relevance of the tweet to the topic of CRISPR-Cas9, allowing
“relevant” and “not relevant” as possible answers. The second
question was on the sentiment (positive, negative, or neutral),
and the third question was on the organism (humans, human
embryos, animals [other than human], plants, bacteria, multiple,
not specified).

Before submitting the task to MTurk, the availability of the
tweet was automatically checked. This was done in order to
respect the user’s right to either delete their content or set it to
private after the time of data collection. Filtering by tweets that
were still available yielded the sample S1 (n=22,513), which
was subsequently annotated with regard to the 3 questions
mentioned earlier. This resulted in annotation set A0. To detect
workers with questionable performance, the annotators’ raw
agreement was calculated, which denotes the fraction of the
number of actual agreements over the number of possible
agreements an annotator had with other annotators. An annotator
was considered an outlier if this value was larger than 3 standard
deviations from the mean, the annotator had less than 20 possible
agreements with other annotators, or the annotator was involved
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in less than 3 separate tasks. All annotations by outlier
annotators were subsequently removed. The resulting Fleiss'
kappa agreement scores [48] were 0.81 and 0.28 for the
questions of relevance and sentiment, respectively. Tweets for
which a unanimous consensus of at least 3 independent
annotators could be found were merged into dataset A1. For the
questions on sentiment and organism, only tweets that were
labelled as relevant were considered and exported to A2. This
resulted in 3 cleaned datasets with annotated tweets for relevance
(n=16,421), sentiment (n=4718), and organism (n=1196), which
we used to train 3 classifiers.

Training
In order to classify the data with regard to relevance, sentiment,
and organism, we constructed 3 classifiers: MR, MS, and MO,
respectively. The classifiers tried to predict the respective labels
from the text of the tweet alone. In the process, we analyzed
the performance of 4 different classifier models: Bag of Words
(BoW), Sent2Vec sentence embeddings [49] coupled with SVMs
[50], FastText [51], and BERT [39]. The tokenization process
was different for each model class. In order to evaluate the
models, the cleaned annotation data were shuffled and split into
training (80%) and test sets (20%).

For the BoW, SVM, and FastText models, we used supervised
learning to train the 3 classifiers for sentiment, relevance, and
organisms. A limited search of model parameters was conducted.
In the case of BERT, we started from the pretrained
(unsupervised) English BERT-large-uncased model provided
by the Huggingface library [52] and conducted an additional
step of unsupervised, domain-specific pretraining on our raw
body of tweets. This model then served as the basis for the final,
supervised training step (ie, fine-tuning the general model with
classifier-specific labelled data). For this fine-tuning step, a
learning rate of 1e-05 and 2 epochs of training were used. This
work was conducted using PyTorch [53] and the Huggingface
library [52].

After the training phase, we selected the classifiers for relevance,
sentiment, and organism (MR, MS, and MO in Figure 1) by
evaluating the performance of the models on the test set (see
Multimedia Appendix 2 for different model performances). The
fine-tuned BERT model was the best performing sentiment
classifier (MS), with a macro-averaged F1 score of 0.727
(F1positive=0.827, F1neutral=0.715, F1negative=0.639). The
fine-tuned BERT model was also found to be the best
performing model for the relevance (MR) and organism (MO)
classifiers with macro-averaged F1 scores of 0.91
(F1related=0.997, F1unrelated=0.823) and 0.89 (F1humans=0.873,
F1embryos=0.762, F1animals=1, F1plants=0.889, F1bacteria=0.909,
F1unspecified=0.902), respectively.

Prediction
For the analysis, the best performing model (fine-tuned BERT)
for relevance MR was used to predict dataset D1 and yield the
predicted dataset P0 (n=1,334,114) of the same length containing
a label for relevance. Next, all tweets predicted as not relevant
were removed from P0, yielding the dataset P1 (n=1,311,544).

This dataset was then used to predict sentiment and organism
using the models MS and MO, resulting in the final dataset P2.

Analysis
In our analysis, we used the sentiments in relation to tweet
activity (number of tweets), topics of the tweets (hashtags),
organisms the tweets were talking about (predicted), and themes
identified from previous studies on CRISPR mentioned earlier
(through regular expressions) to gain different kinds of insights.
Wherever we used sentiments for numerical calculations, we
used +1 for positive, 0 for neutral, and −1 for negative sentiment.
Further, we extrapolated the numbers for 2019 where applicable
for better comparison since we only had data until May 31,
2019. The different parts of the analysis are explained in more
detail in the following paragraphs.

The first part of the analysis was concerned with the
development of the sentiment in relation to the number of tweets
over time. The detection of a temporary deviation from the
general sentiment was of particular interest. While we included
all tweets for the analysis of activity, we excluded tweets with
neutral sentiment for the analysis of sentiment to make
deviations more visible. We aggregated activity and sentiments
on a daily basis. For the sentiments, however, the sentiment
value of a specific day was determined by taking the mean value
of all positive and negative sentiments within a sliding 7-day
window centered around that day (±3 days). Further, we tested
whether the yearly means based on the positive and negative
tweet sentiments were significantly different from each other
with the Welch's t-test [54,55] using scipy’s statistics module
[56]. We then used scipy’s module for peak detection [56] to
detect events of interest, using a relative prominence cut-off of
0.2. In order to identify potential sources for the change in
sentiment, we manually identified major events that relate to
CRISPR.

In the second part, we used the predictions of the model MO

and the sentiments to compare the development of the sentiment
for different organisms. We calculated the mean sentiments
over a month and excluded all months that did not have at least
100 tweets for the respective organism. Further, we used the
same test as we did for the yearly means to compare the
organism class means based on the individual tweet sentiments
(positive, negative, and neutral).

Third, we analyzed hashtags as a proxy for the topics a user was
talking about in his or her tweet. The hashtag #CRISPR was
excluded from the analysis since CRISPR was the overarching
topic all tweets had in common. We counted the occurrences
of every hashtag per year. We used the exact hashtags and did
not group similar hashtags. For example, the hashtags
#crisprbaby and #crisprbabies were treated as different hashtags.
We did this due to the difficulty of automatically matching
similar hashtags, since they can be a composition of multiple
words that made strategies like stemming not straightforward.
For each hashtag and year, we then calculated the mean
sentiment and selected the 15 most common hashtags for each
year for further analysis. We then manually compared how these
top 15 topics per year increased and decreased in popularity
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throughout the years, as well as how the sentiments for these
topics changed.

In the fourth and last part of our analysis, we based our analysis
on the earlier conducted studies. We conducted a literature
search in scientific databases according to a predefined search
strategy (see Multimedia Appendix 3). The search was
conducted in the fall of 2017. We reviewed the resulting studies
and identified the reasons why people had a positive or negative
attitude towards CRISPR and issues that concerned them. In
the process, we summarized these reasons and concerns for each
study and compiled a list with a short description for each of
them. Since there was thematic overlap across the studies, we
inductively determined the themes of these summaries and
compiled a regular expression representing each theme based
on the summary text. Additionally, we added themes and
corresponding regular expressions based on publications and
events that occurred between the fall of 2017 and the summer
of 2019. The regular expressions then allowed us to
automatically check for matches on the entire Twitter dataset
as a proxy for the presence of the themes that occurred in the
studies. See Multimedia Appendix 4 for the themes and regular
expressions.

Results

Overview
Our analysis includes over 1,300,000 tweets (dataset P1,
n=1,311,544) over the time period from January 1, 2013 until
May 31, 2019. The predicted sentiments of the tweets were
predominantly positive (685,578/1,311,544, 52.3%) or neutral
(528,196/1,311,544, 40.3%). Only a minor fraction was
predicted as negative (97,770/1,311,544, 7.5%). In the following
sections, we report our results focusing on different aspects.

Temporal Development
Figure 2 shows a temporal analysis of the predicted sentiments
in relation to key historical events surrounding CRISPR. A
sentiment of zero indicates an equal portion of positive and
negative tweets, and the values 1 and −1 indicate a signal with
only positive or negative tweets, respectively. Figure 2A shows
the sentiments between July 2015 and June 2019. The time
period before July 2015 was excluded, as activity was too low
for a high-resolution sentiment signal. The sentiment remained
mostly positive, with an average of 85% positive tweets and
only 15% negative tweets. Especially over the initial time period
until March 2017, the sentiment shows little variation. After
that, the sentiment reveals a series of sharp negative spikes, on

multiple occasions dropping below zero. Over the observed
time period, the sentiment shows a slight negative trend (slope

of −0.061 y−1, standard error 0.005 y−1), as indicated by the
linear trend line in orange. The differences between the yearly
means of the tweet sentiments were all significant (P<.001; see
Multimedia Appendix 5 for all means, standard deviations, and
test statistics).

We then compared the sentiment curve to the observed activity
surrounding CRISPR in the same time span, as shown in Figure
2B. Shown are the mean daily counts of the sample P1 over a
sliding window of 7 days. Activity varied considerably, with
an average baseline of about 1000 tweets per day and peaks of
up to roughly 6000 tweets per day.

We detected 9 peaks of interest. They are marked with dashed
lines in Figure 2. When comparing peaks of high activity to the
sentiment, it can be seen that peaks of high activity before
mid-2018 did not result in a negative sentiment response. Peaks
of strong negative sentiment started to appear in 2017 but it was
not accompanied by the same level of activity until after 2018.

In a second step, major news events were manually mapped to
coinciding peaks (for a full list, see Multimedia Appendix 6).
A subset of these peaks was marked with letters a-f in Figure
2B for illustrative purposes. In all cases, the most retweeted
tweet within days of the peak was linking a news article
describing the event. The events include the first use of CRISPR
in humans by a group of Chinese scientists in November 2016
(peak a) and the US Patent Office deciding in favor of the Broad
Institute (peak b). Both of these events did not lead to a
significant change in sentiment. Peak c coincides with the
publication of a study that reported the correction of a mutation
in human embryos [57], causing widespread media attention
and, as before, did not cause a drop in sentiment. However, in
July 2018, a study by the Wellcome Sanger Institute [58] warned
about serious side effects, such as cancer, that CRISPR could
have when used in humans (peak d). This peak led to a clear
negative response in the sentiment index and marks the first
negative peak with high media attention. When researcher He
Jiankui revealed creating the world’s first genetically edited
babies in November 2018 [16] (peak e), the highest activity was
recorded. Although He’s revelation caused a strong negative
signal, the strongest negative sentiment was recorded shortly
after, in February 2019 (peak f). This event coincides with the
re-emergence of a news story from August 2017 when
biohackers managed to encode a malware program into a strand
of DNA [59].
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Figure 2. A) Predicted sentiment towards CRISPR between July 2015 and June 2019. The blue curve denotes the sentiment s, which is calculated as
the mean of the weighted counts of positive and negative tweets over a centered rolling window of 7 days. The orange curve denotes a linear fit of the
sentiment s. B) Daily counts of all analyzed tweets. The blue area shows the daily sum of positive, negative, and neutral tweets as the mean within a
7-day centered rolling window. All peaks above a relative prominence of 0.2 are marked with dashed lines; a-f denote peaks that coincide with certain
events.

Organisms
In order to improve our understanding of the sentiment signal,
the data were predicted with respect to which organism each
tweet was about (see the Methods section). We predicted the
organism of the tweets in the dataset P1 (n=1,311,544) resulting
in the classes animals (7.6%), bacteria (2.4%), embryos (4.3%),
humans (30.3%), plants (4.9%), and unspecified (50.6%). It is
noteworthy that more than half of all tweets do not specifically
refer to an organism in the context of CRISPR. After
unspecified, the class humans is the second largest group,
followed with some margin by animals (eg, mice for animal
testing), plants, and embryos. The classes humans and embryos
combined account for a little more than one-third of all tweets.
Tweets specifically mentioning CRISPR in the context of
bacteria were rather rare.

Figure 3A shows the monthly sentiment for each organism class,
which are based on the monthly counts shown in Figure 3B (all

monthly means and standard deviations can be found in
Multimedia Appendix 7). Of all classes, embryos exhibited the
most negative-leaning sentiment (mean sentiment 0.14 over all
monthly means) and was also the class with the strongest
variations between months (SD 0.27). Further, a relatively high
sentiment was measured for the classes animals (mean 0.70,
SD 0.14), bacteria (mean 0.65, SD 0.18), and plants (mean 0.61,
SD 0.14), followed by the class humans (mean 0.58, SD 0.23),
which showed a dip in the sentiment in the months following
November 2018. The class unspecified had a slightly lower
sentiment (mean 0.45, SD 0.13) compared with the other classes.
In addition to this monthly breakdown, the differences between
the organism class means based on the individual tweets were
all significant (P<.001), except for the difference between the
class means of bacteria and plants with a 3.8% probability of
occurring by chance (P=.038; see Multimedia Appendix 5 for
all test statistics).
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Figure 3. A) Heatmap of monthly sentiments by predicted organism. The sentiments were calculated as the mean of the weighted counts by sentiment
(the weights included −1, 0, and 1 for negative, neutral, and positive tweets, respectively) for each month and organism class. Blue and red colors
indicate positive and negative sentiment values, respectively. The sentiments of heatmap cells with <100 tweets of that month and organism are
transparent. B) Monthly counts by predicted organism.

Hashtags
The most frequently used hashtags of every year revealed the
topics of highest interest and how they evolved over time (see
Figure 4). Naturally, the occurrences of individual hashtags
increased over the years along with the total number of tweets.
Certain very common hashtags, such as #dna, #science,
#biotech, or #geneediting and #genomeediting, appeared as top
hashtags in multiple years. When relating the hashtags with the
sentiment of the text they appeared in, we can see that most of
these common hashtags were used in the context of a positive
or very positive sentiment. The 3 hashtags with the most positive
sentiments and that were used at least 100 times were #cancer
(mean sentiment 0.85, SD 0.36) in 2015, #hiv (mean 0.90, SD
0.34) in 2016, and #researchhighlight (mean 1.00, SD 0.06) in
2019. It is also notable that #science was among the 5 most
common hashtags in every year except for 2013 and was
consistently related to a positive sentiment, with means between
0.52 (in 2018) and 0.74 (in 2013).

Only a few hashtags were related to negative sentiments. The
most prominent one was #crisprbabies, with mean sentiments
of −0.30 (SD 0.65) in 2018 and −0.13 (SD 0.63) in 2019,
followed by #gmo (mean −0.11, SD 0.76) in 2019, #bioethics
(mean −0.02, SD 0.45) in 2015, and #geneeditsummit (mean
−0.01, SD 0.46) in 2018. It is worth noting that the hashtag
#geneeditsummit only appeared in 2015 and 2018 and that its
associated sentiment dropped from 0.20 to −0.01. The hashtag
refers to the two summits on human genome editing, which
were held in Washington D.C. in 2015 and in Hong Kong in
November 2018, coinciding with the first gene editing of viable
human embryos. Similarly, the hashtag #gmo became slightly
more negative in 2018, with a mean sentiment of 0.09 compared
to 2016 (mean 0.24) and 2017 (mean 0.14) and even dropped
to −0.11 in 2019. The hashtag #bioethics only appeared in 2015
and was associated with a relatively low sentiment of −0.02.
This may highlight the various ethical concerns raised during
the 2015 Human Gene Editing summit. See Multimedia
Appendix 8 for the full list of the counts, sentiments, and
standard deviations of the most used hashtags by year.
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Figure 4. Visualization of the sentiment associated with the most frequently used hashtags every year. For every year, the 15 hashtags with the highest
counts for that year are included (the hashtag #crispr was excluded). The hashtags are sorted by yearly counts (indicated by the bar height), where the
hashtag with the highest count is at the top. The color represents the average sentiment for the respective hashtag, with blue representing a very positive
sentiment and red representing a very negative sentiment. If a hashtag is listed in multiple years, the occurrences are linked with a gray band. The number
of tweets with the hashtag is indicated in parentheses next to the respective hashtag. For the year 2019, the counts were extrapolated from the months
before June to the full year.

Themes
In comparison to the hashtags, the themes derived from previous
studies can relate the Twitter discussion to known themes of
interest to the public (see the Methods section for a description
of the analysis). The 6 themes that were matched most are
presented in Figure 5 and grouped by positive, neutral, and
negative sentiments. The themes include genome (with a total
count of 526,612 [extrapolated for 2019]), baby (68,269),
disease (64,181), embryo (49,084), treatment (35,865), and
mutation (34,884). Unsurprisingly, the theme “genome” was
matched most frequently, occurring in 34% of the tweets.

The reported themes show distinct occurrence patterns
depending on sentiment, yielding an aggregated picture of the

discussion surrounding CRISPR throughout the years. Spikes
are evident in certain years (see Multimedia Appendix 9 for the
counts per year of the top 6 themes), and the most significant
change in occurrences happened for the theme “baby,” which
increased substantially from 2017 to 2018, likely associated
with the “CRISPR babies” scandal in November 2018. While
a spike could be observed for all 3 sentiments, the increase was
far more pronounced in the neutral and negative classes (see
Figure 5). The theme “mutation” shows a negative peak in 2017,
when risks about potential side effects of CRISPR surfaced.
Relative to other themes, the themes “disease” and “treatment”
were major themes in a discussion associated with a positive
sentiment.
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Figure 5. Yearly occurrences of themes. Multiple themes with distinct regex patterns were matched to the text of tweets, and the 6 most frequent themes
were selected. Panels A, B, and C show the yearly counts of themes when grouped by negative, neutral, and positive sentiment, respectively. For the
year 2019, the counts were extrapolated from the months before June to a full year.

Discussion

Principal Findings
We have generated the first high-resolution temporal signal for
sentiments towards CRISPR on Twitter, spanning a duration of
more than 6 years. Our results suggest that, overall, the CRISPR
technology was discussed in a positive light, which aligns well
with a previous study that considered the coverage of CRISPR
in the press [33]. However, more recently, the sentiment reveals
a series of strong negative dips, pointing to a more critical view.
The frequency and magnitude of these dips have increased since
2017, which is underlined by the overall declining sentiment.
It is noteworthy that the dips usually coincide with high activity,
suggesting that many people are only exposed to the topic of
CRISPR when it is presented in an unfavorable way.

Further, we could tie the most prominent peaks in tweeting
activity to real world events. The last 3 peaks, which coincide
with the release of possibly concerning news (side effects,
CRISPR babies, malware), also align with strong dips in the
tweet sentiment. Together, this indicates that there is at least a
partial connection between tweets and the discourse off Twitter
and that the sentiment changes are not only the result of a
self-contained discussion on the social media platform. Even
more so, the peak detection potentially allows the timely
identification of significant incidents that can shape public
discourse and opinion.

As shown in the breakdown of sentiment by organism, the
negative sentiment was stronger in the embryo and human
classes but stayed mostly positive towards other organisms. The
data therefore suggest that the many ethical issues related to
human germline editing are reflected in the tweets. However,
criticism may not be targeted at the use of CRISPR in humans
per se: Hashtags such as #hiv or #genetherapy were connected
to very positive sentiments, which suggests a positive attitude
towards developing CRISPR for use in medical treatment. This
aspect is further strengthened when considering the sentiment
of themes such as “treatment” or “disease.” These observations
are in line with several surveys in which participants
demonstrated strong support of CRISPR for use in medical
treatment but were critical regarding modifications of human
germline cells [28-32].

The dataset that includes continuous observations over a long
period of time allows for conclusions to be drawn about the
public perception of CRISPR both on short and long time scales.
For example, when the article on biohacking re-emerged in
2019 (peak f), shortly after the discussions around CRISPR
babies, it was discussed in significantly more negative terms
than at the time of its publication in 2017. Therefore, the
intermediate developments seem to have had a negative
influence on the perception of the event. This is in line with the
overall negative trend. The presence and absence of themes
observed in the data hint at the influence that key events might
have on the discussion. While the theme “mutation” was
discussed intensely in 2017, its occurrence in tweets dropped
in the following year, 2018, in which “baby” became the most
occurring theme except for “genome”.

Our results support the use of Twitter and similar platforms for
the study of public discourse. Discussion about a subject matter
can be investigated in real-time, in depth at the level of
individual statements, and on the basis of existing data. The
insights gained through such studies can bring new issues to
light, indicate which topics need extra attention with respect to
ethical considerations and policy making, and allow a quicker
response to technological advancements. In addition, the
presented method offers a novel approach to promote public
engagement, especially in the areas of biotechnologies and
health care, as argued by the Nuffield Council on Bioethics
[60].

Limitations
Although the predicted sentiment index seems to overlap well
with survey results, it cannot be directly used as a substitute for
an opinion poll. Polling allows for the collection of answers to
specific questions of interest instead of inferring them from
public statements. Furthermore, the Twitter community is not
necessarily representative of the whole population of a country.
However, sentiment analysis avoids the disadvantages of
traditional methods such as response bias and provides more
detailed insights through access to granular data of online
discussions.

We cannot exclude the possibility that the gradual decrease over
time was influenced or caused by a general shift in the sentiment
of the scientific Twitter community. Our analysis relies only
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on Twitter, and we did not validate the findings on another
social media platform. Also, we cannot directly tie the sentiment
in tweets to the conversation off Twitter. Nonetheless, our results
show that there is a connection between tweets, findings in
earlier studies, and real-world events and that insights can be
gained from this type of analysis on Twitter that are not
accessible through other methods.

Further, we acknowledge that most people’s opinions might not
fit into the positive, neutral, and negative classes presented in
this study. We therefore tried to counteract this problem by
categorizing the data not only by sentiment but also by relevance
and organism, allowing for a better understanding of the
measured sentiment. Furthermore, we recognize the challenging
nature of deducing someone’s true opinion based on a short
message alone and the fact that it is only possible within a
statistical margin of error. This error is slightly larger for the
negative class, as the F1 score of this class was relatively low
compared to the other classes due to a strong label imbalance.
We believe, however, that our method is nevertheless suitable
to capture certain trends on a larger scale.

Conclusions and Future Direction
We demonstrated that the sentiment analysis of tweets provides
a high-resolution picture of the ongoing debate on CRISPR,
allowing us to study the evolution of the discourse while

extending the capacity of traditional methods. Further, the
presence of the same themes that have been identified in existing
studies confirms the validity of our signal with respect to
content. The existence of events that match the activity peaks
also indicates the sensitivity of the signal towards off-Twitter
incidents. Therefore, our approach offers an additional method
to surveys and that can be deployed to get richer information,
a larger sample size, and higher temporal resolution.

Future work can go beyond the deduction of sentiments and
shed more light on the nature of discussions and arguments
raised and how they influence each other, giving a better idea
of the reasoning behind people’s opinions. Furthermore, specific
topics, such as the discussion surrounding a potential
moratorium of CRISPR, may be analyzed in more detail and
provide actionable outcomes.

Since the presented analysis can automatically process a large
amount of data in almost real-time, it extends the traditional
toolset of empirical methods for discourse analysis. It may
therefore help analyze public opinion and support policy and
decision making.

Data and Code Availability
The data, machine learning models used, and source code for
this analysis can be found in our public repository:
https://gitlab.ethz.ch/digitalbioethics/crispr-sentiment-analysis
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Multimedia Appendix 1
Yearly counts. Number of tweets per year since January 1, 2013, until May 31, 2019. A steady increase in volume can be observed.
In parentheses is the extrapolated number for 2019 (from the first five months).
[PDF File (Adobe PDF File), 28 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Model performance. Classification scores for selected models. Subfigures A, B and C correspond to three different classifiers
trained for sentiment, relevance and organism, respectively. The y-axis shows the best corresponding model for a specific model
type after hyperparameter search was performed. The model types are random (pick a class at random), majority (always pick
the most frequent class), bag of words, fastText, BERT and a fine-tuned version of BERT-large (denoted as BERT ft). The x-axis
denotes the test performance scores of accuracy (green), and macro-averaged precision (blue), recall (orange) and F1 scores (red).
The fine-tuned BERT model was the best performing model for all three classification problems irrespective of the metric used.
[PDF File (Adobe PDF File), 112 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Preliminary literature review search strategy and databases.
[PDF File (Adobe PDF File), 50 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Themes and regex patterns. Derived themes and corresponding regex patterns from preliminary literature review.
[PDF File (Adobe PDF File), 37 KB-Multimedia Appendix 4]
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Multimedia Appendix 5
Mean sentiments and test statistics for years and organism classes. On the left, the table shows the mean sentiment (Sent) for
each year and organism class based on the sentiments of the individual tweets. Further, the standard deviation (SD) and number
(Count) of tweets for each group are reported. On the right, the p-values or the significance level if significant (alpha = 0.001)
and the t-values from Welch's t-test among the years and organism class means are shown. A value refers to the comparison
between the classes given by its row and column labels. For example, the p-value for Welch's t-test for the difference between
the mean of the bacteria class and the plants class is 0.038.
[PDF File (Adobe PDF File), 75 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Identified events. Selected events with a peak prominence above 0.2. The marks correspond to the selected events in Figure 2 of
the article. Peak times have been automatically detected as described in the methods section. The corresponding events have been
inferred from visual inspection of the data.
[PDF File (Adobe PDF File), 30 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Monthly mean sentiments and standard deviations per organism. The table shows the mean sentiments (Sent) and their standard
deviations (SD) for every month and organism. A dash (–) indicates that less than 100 tweets were in the respective organism
class for that month and that we did not calculate the mean sentiment. Months with empty rows had no tweets in that class. The
mean values of this table were used in Figure 3.
[PDF File (Adobe PDF File), 61 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Top hashtags’ counts and sentiments. List of top 15 hashtags, corresponding counts (Count), sentiments (Sent) and standard
deviations (SD) by year. The extrapolated hashtag counts for 2019 are shown under 2019*, the original counts for the first five
months under 2019. The mean values of this table were used in Figure 4.
[PDF File (Adobe PDF File), 49 KB-Multimedia Appendix 8]

Multimedia Appendix 9
Top themes found in tweets. List of top 6 themes with highest overall occurrence across sentiment. The table shows the number
of occurrences in tweets for every sentiment and year. The year 2019 was extrapolated to determine the top themes, indicated by
the star (*), based on the first five months of 2019. These counts were used in Figure 5.
[PDF File (Adobe PDF File), 32 KB-Multimedia Appendix 9]
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