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Abstract

Background: Twitter presents a valuable and relevant social media platform to study the prevalence of information and sentiment
on vaping that may be useful for public health surveillance. Machine learning classifiers that identify vaping-relevant tweets and
characterize sentiments in them can underpin a Twitter-based vaping surveillance system. Compared with traditional machine
learning classifiers that are reliant on annotations that are expensive to obtain, deep learning classifiers offer the advantage of
requiring fewer annotated tweets by leveraging the large numbers of readily available unannotated tweets.

Objective: This study aims to derive and evaluate traditional and deep learning classifiers that can identify tweets relevant to
vaping, tweets of a commercial nature, and tweets with provape sentiments.

Methods: We continuously collected tweets that matched vaping-related keywords over 2 months from August 2018 to October
2018. From this data set of tweets, a set of 4000 tweets was selected, and each tweet was manually annotated for relevance (vape
relevant or not), commercial nature (commercial or not), and sentiment (provape or not). Using the annotated data, we derived
traditional classifiers that included logistic regression, random forest, linear support vector machine, and multinomial naive Bayes.
In addition, using the annotated data set and a larger unannotated data set of tweets, we derived deep learning classifiers that
included a convolutional neural network (CNN), long short-term memory (LSTM) network, LSTM-CNN network, and bidirectional
LSTM (BiLSTM) network. The unannotated tweet data were used to derive word vectors that deep learning classifiers can leverage
to improve performance.

Results: LSTM-CNN performed the best with the highest area under the receiver operating characteristic curve (AUC) of 0.96
(95% CI 0.93-0.98) for relevance, all deep learning classifiers including LSTM-CNN performed better than the traditional
classifiers with an AUC of 0.99 (95% CI 0.98-0.99) for distinguishing commercial from noncommercial tweets, and BiLSTM
performed the best with an AUC of 0.83 (95% CI 0.78-0.89) for provape sentiment. Overall, LSTM-CNN performed the best
across all 3 classification tasks.

Conclusions: We derived and evaluated traditional machine learning and deep learning classifiers to identify vaping-related
relevant, commercial, and provape tweets. Overall, deep learning classifiers such as LSTM-CNN had superior performance and
had the added advantage of requiring no preprocessing. The performance of these classifiers supports the development of a vaping
surveillance system.
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Introduction

Background
Machine learning methods provide a valuable framework for
systematic and automated processing and analysis of data on
social media platforms such as Twitter for developing
surveillance systems with application to public health. The
continuous generation of an enormous amount of content by a
vast number of users allows for efficient real-time monitoring
of sources of information and user sentiment if it can be
automated. Furthermore, such monitoring can lead to the
discovery of emergent patterns of information flow and changes
in sentiments that may occur in response to public health and
policy interventions. In this study, we derived and evaluated
traditional machine learning and deep learning classifiers that
can be used to build a Twitter-based surveillance system to
identify and monitor vaping-related content and sentiments.

Vaping and Public Health
Vaping is the inhalation of aerosols that often contain nicotine
combined with flavorings where the aerosols are delivered
through electronic delivery systems known as electronic
cigarettes (e-cigarettes) or electronic vaporizers. Evidence
suggests that vaping is safer than smoking tobacco and can help
with successful smoking cessation [1]. However, emerging
research indicates that vaping may cause cardiovascular and
respiratory diseases and may pose health hazards from
secondhand aerosol exposure [2]. More recently, vaping has
been associated with e-cigarette or vaping product
use–associated lung injury, which has caused hospitalization
and even death [3,4]. There is a rising concern that vaping
increases addiction among nonsmokers, especially adolescents
[5], and many are unaware of the addictive potential until after
they become nicotine dependent [6]. Thus, there is a strong need
to measure and understand the risks, sentiments, and behavior
related to vaping.

Surveillance Using Twitter
Twitter is a popular social media platform that is widely used
by adolescents, young adults, and racial and ethnic minorities,
all of whom are disproportionately affected by vaping [7-9].
Communication on Twitter is by short succinct messages, called
tweets, which are limited to 280 characters. Twitter is an open
platform that enables users to see information and messages
from other public users without special permission. This results
in high potential exposure to each tweet, which enables
systematic assessment by investigators. Furthermore, tweets
heavily use hashtags (eg, #vapelife) as searchable text, which
allows users to click on a linked word or phrase and navigate
to other mentions of it [10]. These factors make Twitter a
relevant, valuable, and feasible social media platform to study.

Infoveillance is the application of surveillance methods to
internet-related and other electronic content to inform public

health and public policy. Traditional surveys around attitudes
and beliefs are too slow to optimally capture rapid changes.
Infoveillance methods that use web-based data streams have
proven to be more effective for several areas of public health.
Investigators have used Twitter data for the infoveillance of
topics such as pharmacovigilance, vaccine information, and
tracking health conditions [11-13]. For example, such data have
been useful in characterizing outbreaks of food-related illness
and influenza, factors surrounding prescription drug abuse [14],
adverse drug events [15], sentiment toward the use of tobacco
[16,17], and use of alcohol [18].

Objective
Our immediate objective was to derive and evaluate machine
learning classifiers that can form the basis of a Twitter-based
surveillance system that is focused on vaping-related tweets.
Our ultimate goal is to use a surveillance system to assess key
factors such as sentiment, marketing, procurement, health
effects, and policy that will provide unique perspectives related
to vaping. Furthermore, we plan to characterize changes over
time in the volume of messaging related to vaping and other
vaping-related characteristics of interest [19,20]. Leveraging
Twitter as a complement to traditional surveillance will allow
for real-time identification of changes that can be used by public
health practitioners. For example, when positive sentiment
toward vaping rises, practitioners may be able to determine
reasons for this and respond accordingly. Similarly, when there
is a notable spike in misinformation about vaping and health
effects, they will be able to act immediately to correct this
information. As a step toward the development of a
Twitter-based vaping surveillance system, we derived machine
learning classifiers to automatically identify tweets that are
vaping-related, are noncommercial, and express provape
sentiments. Using a data set of manually annotated tweets and
a larger data set of unannotated tweets, we derived and evaluated
traditional machine learning and deep learning classifiers.

Related Work
Natural language processing, classification, and sentiment
analysis of Twitter data are more taxing than other kinds of text
because of the limited length of the tweets. As tweets are limited
to 280 characters and the language used is informal, the
messages are interspersed with abbreviations, slang,
Twitter-specific terms such as usernames and hashtags, and
URLs.

Several investigators have derived classifiers using Twitter data
in the context of vaping. For example, Han and Kavuluru [21]
implemented support vector machines, logistic regression, and
convolutional neural networks to identify marketing and
nonmarketing e-cigarette tweets. Myslin et al [17] and
Cole-Lewis et al [22] annotated tobacco-related tweets and
derived several machine learning classifiers to predict sentiment.
Huang et al [23] analyzed tweets using classifiers and found
that tweets related to e-cigarettes were about 90% commercial
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and about 10% mentioned smoking cessation. Resende and
Culotta [24] derived a sentiment classifier for e-cigarette–related
tweets that identified positive and negative tweets with 96%
and 70% precision, respectively.

Compared with prior work, the main contributions of this paper
are (1) exploration of a large range of classifiers, including deep
learning classifiers; and (2) analysis of highly relevant features
in classifiers using an algorithm that provides a unified approach
to explain the output of any classifier.

Methods

Data Collection
Primary data were collected from the Twitter application
programming interface using the open-source, real-time
infoveillance of Twitter health messages (RITHM) software
[19]. RITHM allows for the real-time collection of all publicly
available tweets matching a specified set of keywords. We
identified and collected all tweets that matched one or more
keywords that are indicative of vaping-related tweets. The
keywords that we used for data collection included vape, vapes,
vaper, vapers, vaping, juul, juuls, and juuling. The
vaping-related keywords are based on previous Twitter research
[10], and, in particular, we included keywords to identify the
highly popular JUUL e-cigarette [6].

Data Set for Annotation
We continuously collected all publicly available tweets that
matched vaping-related keywords over 2 months from August
17, 2018, to October 19, 2018. This resulted in a data set of
1,892,722 tweets. From this data set, we removed retweets
(rebroadcasted messages without original content), and from
the remaining original 810,600 tweets, we randomly selected a
subset of 4000 tweets for manual double coding and
adjudication. The removal of retweets and the random selection
ensured that the tweet content was lexically diverse and
sufficiently representative of tweets related to vaping. This
particular period was chosen as it also included salient health
policy events related to vaping. In particular, the US Food and
Drug Administration (FDA) sent warning letters to retailers and
manufacturers (September 12, 2018) and seized documents from
JUUL headquarters (October 05, 2018). In previous studies,
data sets of 4000 to 7000 tweets have been adequate for the
derivation of classifiers [17,25,26].

Unannotated Data Set for Deriving Word Vectors
Word vectors, also known as word embeddings, are derived
from a large data set of text to capture semantic and syntactic
similarity and context of each word as a vector of real numbers.
Word vectors have become popular because they can improve
the performance of deep learning classifiers and can reduce the
volume of annotations that are needed. Word vectors have the

advantage that they do not require annotations; instead, they
leverage a large amount of unannotated data.

We continuously collected all publicly available tweets that
matched vaping-related keywords over 7 months from January
01, 2018 to July 31, 2018. This resulted in a data set of
4,078,343 tweets, and from this data set, we removed retweets
to obtain a set of 1,899,851 original tweets. We used this set to
derive word vectors for deep learning. The period of data
selected for word vectors represents 7 months of continuous
data collection and provided a sufficiently large set of tweets
for deriving word vectors and simultaneously ensuring that
relevant context from the tweets, in terms of language and
topical diversity, is captured in the word vectors. The period of
data selected for word vectors was before the period of data
selected for annotations, with no overlap, as a part of the
annotated set was used for the evaluation of the classifiers.

Annotation
We developed a three-level hierarchical annotation schema, as
shown in Figure 1. Descriptions of the labels used for annotation
are provided in Table 1. The annotation procedure consisted of
first annotating a tweet as vape relevant or not based on the
content. A relevant tweet was further annotated as commercial
or noncommercial, and a noncommercial tweet was further
annotated for provape or not provape sentiments. A similar
three-level hierarchical annotation schema has been used for
annotating vaccination-related tweets. At the first level, a tweet
is annotated as relevant or not; at the next level, only a relevant
tweet is annotated as positive, negative, or neutral; and at the
final level, only a negative tweet is annotated based on safety,
efficacy, cost, etc [25,26]. A hierarchical annotation schema
has the advantage that all tweets need not be annotated on all
possible levels, thus allowing for a reduction in annotation effort.
For example, nonrelevant tweets need not be annotated further,
and relevant and commercial tweets need not be annotated
further.

Trained annotators independently annotated 4000 tweets in
batches of 100 to 200 and adjudicated annotation disagreements
in the presence of a supervising investigator. Annotators
considered tweet content that included both primary and
secondary text (ie, quoted tweets within primary tweets).
Furthermore, annotators had access to Twitter’s native platform,
where they could review the context of potentially confusing
content. Cohen κ coefficient was used to assess interrater
agreement [27] before adjudication and at regular intervals
throughout the process. Initial κ coefficients were relatively
modest (eg, κ=0.54 for relevance), but improved as annotators
gained familiarity with the data and the domain. The κ
coefficients for the final round of annotation (n=100) were 0.71
for relevance, 0.89 for commercial, and 0.70 for provape. Fully
adjudicated annotations and tweet content including metadata
were used for machine learning.
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Figure 1. A hierarchical annotation scheme for vaping-related tweets.

Table 1. Descriptions of labels used for annotating vaping-related tweets.

DescriptionsLabels

Is the tweet in English and related to the vaping topic at hand (eg, vape use or users, vaping devices, or products)?Relevant

Tweets categorized as not relevant were typically in non-English or had referenced vaping cannabis products specifically, such
as:

Not relevant

• “Teens are smoking, vaping and eating cannabis”
• “What if I vape weed?”

Is the tweet selling, marketing, or advertising vaping products?Commercial

Includes tweets that demonstrate favorability toward a product but do not directly advocate for purchasing it.Noncommercial

Is vaping associated with positive emotions or contexts? Such as:Provape

• The tweet author is currently using, has recently used, or intends to use a vape product.
• The tweet author indicates acceptance of others’ vaping or favorability toward others’ positive perspectives of vaping.
• The tweet author mentions vaping in association with other positive aspects of society or popular culture (eg, partying,

sexuality, popularity, and attractiveness).

Includes tweets that are antivape, neutral or fact based, or without subjective judgment about positive or acceptable aspects of
vaping.

Not provape

Machine Learning
In this section, we describe the steps in machine learning that
consist of preprocessing, derivation of features, and training of
classifiers.

Preprocessing and Vector Representation for Traditional
Classifiers
Twitter data consist of tweet metadata and tweet content.
Metadata includes information related to the user’s profile (such
as location, number of followers, number of friends, and
tweeting frequency), information related to a tweet’s status
(such as the location of the tweet), media object contained in
the tweet (such as audio, video, and image), and if the tweet
was in reply to another tweet. As tweets are restricted to 280
characters, their content has, in addition to the standard text,
abbreviations, usernames (that are annotated with the @),
hashtags (topic tags annotated with the #), Unicode characters,
URLs (typically shortened pseudorandom short URLs), and
emojis (icons used to express an idea or emotion). Before
preprocessing, we replaced usernames, hashtags, Unicode

characters, and URLs with the textual placeholders _mention_,
_hashtag_, _unicode_, and _url_, respectively. We also
translated emojis into textual descriptions for better
interpretability. This standardized text representation of tweets
ensured that the preprocessing pipeline needed to handle only
text.

The preprocessing pipeline consisted of 10 steps, including
removal of textual placeholders (for usernames, hashtags,
Unicode characters, and URLs), removal of textual descriptions
of emojis, expansion of negations, removal of punctuation and
digits, negation marking, normalization, stemming, removal of
stopwords, and conversion to lowercase (Table 2).

After preprocessing, we created 2 types of tweet representations
that are useful for machine learning. In the first representation,
called the vector count representation, we identify unique words
in the tweet data set and represent each tweet with a vector of
numbers, where a number denotes the frequency (count) of the
occurrence of a unique word in the tweet. Thus, each tweet is
represented by a vector that contains as many counts as the
number of unique words. We also investigated an alternative
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vector representation called frequency-inverse document
frequency (TF-IDF) where the number assigned to a word in
the vector depends not only on its frequency in a tweet but also
on its frequency in the entire data set. In this representation,
words that occur in the majority of the tweets are considered to
be of lower importance than words that occur more rarely. As
preliminary results did not demonstrate improved performance

with the TF-IDF representation, we did not perform extensive
experiments with this representation.

Rather than applying the same set of preprocessing steps to
every classifier, we searched all possible combinations of the
10 preprocessing steps for each classifier and identified the
optimal set of preprocessing steps that gave the best classifier
performance (Table 2).

Table 2. Description of preprocessing steps and options used in traditional classifiers.

OptionsaDescriptionsPreprocessing steps

True, falseRemove textual placeholders such as _mention_, _hashtag_, _unicode_, and _url_placeholder_remove

True, falseRemove textual descriptions that denote emojisemoji_remove

True, falseExpand negative contractions, for example, “don’t” is expanded to “do not” and “can’t” is expanded to “cannot”negation_expand

True, falseRemove all punctuation symbolspunctuation_remove

True, falseRemove all numeric digits (0-9)digits_remove

True, falseMark words that occur between a negation trigger and a punctuation mark with the NEG prefix [28]negation_mark

True, falseReduce to 2 characters all consecutive characters that appear more than twice, for example, “happppy” is reduced
to “happy”

normalize

True, falseReduce inflection in words (eg, troubled, troubles) to their root form (eg, trouble) using the Porter Stemmer
[29]

stemming

True, falseRemove common words such as “the,” “a,” “on,” “is,” and “all” that are listed in the Natural Language Toolkit
English stop words list [30]

stopwords_remove

True, falseChange the case of all characters to lowercaselowercase

aIf the option for a step is set to true, the corresponding preprocessing step will be applied in the preprocessing pipeline; if the option is set to false, the
corresponding preprocessing step will be skipped in the pipeline.

Preprocessing and Vector Representation for Deep
Learning Classifiers
For the deep learning classifiers, we used 2 alternative
preprocessing methods: (1) a fixed preprocessing pipeline and
(2) no preprocessing. The fixed preprocessing pipeline consisted
of the following 5 steps (out of the possible 10 steps listed in
Table 2): removal of textual placeholders, expansion of
negations, removal of punctuation and digits, and conversion
to lowercase. In contrast to vector count representation, which
is used in traditional classifiers where a tweet is denoted by a
vector of counts, in the deep learning classifiers, each word in
a tweet is denoted by a word vector as described next, and each
tweet is denoted by a vector of word vectors.

Word Vectors
Word vectors are derived from large unannotated tweet data (or
other types of text data) and are increasingly used in deep
learning classifiers. A word vector represents a word (not an
entire tweet as in vector count representation) as a vector of
numbers such that 2 words are considered to be similar in
meaning if their vectors are close to each other mathematically.
Word vectors capture the meaning and usage of words and are
derived from patterns of how words co-occur in a large data set
of tweets.

We investigated the performance of word vectors from 2 types
of tweet data. First, we used word vectors that are derived from
a large data set of tweets of all kinds; we call these vectors

general or nondomain-specific word vectors. For general word
vectors, we downloaded the 200-dimension Global Vectors for
Word Representation (GloVe) word vectors. The GloVe vectors
were derived from 2 billion tweets of all kinds, and each word
was represented by a vector of size 200 [31]. Second, we used
word vectors from a large data set of vaping-related tweets; we
call these vectors vaping-related word vectors. We created
vaping-related word vectors from a data set of tweets that were
collected over 7 months from January 01, 2018 to July 31, 2018
using the vaping-related keywords. This data set contained
1,899,851 original tweets, and we used the Word2Vec algorithm
[32] to derive 300-dimension word vectors (additional settings
for the Word2Vec algorithm included a window size of 2 and
30 epochs).

Machine Learning Methods
We derived and evaluated 2 families of classifiers. The
traditional classifiers included logistic regression (LR), random
forest (RF), linear support vector machine (SVM), and
multinomial naive Bayes (NB), and we used the implementations
of these classifiers in scikit-learn version 0.23.1 [33]. The deep
learning classifiers included convolutional neural network
(CNN), long short-term memory (LSTM) network, combined
LSTM and CNN (LSTM-CNN), and bidirectional LSTM
(BiLSTM) network, and we used the implementations of these
classifiers in Keras version 2.2.4 [34].

In contrast to traditional classifiers, CNNs automatically select
words in tweets that are relevant. The LSTM network is a type
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of neural network that captures patterns of words in tweets.
Conventional LSTM networks capture patterns in a single
direction, from left to right, whereas BiLSTM networks capture
patterns in both directions, from left to right and from right to
left. Both LSTM and BiLSTM have demonstrated good
performance on social media data [35,36], and compared with
CNNs, they can handle the variable lengths of tweets. The
LSTM-CNN networks combine the advantages of CNNs and
LSTM networks.

We derived and evaluated separate classifiers for 3 different
tasks, that is, to identify which tweets are relevant, are
noncommercial, and contain provape sentiment. For these tasks,
the 3 binary targets and their corresponding values are (1)
relevance: relevant (positive value) versus nonrelevant (negative
value), (2) commercial: commercial (positive value) versus
noncommercial (negative value), and (3) sentiment: provape
(positive value) versus not provape (negative value).

Experimental Methods
From the annotated data set of 4000 tweets, we created 3 data
sets to predict relevance, commercial, and sentiment that
contained 4000, 3011, and 2175 tweets, respectively (Table 3).
Each data set was randomly split into training and test sets
(90:10 splits) such that the sets contained the same proportion
of positive targets. A total of 3600, 2709, and 1957 tweets were
used in the training data sets to derive relevance, commercial,
and sentiment classifiers, respectively (Table 3). We used the
training set to derive the best classifier (including the selection
of hyperparameters if needed) for each type of classifier. The
test data sets that were used to evaluate the relevance,
commercial, and sentiment classifiers included 400, 302, and
218 tweets, respectively (Table 3).

Table 4 shows the traditional classifiers with parameter settings
that we used in our experiments, and Table 5 shows the
parameter settings of the deep learning classifiers that we used
in our experiments.

Table 3. Description of training and test data sets.

Number of tweets with negative target, n (%)Number of tweets with positive target, n (%)Total number of tweets, n (%)Targets

NonrelevantRelevant Relevance

••• Total: 989 (24.72)Total: 3011 (75.28)Total: 4000 (100)
• ••Training: 3600 (100) Training: 891 (24.75)Training: 2709 (75.25)

•• •Test: 302 (75.5)Test: 400 (100) Test: 98 (24.5)

CommercialNoncommercial Commercial

••• Total: 836 (27.76)Total: 2175 (72.24)Total: 3011 (100)
• ••Training: 2709 (100) Training: 752 (27.86)Training: 1957 (72.24)

•• •Test: 218 (72.2)Test: 302 (100) Test: 84 (27.8)

Not provapeProvape Sentiment

••• Total: 818 (37.61)Total: 1357 (62.39)Total: 2175 (100)
• ••Training: 1957 (100) Training: 736 (37.61)Training: 1221 (62.39)

•• •Test: 136 (62.4)Test: 218 (100) Test: 82 (37.6)

Table 4. Description of traditional classifiers and parameter settings used in the experiments (the same parameter settings were used for the following
3 targets: relevance, commercial, and sentiment).

Parameter valuesScikit-learn functions (version)Classifiers

All default values except C=0.001sklearn.linear_model.LogisticRegression (0.20.3)Logistic regression

All default values except max_features=“sqrt”sklearn.ensemble.RandomForestClassifier (0.20.3)Random forest

All default values except α=.01sklearn.linear_model.SGDClassifier (0.20.3)Support vector machine

All default valuessklearn.naive_bayes.MultinomialNB (0.20.3)Naive Bayes
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Table 5. Description of deep learning classifiers, target, and parameter settings used in the experiments.

Parameter valuesTargetsDeep learning classifiers

Vaping-related word vectors

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, filters: 100, kernel_size: 1,
epochs: 5, batch_size: 16

RelevanceCNNa

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 10, batch_size: 16RelevanceLSTMb

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, filters: 50, kernel_size: 2,
epochs: 10, batch_size: 16

RelevanceLSTM-CNN

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 10, batch_size: 16RelevanceBiLSTMc

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, filters: 100, kernel_size: 2,
epochs: 10, batch_size: 16

CommercialCNN

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, epochs: 5, batch_size: 32CommercialLSTM

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, filters: 75, kernel_size: 2,
epochs: 5, batch_size: 16

CommercialLSTM-CNN

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64CommercialBiLSTM

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, filters: 100, kernel_size: 2,
epochs: 10, batch_size: 32

SentimentCNN

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64SentimentLSTM

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, filters: 75, kernel_size: 3,
epochs: 5, batch_size: 64

SentimentLSTM-CNN

max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, epochs: 5, batch_size: 32SentimentBiLSTM

Global Vectors for Word Representation word vectors

max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, filters: 100, kernel_size: 2,
epochs: 10, batch_size: 16

RelevanceCNN

max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 32RelevanceLSTM

max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, filters: 50, kernel_size: 2, epochs:
10, batch_size: 16

RelevanceLSTM-CNN

max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64RelevanceBiLSTM

max_features: 10,842, embed_size: 200, max_len: 75, optimizer: rmsprop, filters: 50, kernel_size: 2,
epochs: 5, batch_size: 16

CommercialCNN

max_features: 10,842, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 16CommercialLSTM

max_features: 10,842, embed_size: 200, max_len: 75, optimizer: adam, filters: 75, kernel_size: 2, epochs:
5, batch_size: 32

CommercialLSTM-CNN

max_features: 10,842, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64CommercialBiLSTM

max_features: 7979, embed_size: 200, max_len: 75, optimizer: rmsprop, filters: 100, kernel_size: 3,
epochs: 5, batch_size: 64

SentimentCNN

max_features: 7979, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 32SentimentLSTM

max_features: 7979, embed_size: 200, max_len: 75, optimizer: rmsprop, filters: 75, kernel_size: 1,
epochs: 10, batch_size: 64

SentimentLSTM-CNN

max_features: 7979, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 32SentimentBiLSTM

aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.

Evaluation of Classifier Performance
We assessed the performance of the classifiers with the area
under the receiver operating characteristic curve (AUC),
precision, recall, and F1 scores. The AUC is a measure of
discrimination, that is, how well a classifier differentiates
between the positive and negative tweets, and larger values

indicate better performance. Precision is the number of correctly
classified positive tweets divided by the number of all positive
tweets returned by the classifier, and recall is the number of
correctly classified positive tweets divided by the number of
all positive tweets. The F1 score is the harmonic average of the
precision and recall; the F1 score achieves the best value at 1
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when both precision and recall are perfect and the worst value
at 0.

Evaluation of Relevance
To identify relevant words (features) in each classifier, we
applied SHapley Additive exPlanations (SHAP), which is an
algorithm for interpreting the relevance of features used in
classifiers [37]. SHAP assigns each feature an average relevance
value based on predictions on a data set. We examined the top
10 ranked features for each classifier.

Results

Proportions of Tweet Categories in the Annotated Data
Set
In the annotated data set, 75.28% were relevant to vaping, and
of the vaping-relevant tweets, 72.24% were of a noncommercial
nature. Of the noncommercial vaping-relevant tweets, 62.39%
contained provape sentiments.

Performance of Classifiers

Relevance Classifiers
Application of traditional classifiers yielded AUC values of
0.84 to 0.95, application of deep learning classifiers with
vaping-related word vectors yielded AUC values of 0.90 to
0.93, and application of deep learning classifiers with GloVe
word vectors yielded AUC values of 0.93 to 0.96. LR had the
highest recall, whereas RF and the deep learning classifiers with
GloVe word vectors had the highest F1 value. LSTM-CNN with
GloVe word vectors performed the best overall with the highest
AUC and precision values.

Commercial Classifiers
Overall, the AUC values were similar across all classifiers.
Application of traditional classifiers yielded AUC values of
0.96 to 0.98, application of deep learning classifiers with
vaping-related word vectors yielded AUC values of 0.97 to
0.98, and application of deep learning classifiers with GloVe

word vectors yielded AUC values of 0.99. LSTM-CNN and
BiLSTM with GloVe word vectors performed the best overall
with the highest AUC, precision, recall, and F1 values.

Sentiment Classifiers
Application of traditional classifiers yielded AUC values of
0.69 to 0.78, application of deep learning classifiers with
vaping-related word vectors yielded AUC values of 0.74 to
0.75, and application of deep learning classifiers with GloVe
word vectors yielded AUC values of 0.78 to 0.83. BiLSTM and
LSTM-CNN with GloVe word vectors performed the best
overall with the highest AUC, precision, and F1 values.

Preprocessing
Our experiments showed that some traditional classifiers
performed best with minimal preprocessing compared with
others. LR and NB did not use any of the 10 preprocessing steps
for any of the 3 targets (Multimedia Appendix 1). On the other
hand, RF and SVM used 5 preprocessing steps on average
(Multimedia Appendix 1). The deep learning classifiers
performed better with no preprocessing compared with the fixed
preprocessing pipeline. Furthermore, in addition to the standard
text in tweets, information such as URLs, usernames, hashtags,
and Unicode characters was found to be important and was
included in most of the classifiers.

Feature Relevance
We applied the SHAP algorithm to the 12 classifiers for each
target (corresponding to the classifiers in Tables 6,7, and 8) to
generate 10 top-ranked features. The feature relevance plots for
each classifier and target are shown in Multimedia Appendix
1. The word vape and its variations vapes, vaping, or vapelife
appear in the 10 top-ranked features in all classifiers except RF
relevance and commercial classifiers. Several textual
placeholders appear in traditional classifiers, whereas several
Unicode characters representing emojis appear in the deep
learning classifiers. Interestingly, common simple words such
as we, as, was, and no appear in many classifiers.
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Table 6. Performance of relevance classifiers.

F1RecallPrecisionArea under the receiver operating

characteristic curve (95% CI)

Classifiers

0.921.000.800.84 (0.78-0.89)Logistic regression

0.980.970.930.95 (0.93-0.98)Random forest

0.950.970.910.92 (0.88-0.96)Support vector machine

0.930.990.880.88 (0.83-0.93)Naive Bayes

0.980.970.900.94 (0.91-0.97)CNNa (vaping-related word vectors)

0.960.980.890.91 (0.88-0.95)LSTMb (vaping-related word vectors)

0.950.870.930.89 (0.85-0.93)LSTM-CNN (vaping-related word vectors)

0.940.960.900.89 (0.85-0.94)BiLSTMc (vaping-related word vectors)

0.980.950.930.95 (0.92-0.97)CNN (GloVed word vectors)

0.980.950.950.95 (0.92-0.98)LSTM (GloVe word vectors)

0.980.930.960.96 (0.93-0.98)LSTM-CNN (GloVe word vectors)

0.980.960.920.95 (0.93-0.98)BiLSTM (GloVe word vectors)

aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.
dGloVe: Global Vectors for Word Representation.

Table 7. Performance of commercial classifiers.

F1RecallPrecisionArea under the receiver operating

characteristic curve (95% CI)

Classifiers

0.960.830.930.98 (0.95-0.99)Logistic regression

0.970.820.950.97 (0.96-0.99)Random forest

0.920.860.920.98 (0.91-0.99)Support vector machine

0.920.890.830.96 (0.94-0.99)Naive Bayes

0.940.750.930.98 (0.96-0.99)CNNa (vaping-related word vectors)

0.940.810.880.97 (0.95-0.99)LSTMb (vaping-related word vectors)

0.940.850.920.97 (0.94-0.99)LSTM-CNN (vaping-related word vectors)

0.950.870.840.98 (0.96-0.99)BiLSTMc (vaping-related word vectors)

0.980.890.930.99 (0.98-0.99)CNN (GloVed word vectors)

0.980.940.890.99 (0.98-0.99)LSTM (GloVe word vectors)

0.990.960.860.99 (0.98-0.99)LSTM-CNN (GloVe word vectors)

0.980.880.970.99 (0.98-0.99)BiLSTM (GloVe word vectors)

aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.
dGloVe: Global Vectors for Word Representation.

J Med Internet Res 2020 | vol. 22 | iss. 8 | e17478 | p. 9https://www.jmir.org/2020/8/e17478
(page number not for citation purposes)

Visweswaran et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 8. Performance of sentiment classifiers.

F1RecallPrecisionArea under the receiver operating

characteristic curve (95% CI)

Classifiers

0.820.880.730.78 (0.71-0.84)Logistic regression

0.820.790.780.78 (0.70-0.83)Random forest

0.750.980.660.69 (0.64-0.78)Support vector machine

0.800.790.750.75 (0.66-0.82)Naive Bayes

0.800.850.730.74 (0.66-0.81)CNNa (vaping-related word vectors)

0.810.810.750.74 (0.69-0.82)LSTMb (vaping-related word vectors)

0.830.910.740.75 (0.71-0.84)LSTM-CNN (vaping-related word vectors)

0.820.910.720.74 (0.68-0.81)BiLSTMc (vaping-related word vectors)

0.860.960.720.81 (0.75-0.87)CNN (GloVed word vectors)

0.840.820.760.78 (0.71-0.84)LSTM (GloVe word vectors)

0.840.840.830.80 (0.74-0.86)LSTM-CNN (GloVe word vectors)

0.880.790.790.83 (0.78-0.89)BiLSTM (GloVe word vectors)

aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.
dGloVe: Global Vectors for Word Representation.

Discussion

Principal Findings
The relative prevalence of the 3 categories that we annotated
in our data set reflects the general level of vaping-related
discussions on Twitter. The high proportion of tweets of a
commercial nature (72% of vaping-related tweets) reflects the
observation that manufacturers of vaping products marketed
their products heavily on Twitter. However, this percentage has
likely decreased significantly since the beginning of 2020
because of the introduction of advertising restrictions by federal
and state authorities. A high proportion of noncommercial tweets
contained provape sentiments (62.39% of noncommercial
tweets), suggesting that among Twitter users who post about
vaping, the sentiment is overall more positive than negative in
our data set, after the exclusion of marketing tweets. This
reflects the growing prevalence of vaping, especially among
adolescents who post more on Twitter than other age groups
[38]. However, as this study used data before the FDA banned
a range of flavored e-cigarette cartridges, both vaping and
positive sentiments related to vaping may have decreased
significantly.

Classifiers that we derived from our data set demonstrated high
levels of performance, indicating that currently available
machine learning methods can produce high-performing
classifiers on a data set of only several thousand annotated
tweets. Compared with traditional classifiers, deep learning
classifiers had superior performance with AUC values of 0.96,
0.99, and 0.83 for predicting vaping-relevant, commercial, and
provape tweets. Furthermore, our results indicate that deep
learning classifiers performed the best with no preprocessing
and with nondomain-specific GloVe word vectors. A few studies

have shown that no preprocessing may provide better
performance with Twitter data [39,40]. More generally,
additional research is needed to systematically examine alternate
preprocessing regimes for Twitter and other types of text data
[41]. Although deep learning classifiers are computationally
more expensive to derive compared with traditional classifiers,
the lack of preprocessing and derivation of domain-specific
word vectors offsets the computational cost. Moreover, the
application of deep learning classifiers to new Twitter data is
as computationally efficient as traditional classifiers.

Analyses of the 10 top-ranked features show that similar features
appear across the classifiers. In addition to English terms, emojis
and Unicode characters were often identified as useful features.
Several common simple terms also appear as important features;
these terms may interact with other features rather than being
discriminatory on their own.

Limitations
Our study has several limitations. First, we used a small list of
keywords to restrict our data, rather than using the full Twitter
feed. As vaping products and their discussions evolve, the list
of keywords will likely become stale and will need to be
updated. Second, our annotated data set was of moderate size,
though the sample size of 4000 tweets was adequate for
obtaining classifiers with high performance. Third, the
expression of tweet sentiments related to vaping is likely to vary
over time [42]. It would be useful to evaluate the performance
of the classifiers on data that are obtained from a different period
to assess the generalizability of the classifiers over time. Fourth,
there may be geographical variation in sentiments regarding
vaping [43], and it would be useful to evaluate the performance
of the classifiers on data that are obtained from different
locations. In future work, we plan to address the limitations of
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evaluating the classifiers over time and location. Fifth, it is not
clear if individuals with certain personality traits make them
more predisposed to express positive or negative sentiments
[44]. More research is needed to assess the degree to which
sentiment reflects variance in psychological traits versus the
situational context in which those traits were expressed. Finally,
this study uses data before the FDA banned a range of flavored
e-cigarette cartridges that were likely to have been popular
among frequent Twitter users, such as adolescents. In future
work, we plan to derive classifiers from data that were collected
after the FDA ban on flavored e-cigarette cartridges.

Future Surveillance Research
Machine learning classifiers, especially deep learning classifiers,
show promising performance over strictly keyword-based
approaches for identifying vaping-related tweets and sentiments
related to vaping. This observation provides support for the
development of a vaping surveillance system. Twitter
surveillance can provide relatively inexpensive opportunities
for monitoring the evolution of use and sentiment toward vaping
and the effects of regulations on the marketing of vaping
products. We plan to develop a surveillance system that will
apply the classifiers to tweets to produce daily counts of
vaping-related tweets, noncommercial tweets, and provape
tweets. These daily counts will be used for future behavioral

and attitudinal research related to vaping as well as for
correlating changes in behavior and attitudes to changes in
policy, such as those issued by the FDA. We plan to use the
classifiers derived in this study as a basis for comparison with
classifiers that we plan to derive from data obtained after the
FDA ban to understand whether the ban has altered
vaping-related health attitudes and behaviors. Furthermore, we
plan to develop methods to infer the age group of the authors
of tweets that will enable the daily tracking of vaping and related
sentiments in adolescents.

Conclusions
We derived and evaluated machine learning classifiers to
identify vaping-related relevant, commercial, and provape
tweets. We developed a hierarchical classification scheme for
vaping-related tweets and applied it to a data set of 4000 selected
tweets to manually annotate them. We evaluated both traditional
machine learning and deep learning classifiers using the
annotated data set of 4000 tweets as well as vaping-related word
vectors and GloVe word vectors that are derived from large
unannotated tweet data sets. Overall, deep learning classifiers
such as LSTM-CNN had superior performance and had the
added advantage of requiring no preprocessing. These classifiers
pave the way for the development of a vaping surveillance
system.
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