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Abstract

Background: Community-acquired acute kidney injury (CA-AKI)-associated hospitalizations impose significant health care
needs and contribute to in-hospital mortality. However, most risk prediction models developed to date have focused on AKI in
a specific group of patients during hospitalization, and there is limited knowledge on the baseline risk in the general population
for preventing CA-AKI-associated hospitalization.

Objective: To gain further insight into risk exploration, the aim of this study was to develop, validate, and establish a scoring
system to facilitate health professionals in enabling early recognition and intervention of CA-AKI to prevent permanent kidney
damage using different machine-learning techniques.

Methods: A nested case-control study design was employed using electronic health records derived from a group of Chang
Gung Memorial Hospitals in Taiwan from 2010 to 2017 to identify 234,867 adults with at least two measures of serum creatinine
at hospital admission. Patients were classified into a derivation cohort (2010-2016) and a temporal validation cohort (2017).
Patients with the first episode of CA-AKI at hospital admission were classified into the case group and those without CA-AKI
were classified in the control group. A total of 47 potential candidate variables, including age, gender, prior use of nephrotoxic
medications, Charlson comorbid conditions, commonly measured laboratory results, and recent use of health services, were tested
to develop a CA-AKI hospitalization risk model. Permutation-based selection with both the extreme gradient boost (XGBoost)
and least absolute shrinkage and selection operator (LASSO) algorithms was performed to determine the top 10 important features
for scoring function development.

Results: The discriminative ability of the risk model was assessed by the area under the receiver operating characteristic curve
(AUC), and the predictive CA-AKI risk model derived by the logistic regression algorithm achieved an AUC of 0.767 (95% CI
0.764-0.770) on derivation and 0.761 on validation for any stage of AKI, with positive and negative predictive values of 19.2%
and 96.1%, respectively. The risk model for prediction of CA-AKI stages 2 and 3 had an AUC value of 0.818 for the validation
cohort with positive and negative predictive values of 13.3% and 98.4%, respectively. These metrics were evaluated at a cut-off
value of 7.993, which was determined as the threshold to discriminate the risk of AKI.

Conclusions: A machine learning–generated risk score model can identify patients at risk of developing CA-AKI-related
hospitalization through a routine care data-driven approach. The validated multivariate risk assessment tool could help clinicians
to stratify patients in primary care, and to provide monitoring and early intervention for preventing AKI while improving the
quality of AKI care in the general population.
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Introduction

Acute kidney injury (AKI) is defined as an acute increase in
serum creatinine (SCr) or reduction in urine volume [1]. Most
AKI cases (67%-80%) develop in the community (ie,
community-acquired AKI [CA-AKI]), and despite substantial
hospitalization care [2-4], CA-AKI is associated with an
increased risk of in-hospital mortality compared with that of
hospitalized patients without AKI (65%-90%) [2-5]. The
financial burden associated with AKI, including the need for
dialysis and intensive unit care during hospitalization and the
lack of kidney recovery following discharge care, poses
significant strain on the health care system [6,7].

The 22nd Acute Disease Quality Initiative Consensus
Conference suggested that high-quality care for patients with
AKI or those at risk of AKI should start at the community level
and continue in the emergency department, hospital setting, and
after discharge from inpatient care [8]. AKI is often reversible.
The diagnosis of early-stage AKI is difficult as it depends on
SCr measurements and urine outputs that are difficult to
routinely monitor in outpatient practice. Existing evidence has
highlighted the need for clinical tools to provide early and
accurate predictions for diagnosing CA-AKI and to deliver
preventive management that may prevent irreversible nephron
loss in the general population. However, most of the AKI
prediction models developed to date focus on a specific group
in the hospital setting, such as the risk of hospital-acquired AKI
developed following operations [9,10], cardiac procedures
[11,12], liver transplantation [13], or intensive care unit
admission [14-16]; the few studies assessing risk for the general
population are prone to external validity bias.

With significant advances in the application of machine-learning
techniques, the extreme gradient boost (XGBoost) [13,14], least
absolute shrinkage and selection operator (LASSO) [11,12,15],
and random forest [13,16] models have been employed for
predicting AKI risk in different clinical scenarios and have
shown promising advantages based on the aggregation of data
from electronic health records (EHRs). However, current
methodological approaches for AKI risk prediction for highly
selective groups of patients have limited impact in terms of the
rapid integration of such applications into real-world clinical
decision support systems. In addition, some AKI prediction
models focus on biomarkers that are not widely available for
assessment in practice [15]. AKI could be associated with a
variety of causes such as nephrotoxins, existing disease status,
and volume status. Therefore, a diagnostic tool with routinely
measured characteristics and laboratory tests can easily identify
patients with a high probability of developing CA-AKI and
inform physicians on the possibility of its occurrence.
Subsequent attention and action to hemodynamic monitoring

and avoidance of nephrotoxins may ultimately enhance care
and improve patient outcomes.

The primary aim of this study was to develop and validate a
risk prediction model of CA-AKI hospitalization that can be
used to identify patients at higher risk of developing CA-AKI
and requiring hospital care. Because the XGBoost and LASSO
algorithms have been widely and successfully used for
predicting the risk of AKI development from EHR data [11-15],
both algorithms were employed in this study to further explore
machine-learning models for CA-AKI hospitalization risk
prediction and gain insights into improving such prediction
models. The secondary aim of the study was to transform the
prediction model into a scoring function to quantify the risk of
CA-AKI hospitalization. This scoring function can facilitate
risk assessment and guide treatment decisions for modifiable
risk management and prevention in an outpatient setting.

Methods

Study Cohort
A nested case-control study was performed on hospitalized
patients aged 20 years or older admitted to the emergency
department or outpatient clinic and requiring hospitalization
between 2010 and 2017 (Multimedia Appendix 1) from a group
of Chang Gung Memorial Hospitals (CGMHs) located in
different cities from the north to south of Taiwan. The EHR
data from CGMHs included 6.1% outpatient and 10.2% inpatient
encounters of the Taiwan population in 2015 [17].

Adults hospitalized from 2010 to 2016 served as the training
dataset and data from patients hospitalized during 2017 were
used in the internal validation model. To estimate the robust
probability of CA-AKI associated with hospitalization, patients’
reference (≤3 months) and index (at the admission date) values
of SCr were required to determine an acute episode of kidney
injury. This study was approved by the Institutional Review
and Ethics Board of CGMH, Taoyuan in Taiwan (permit
number: 201801461B0). All datasets used in this study were
deidentified prior to being transferred to the study investigators.
The study followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) statement for reporting multivariable prediction
model development and validation [18].

Predictors
Based on a literature review of factors shown to increase the
risk of AKI and expert opinions [19,20], we identified 55
candidate predictor variables (Multimedia Appendix 2),
including comorbid conditions, outpatient nephrotoxic
medicines, recent emergency department visits, outpatient or
hospital admissions, and potential laboratory results during the
baseline period within 90 days prior to the index hospital
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admission (medicines, visits, and laboratory results) and within
365 days preceding the index admission (comorbid conditions).

These diagnosis codes were then classified into 17 binary
comorbidity groupings as defined by the Charlson comorbidity
index (CCI) [21]. Patients’ concomitant outpatient medicine
records were classified into 16 therapeutic binary indicator
groupings and counted as the total number of active classes of
medicines. Laboratory results included 10 test items in
continuous data. These prespecified variables in the initial set
of candidate variables for training and validation model
prediction algorithms were not limited to strong statistical
assumptions of causality or correlation and presumably provided
an opportunity to discover new knowledge from
machine-learning methods. The full list of candidate variables
with corresponding variable names in the data form can be found
in Multimedia Appendix 2.

Outcomes
The outcome was CA-AKI-associated hospitalization defined
according to the Kidney Disease: Improving Global Outcomes
(KDIGO) criteria as an increase in SCr within 48 hours of 0.3
mg/dl from the reference value, ≥1.5 of the reference value (or
increase to 4 mg/dl) within 7 days or up to 90 days prior to the
patient’s first admission (index date) in the study period [1].
The reference SCr value was first retrieved based on the
availability of measured SCr within 2 days prior to the index
date, within 7 days for patients without a recent 2-day SCr, and
within 30 days or up to 90 days for patients without any SCr
measurements for 7 days. Two approaches were used to
determine reference SCr. First, for patients who had multiple

SCr measures in the 2- and 7-day time windows, the latest SCr
(ie, closest to the index date) was chosen as the reference SCr.
Second, the mean SCr value within 8-90 days before the index
date was defined as the reference SCr for patients who had
multiple SCr measurements in the period [22]. Only patients
who had reference and index SCr measures were included for
analysis in the study (Multimedia Appendix 1). Patients who
fulfilled the KDIGO AKI criteria were classified into the case
group and patients without AKI at admission were included in
the control group. Stage 1 AKI was defined as an SCr increase
of ≥0.3 mg/dl from the reference value within 2 days or an
increase of 1.5 to 1.9 of reference SCr within 7 days; stage 2
was defined as an increase of 2.0 to 2.9 of reference SCr; and
stage 3 AKI was defined as an increase of ≥3 of reference SCr,
an increase to ≥4 mg/dl, or when the patient required dialysis
or kidney transplantation for AKI [1].

Model Development and Validation
The analytical process included four major stages:
preprocessing, feature selection, prediction model construction,
and scoring function. The first stage involved the selection of
prespecified variables and imputation of missing values. The
purpose of the second stage, feature selection, was to select
important variables associated with the prediction outcome
using state-of-the-art algorithms, XGBoost and LASSO. The
third stage involved the construction of a prediction model
according to data-driven technology. Finally, we used the model
coefficients to build a scoring function, which outputs risk scores
based on the prediction results. The whole process is
schematically presented in Figure 1.

Figure 1. Flowchart for prediction and risk scoring. CGMHs: Chang Gung Memorial Hospitals.

Preprocessing
To estimate the risk of hospitalized patients with CA-AKI at
admission for establishing a prevention strategy in an outpatient
setting, the model only included predicted variables that were
available before hospitalization. Notably, SCr measured on the
index hospital admission and the physiological measurements
after hospitalization were not included in the model.

Missing values are commonly present in medical records, and
dropping medical records or variables with incomplete data
would lead to small sample sizes. To develop a more precise
model, we selected and discarded the variables with an original

missing rate of more than 90% in a step-by-step manner to
confirm which variable would significantly contribute to the
model even though it had a high missing rate. We considered
two approaches to impute the missing continuous values
stratified by sex by replacing any missing value with the median
or mean of the corresponding group. The experimental results
indicated that imputation by the median stratified by sex yields
better performance than that of imputation by the mean; thus,
we applied imputation by the median stratified by sex to address
the problem of missing values. There were no missing data for
categorical variables in the dataset. Once the preprocessing step
was completed, 47 variables remained for further processing
(Table 1).
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Table 1. Patient characteristics between the derivation and temporal validation cohorts.

Temporal validation cohort (n=30,803)Derivation cohort (n=204,064)Predictor candidates

P valuebNo CA-AKI
(n=28,585)

CA-AKI
(n=2218)

nP valuebNo CA-AKI
(n=186,834)

CA-AKIa

(n=17,230)

n

<.000160.12 (16.07)65.69 (15.98)<.000160.55 (16.23)65.26 (15.49)Age at index hospitalization (years),
mean (SD)

.21.003Sex, n (%)

13,561 (47.44)1083 (48.83)14,64484,985 (45.49)8041 (46.67)93,026Male

15,024 (52.56)1135 (51.17)16,159101,849 (54.51)9189 (53.33)111,038Female

Charlson comorbid condition at baseline, n (%)

<.0001389 (1.36)56 (2.52)445<.00014089 (2.19)600 (3.48)4689Acute myocar-
dial infarction

<.00011159 (4.05)209 (9.42)1368<.00019604 (5.14)1903 (11.04)11,507Congestive
heart failure

.0001299 (1.05)43 (1.94)342<.00013367 (1.80)609 (3.53)3976Peripheral vas-
cular diseases

<.00012705 (9.46)286 (12.89)2991<.000120,211 (10.82)2622 (15.22)22,833Cerebral vascu-
lar accident

<.0001328 (1.15)54 (2.43)382<.00014408 (2.36)693 (4.02)5101Dementia

<.0012159 (7.55)213 (9.60)2372<.000116,952 (9.07)1978 (11.48)18,930Pulmonary dis-
ease

.30400 (1.40)37 (1.67)4370.00012134 (1.14)253 (1.47)2387Rheumatic dis-
ease

<.00013259 (11.40)338 (15.24)3597<.000124,743 (13.24)2966 (17.21)27,709Peptic ulcer

.042185 (7.64)197 (8.88)2382<.000127,465 (14.70)3217 (18.67)30,682Mild liver dis-
eases

<.00014940 (17.28)696 (31.38)5636<.000139,535 (21.16)6260 (36.33)45,795Diabetes with-
out complica-
tion

<.00011533 (5.36)330 (14.88)1863<.00019799 (5.24)2218 (12.87)12,017Diabetes with
complications

.67271 (0.95)19 (0.86)290.0062236 (1.20)248 (1.44)2484Paraplegia

<.00012183 (7.64)684 (30.84)2867<.000114017 (7.50)5603 (32.52)19,620Renal disease

<.00016354 (22.23)603 (27.19)6957<.000146,277 (24.77)4650 (26.99)50,927Any malignan-
cy

<.0001153 (0.54)56 (2.52)209<.00012752 (1.47)687 (3.99)3439Severe liver dis-
eases

<.00011589 (5.56)199 (8.97)1788<.000112,179 (6.52)1459 (8.47)13,638Metastatic solid
tumor

Prior use of nephrotoxic medicine, n (%)

.0057622 (26.66)531 (23.94)8153<.000156,656 (30.32)4664 (27.07)61,320NSAIDsc or

COX IId in-
hibitors

<.00011482 (5.18)215 (9.69)1697<.000112,686 (6.79)1825 (10.59)14,511Opioid anal-
gesics

.818341 (29.18)642 (28.94)8983.0262,195 (33.29)5587 (32.43)67,782Any analgesics

<.00016844 (23.94)641 (28.90)7485<.000148,269 (25.84)5185 (30.09)53,454Antimicrobialse

.48125 (0.44)12 (0.54)137.031297 (0.69)144 (0.84)1441Antiepileptics
(gabapentin or
phenytoin)
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Temporal validation cohort (n=30,803)Derivation cohort (n=204,064)Predictor candidates

P valuebNo CA-AKI
(n=28,585)

CA-AKI
(n=2218)

nP valuebNo CA-AKI
(n=186,834)

CA-AKIa

(n=17,230)

n

<.00016036 (21.12)791 (35.66)6827<.000144,193 (23.65)6686 (38.80)50,879Renin-an-
giotensin sys-
tem inhibitors
or potassium-
sparing diuret-
ics

<.00012401 (8.40)76 (3.43)2477<.000113,600 (7.28)515 (2.99)14,115Contrast media

<.00013245 (11.35)433 (19.52)3678<.000123,696 (12.68)3780 (21.94)27,476Nonmetformin

OHAf

.061626 (5.69)148 (6.67)1774.1412,825 (6.86)1234 (7.16)14,059Metformin
OHA

<.00013983 (13.93)505 (22.77)4488<.000128,709 (15.37)4178 (24.25)32,887Any OHA

<.00011019 (3.56)137 (6.18)1156<.00017200 (3.85)900 (5.22)8100Immunosuppres-
sants

<.0001966 (3.38)266 (11.99)1232<.00017778 (4.16)1810 (10.50)9588Antihyper-
uricemia

.53144 (0.50)9 (0.41)153.011092 (0.58)75 (0.44)1167Antiinflamma-
tion/intestine

<.00014634 (16.21)545 (24.57)5179<.000133,389 (17.87)4402 (25.55)37,791Antihistamines,
antipsychotics,
antispasmodics

.52101 (0.35)6 (0.27)107.86754 (0.40)68 (0.39)822Bisphospho-
nates

.008214 (0.75)28 (1.26)242<.00012477 (1.33)374 (2.17)2851Digoxin

<.00013789 (13.26)369 (16.64)4158<.000122,158 (11.86)2660 (15.44)24,818Statins

.003418 (1.46)50 (2.25)468<.00013546 (1.90)478 (2.77)4024Fibrates

.1922 (0.08)0 (0.00)22.33136 (0.07)9 (0.05)145Lithium

<.00011121 (3.92)155 (6.99)1276<.000110,507 (5.62)1832 (10.63)12,339Nitrates

<.00011999 (6.99)245 (11.05)2244<.00019949 (5.33)1392 (8.08)11,341Anticoagulants

Baseline laboratory result, mean (SD)

<.00010.98 (0.59)2.15 (2.32)30,803<.00011.02 (0.68)2.43 (2.61)204,064SCrg

<.000183.59 (31.80)68.67 (52.78)30,803<.000182.47 (34.06)66.68 (54.96)204,064eGFRh

<.000118.5 (12.91)34.79 (27.56)14,674<.000119.06 (14.00)36.1 (28.06)100,474BUNi

.76177.83 (37.17)176.8 (43.40)2499<.0001179.24 (36.74)173.6 (39.41)17,570Total choles-
terol

<.001102.38 (30.43)97.42 (31.78)9452<.0001103.27 (30.43)99.46 (31.45)57,784LDLj-choles-
terol

.05135.1 (78.73)140.76 (82.69)9612<.0001134.87

(77.48)

141.2 (80.91)63,600Triglyceride

<.00015.98 (1.86)6.52 (2.26)8729<.00016.3 (1.95)7.04 (2.33)59,096Serum uric acid

<.00018.92 (0.65)8.64 (0.74)7988<.00018.86 (0.64)8.66 (0.76)56182Calcium
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Temporal validation cohort (n=30,803)Derivation cohort (n=204,064)Predictor candidates

P valuebNo CA-AKI
(n=28,585)

CA-AKI
(n=2218)

nP valuebNo CA-AKI
(n=186,834)

CA-AKIa

(n=17,230)

n

<.00013.61 (0.73)4.28 (1.21)5053<.00013.59 (0.75)4.32 (1.20)36181Phosphorus

aCA-AKI: community-acquired acute kidney injury.
bIndependent t tests were performed for continuous data, and Pearson Chi-square tests were performed for categorical data in between-groups comparisons.
cNSAIDs: nonsteroidal anti-inflammatory drug.
dCOX II: cyclooxygenase 2.
eAntimicrobials include aminoglycosides, penicillins, antivirals, trimoxazole/trimethoprim, fluconazole, teicoplanin/vancomycin, or tetracycline.
fOHA: oral hypoglycemic agent.
gSCr: serum creatinine.
heGFR: estimated glomerular filtration rate (175 × SCr -1.154 × age-0.203 12 × [0.742,female]).
iBUN: blood urea nitrogen.
jLDL: low-density lipoprotein.

Feature Selection
To build a scoring function to help clinicians effectively assess
the risk of CA-AKI hospitalization, the number of variables
(10) involved in the scoring function was considered based on
the commonly used scoring functions in health care and our
expert opinion. For instance, there are 14 parameters in the
APACHE II score for mortality prediction in a critical care
setting (ie, age, temperature, mean atrial pressure, pH, heart
rate/pulse, respiratory rate, sodium, potassium, creatinine, acute
kidney failure, hematocrit, white blood cell count, Glasgow
Coma Scale, and FiO2) [23] and 8 parameters in the
CHA2DS2VASc score for thromboembolism risk in atrial
fibrillation (ie, congestive heart failure, hypertension, age≥75,
diabetes, stroke/transient ischemic attack/thrombo-embolism,
vascular disease, age 65-74, and sex) [24]. We used the feature
selection technique to determine the most important features.
An exhaustive search of the best combination of features can
conceivably be performed on problems with few features.
However, the problem is known to be a nondeterministic
polynomial time (NP)-hard problem [25], meaning that the
search quickly becomes computationally intractable. Therefore,
we used XGBoost and LASSO to perform feature selection.

LASSO is a regression analysis method that uses L1 constraint
to perform variable selection and regularization, providing a
base to select a subset of the available covariates for use in the
final model. XGBoost is an improved algorithm based on the
gradient boosting decision tree, which can help avoid model
overfitting [26] by considering L1 and L2 constraints in the
objective function. The XGBoost model always involves many
classification and regression trees, each of which comprises
splitting nodes during model learning. Each splitting node
corresponds to a variable or feature. This study considered the
average gain of the feature when it is used in the trees. The
average gain is obtained by calculating the average improvement
in accuracy brought about by a feature to the branches it belongs.

Prediction Model Construction
After completing feature selection, we used the top 10 important
features to build a prediction model for CA-AKI hospitalization.
As mentioned above, feature selection is an NP-hard problem.

Different methods resulted in the same result for feature
selection, demonstrating that the selected features are important
from two different perspectives (Multimedia Appendix 3). The
performance of prediction models with all, 10, and 5 features
was examined to ensure the appropriateness of a 10-features
predictive CA-AKI hospitalization risk model (Multimedia
Appendix 4).

Next, based on the 10 selected features, we used a logistic
regression model as the prediction model because it could reveal
the coefficients of the 10 features, which facilitates interpretation
for medical personnel to assess the magnitude of the relationship
between the individual and outcome variables, and to understand
how the outcomes are induced from the model. The ability of
model discrimination was determined with the area under the
receiver operating characteristic (ROC) curve (AUC). We
applied 5-fold crossvalidation to ensure that all data points were
used for model training and evaluation so that the obtained
model could be generalized to unseen data. Moreover, the 95%
CIs for the metrics, including AUC, sensitivity, and specificity,
were also determined.

Scoring Function
We used the coefficients of the logistic regression model to
build a scoring function, which could be used in clinical settings
and provide more explanatory power. The outcome of the
logistic regression model was the probability of CA-AKI
hospitalization. We transformed the probability into a score by
multiplying the probability by 100. To distinguish between
CA-AKI and non-CA-AKI patients from the scores, it is
necessary to determine a threshold value.

We considered two methods to determine the cut-off point for
distinguishing between CA-AKI and non-CA-AKI patients.
The first method was based on the Youden index [27] to
determine the point at which the summation of sensitivity and
specificity is maximal, and the second method determined the
point that yields the highest sensitivity with a minimum
specificity of 0.7 [16]; here, we designate the former as the
regular threshold and the latter as the special threshold. With
these thresholds, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) were

J Med Internet Res 2020 | vol. 22 | iss. 8 | e16903 | p. 6https://www.jmir.org/2020/8/e16903
(page number not for citation purposes)

Hsu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


calculated to analyze the diagnostic ability of the proposed
scoring function.

After rescaling the output of the scoring function, we designed
an easy-to-use app with an Excel worksheet so that clinicians
can estimate the risk score of a patient based on the patient’s
relevant data. For missing data entries for a patient, the app uses
a default value to perform the estimation, which is obtained
from the median of the continuous variable or the mode of the
discrete variable stratified by sex.

Validation
The temporal validation cohort included hospitalized adults
identified during 2017, which was used as the validation set.
The scoring function developed in the derivation cohort was
applied to the validation cohort to ensure its performance and
generalization ability. The AUC and sensitivity values in the
validation set were similar to those in the training set, indicating
that the proposed method did not suffer from the overfitting
problem.

Statistical Analysis
The DeLong test was applied to assess the generalization ability
of the proposed scoring function to ensure the prediction
capability to unseen data. We tested the ROC curves of the
scoring function on the derivation and validation cohorts, and
set the significance level at .05.

Sensitivity Analysis
Sensitivity analysis was performed to assess the proposed
scoring function regarding the discrimination of patients with
severe AKI (AKI stage 2-3). In the experimental setting, we
relabeled the outcome of the same dataset based on the
information on AKI stage. Following the same setting, we
divided the dataset into the derivation cohort (2010-2016) and
the temporal validation cohort (2017). In the previous setting,
the goal was to develop a model to predict whether a patient
would suffer from CA-AKI, and therefore separated the whole
population into two groups: CA-AKI patients (case) and
non-CA-AKI patients (control). In contrast to the previous
experiment, the sensitivity analysis included patients without
CA-AKI and those with stage 1 CA-AKI in the control group,
whereas patients with stage 2 and 3 CA-AKI were included in
the case group. We subsequently used the developed scoring
function and the same cut-off thresholds to predict the relabeled

dataset to investigate whether the scoring function could better
distinguish between severe CA-AKI and non-CA-AKI groups.

Results

Characteristics of the Study Cohort
A total of 234,867 patients with hospital admission were
analyzed in the final CA-AKI cohort; there were 48%
admissions from the emergency department and 52% admissions
from the outpatient setting between January 1, 2010 and
December 31, 2017. The rate of CA-AKI was 8.44%
(17,230/204,064) in the derivation cohort and 7.20%
(2218/30,803) in the temporal validation cohort (Figure 1). The
mean age of patients in the CA-AKI group was higher than that
of patients in the non-CA-AKI group in the derivation cohort,
which were similar to the temporal validation cohort (Table 1).
The frequency of patients with an estimated glomerular filtration

rate (eGFR) below 60 ml/min/1.73m2 at baseline was higher in
the CA-AKI group than that in the non-CA-AKI group (50.67%,
8732/17,230 vs 24.86%, 46,445/186,834) in the derivation
cohort, as well as for patients in the validation cohort (46.75%,
1037/2218 vs 21.72%, 6207/28,585). The mean levels of SCr
and eGFR at baseline in both the derivation and validation
cohorts are presented in Table 1. Compared to the non-CA-AKI
group, patients with CA-AKI had a higher mean CCI score
(3.08, SD 2.33 vs 1.83, SD 2.02) and had more frequent use of
renin-angiotensin system (RAS) inhibitors or diuretics (38.8%
vs 23.65%) and antimicrobials (30.09% vs 25.84%) in the
baseline period in both the derivation and validation cohorts
(Table 1).

Model Performance
The LASSO and XGBoost models selected the same top 10
important variables among the 47 variables in the derivation
cohort, and the AUC (0.789, 95% CI 0.785-0.793) was slightly
higher for XGBoost than for the LASSO model (0.7671, 95%
CI 0.7621-0.7721) (Multimedia Appendix 3). Table 2 shows
the top 10 variables. In the training of the derivation cohort, the
logistic regression model had an AUC of 0.7670 (95% CI
0.7608-0.7732), sensitivity of 0.6142 (95% CI 0.5855-0.6431),
and specificity of 0.7848 (95% CI 0.7529-0.8167). In addition
to the predictive model, the coefficients for the 10 variables
used to develop our proposed scoring function are listed in Table
3.

Table 2. Top 10 features selected by the extreme gradient boost (XGBoost) and least absolute shrinkage and selection operator (LASSO) algorithms.

Important featuresType

Age at index hospitalizationBasic information

Diabetes without complication, Chronic kidney disease, Severe liver diseasesCharlson comorbid condition

RASa inhibitors/K-sparing diureticsPrior use of nephrotoxic medicine

Serum creatinine, eGFRb, BUNc, Calcium, PhosphorusBaseline laboratory result

aRAS: renin-angiotensin system.
beGFR, estimated glomerular filtration rate (175 × SCr − 1.154 × age − 0.203 × [0.742, female]).
cBUN: blood urea nitrogen.
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Table 3. Community-acquired acute kidney injury risk coefficients in the final model.a

Coefficient (βi)Variable (Xi)

0.7244SCrb

0.0207Age

0.0169eGFRc

0.0072BUNd

–0.4669Calcium

0.3542Phosphorus

0.3065DMe

0.6235CKDf

0.9647SLDg

0.4099RASh inhibitors/ K-sparing diuretics

aIntercept of the model: –3.6838.
bSCr: serum creatinine.
ceGFR: estimated glomerular filtration rate.
dBUN: blood urea nitrogen.
eDM: diabetes without complication.
fCKD: chronic kidney disease.
gSLD: severe liver disease.
hRAS: renin-angiotensin system.

Scoring Function for CA-AKI Hospitalization
The scoring function was established based on the coefficients
obtained from the logistic regression model. Equation (1) shows
the formula of the scoring function z, in which βi is the
coefficient for the ith feature Xi. Detailed definitions of the
variables and their corresponding coefficients are presented in
Table 3. The final score was obtained by transforming the value
of z into a probability with a sigmoid function, and then
multiplying it by 100 to make the risk score range from 0 to
100.

To verify the generalization ability of the proposed scoring
function, the DeLong test was applied to the ROC curves of the
derivation and validation cohorts. As shown in Figure 2, the P
value of the test was approximately .30, indicating no
statistically significant difference between the ROC curves of
the derivation and validation cohorts and that the scoring
function does not suffer from the overfitting problem. A higher
score indicates a higher the risk of CA-AKI hospitalization.
Figure 3 shows the risk score distributions between the case
(CA-AKI) and control (non-CA-AKI) groups for the derivation
and validation cohorts. The experimental results indicated that
the risk score of the case group is normally higher than that of
the control group in the derivation and validation cohorts,
meaning that the scoring function could stratify the two groups
well.
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Figure 2. DeLong test for the receiver operating characteristic curves of derivation and validation cohorts.

Figure 3. Risk score distribution. Left: Derivation cohort with CA-AKI stages 1-3 (case). Right: Validation cohort with CA-AKI stages 1-3 (case).

Table 4 shows the results of model performance, demonstrating
that the scoring function could achieve better results in
sensitivity and NPV by setting a special threshold as the cut-off
point. The ROC curves for the cut-off thresholds determined
by the two methods are presented in Figure 4, in which the

values in parentheses are specificity and sensitivity. Finally, the
risk equation for CA-AKI hospitalization risk was established
in an Excel worksheet (Multimedia Appendix 5) to allow for
automatic computation by importing patient information in the
clinical decision support system.
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Table 4. Model performance in the derivation and validation cohorts.

Cut-off point with special threshold (6.804)Cut-off point with regular threshold (7.993)Performance metrica

CA-AKI stages 2
and 3

CA-AKI stages 1-3CA-AKI stages 2
and 3

CA-AKIb stages 1-3

Validation cohortValidation cohortDerivation cohortValidation cohortValidation cohortDerivation cohort

0.8180.7610.767 (0.758-0.777)0.8180.7610.767 (0.758-

0.777)d
AUCc

0.750.6510.687 (0.665-0.708)0.6890.5690.612 (0.591-
0.634)

Sensitivity

0.7280.7360.700 (0.694-0.706)0.8070.8140.785 (0.782-
0.788)

Specificity

0.1060.1610.174 (0.169-0.180)0.1330.1920.208 (0.201-
0.215)

PPVe

0.9850.9640.960 (0.958-0.963)0.9840.9610.956 (0.954-
0.959)

NPVf

aThe performance for each cohort was evaluated based on disease severity and cut-off threshold values.
bCA-AKI: community-acquired acute kidney injury.
cAUC: area under the receiver operating characteristic curve.
dThe values in the parentheses are 95% CIs calculated through 5-fold crossvalidation.
ePPV: positive predictive value.
fNPV: negative predictive value.

Figure 4. Receiver operating characteristic (ROC) curve for the derivation cohort. Threshold A: Cut-off regular threshold value of 7.993; Threshold
B: Cut-off special threshold value of 6.804.

Sensitivity Analysis
The sensitivity analysis was conducted with the original model
using the relabeled validation data to evaluate model
performance in distinguishing between severe AKI and less
severe AKI cases. The risk score distribution between the case
and control groups is depicted in Figure 5, which is more
distinguishable. Moreover, sensitivity and specificity were more
balanced compared to the original values, regardless of using

the regular threshold (7.993) or special threshold (6.804) as the
cut-off value in Figure 4. The experimental results are shown
in Table 4. Using the cut-off special threshold, the AUC value
was 0.818, sensitivity was 0.75, and NPV was 0.985 in the
temporal validation cohort, which were all better than the
original values, except for PPV, indicating that the proposed
scoring function performed better in distinguishing severe
CA-AKI.
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Figure 5. Risk score distribution of the validation cohort with stage 2-3 community-acquired-acute kidney injury (case).

Discussion

Principal Findings
To the best of our knowledge, this is the first study to use a
machine-learning model to develop a 10-variable scoring
function for assessing the risk of CA-AKI hospitalization. The
advantages of the predictive risk model include prediction based
on routinely available EHR data in practice and full applicability
to general patients in an outpatient setting. Most importantly,
the quantified risk score can serve as an assessment tool to
support preventive management for the risks of CA-AKI
hospitalization that can be modified. The two proposed methods,
XGBoost and LASSO, selected identical top 10 features from
different perspectives to support the importance of these
predictors in the scoring function.

LASSO is a statistical method that can improve prediction
accuracy and model interpretation by imposing an L1 penalty,
resulting in a sparse model. Notably, LASSO shrinks some
model coefficients to zero, providing a base to eliminate
variables whose coefficients are not statistically different from
zero. In contrast, XGBoost is an ensemble machine-learning
model involving multiple decision trees, and it can estimate
feature importance by considering the contribution of a specific
feature for each tree during the learning process.

Importantly, XGBoost reflects the diverse etiologies of CA-AKI
(eg, physiological status of the patient, coexisting medical
problems, and underlying causes) affecting the general
population. The experimental results indicated that using the
proposed scoring function for assessing the risk of CA-AKI
hospitalization showed fairly good to good performance with
respect to the AUC (0.76-0.82) to detect any stage or moderate
to severe stages of CA-AKI by decision thresholds on the
validation models.

Similar to previous AKI investigations, underlying comorbidities
(diabetes mellitus, severe liver diseases, chronic kidney disease)
[28,29] and recent use of RAS inhibitors or potassium-sparing
diuretics [19] were identified in the present CA-AKI
hospitalization risk score. The risk model also indicated that
low calcium levels and high phosphorus levels were potentially
modifiable predictors and could be targeted for correction [30].
This feature has substantial clinical implications because it
demonstrates that the model can be applied to prospectively
support clinical decision systems in real time for rapid screening
and recognition of patients with a predicted risk of CA-AKI in
outpatient settings.

Early-stage AKI is generally asymptomatic, and therefore SCr
monitoring is required. Previous findings have suggested that
even small changes are common and are associated with
increased mortality and length of hospital stay [31]. However,
because a baseline SCr measurement is not always available in
practice settings, risk assessment for mild CA-AKI
hospitalization in a diverse population can be a challenge. The
present study is one of the few CA-AKI studies that included
patients with an SCr measurement in the community as the
baseline level of renal function, which was compared to another
SCr measurement performed at hospital admission or requested
by the general practitioner to better define the nature of CA-AKI
[3,4,32,33]. In this study, patients with CA-AKI in the final
cohort were older (65.26, SD 15.49 years) than those in the
non-CA-AKI group; moreover, 54.4% of the patients were
women and 50.67% had preexisting chronic kidney disease

(eGFR<60 ml/min/1.73m2 at baseline). In comparison, a study
with a British population reported a mean age of 74.4 (SD 15.4)
years, 50%-52% female patients, and 31.9%-34.6% of patients
with preexisting chronic kidney disease [4,30], whereas another
study with a US population reported a mean age of 67.8 (SD
12.2) years and 43.2% of patients with preexisting chronic
kidney disease [3]; these populations were considered to be
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comparable with the CA-AKI patients identified using KDIGO
SCr-based criteria in different populations. The present study
used large-scale clinical data with a representative and adequate
sample size to develop a diagnostic tool for CA-AKI risk
evaluation.

Because of a lack of data regarding the risk modeling of
CA-AKI that included up to a few hundred cases, we
summarized the major findings in large, TRIPOD-adherent
studies (published after 2010) that have analyzed the risk of
AKI development in the short term (within 3 or 7 days)
following general admission (see Multimedia Appendix 6)
[34-36]. In those studies, variable candidates were first selected
according to significance (usually P<.05) in the univariate
analysis and determined in the multivariate logistic regression
analysis with stepwise selection. The handling of missing data
in the variables was usually not addressed in these previous risk
models. The AUC value was calculated in both training and
validation data to indicate the capability of discrimination.
Hosmer Lemeshow analysis and P values were nonsignificant,
suggesting acceptable calibration.

A prediction model for the risk of AKI 72 hours following
admission was established using data from 3 centers in the
United Kingdom [34]. Based on 35 variables collected within
24 hours after admission in 2011, 12 predictors were selected,
including age, primary diagnosis, previous admissions, CCI
score, HbA1C, troponin, proteinuria, eGFR, potassium,
magnesium, C-reactive protein, and white blood cell count. The
AUC in the derivation cohort (n=6626) was 0.67 (95% CI
0.64-0.71) in the internal validation cohort for any AKI risk and
was 0.71 (95% CI 0.67-0.76) in the external validation model
(n=1585) [34].

Another prospective study using prospectively collected AKI
screening data in a single center in the United Kingdom in 2011
predicted the risk of AKI less than 7 days after admission [35].
The baseline SCr was retrieved between 1 and 6 months prior
to hospitalization. Of the 25 collected variables, the following
7 variables were selected in the multivariate logistic model: age
(60-79, ≥80 years), congestive cardiac failure, chronic kidney
disease, diabetes, liver disease, respiratory rate ≥20/min, alert,
verbal, pain, unresponsive status. The AUC value was 0.72
(95% CI 0.66-0.77) and 0.76 (95% CI 0.71-0.82) for the
derivation and internal validation cohort, respectively. A recent
external validation study in a single UK nonspecialist acute
hospital (2013-2015) reported that the AUC of the prediction
model was 0.65 (95%CI 0.62-0.67) in the medical setting and
was 0.66 (95%CI 0.62-0.70) in the surgical setting [36]. In
addition, the sensitivity analysis showed that for patients without
baseline SCr information across the medical and surgical
cohorts, the AUC was 0.71 (95%CI 0.67-0.75) and 0.68
(0.58-0.75), respectively, indicating poor to fair predictive
capability (range 0.65-0.71) [36].

Strengths and Limitations
The current risk prediction model included patients with
CA-AKI at hospital admission with modifiable and
nonmodifiable predictors commonly measured in routine care.
Excluding SCr on the index hospital admission, XGBoost and
LASSO demonstrated the feasibility of using machine learning

for predicting CA-AKI hospitalization risk in the general
population. The present model, which used large-scale clinical
data with a representative and adequate sample size and top 10
important predictors having clinical significance on prevention
of CA-AKI requiring inpatient care, can be considered as a
benchmark for further evaluations.

Another strength of the present risk model is that the continuous
risk score of the model can be incorporated into clinical decision
support systems, facilitating their usability. Because the CA-AKI
hospitalization rate was considerably low in the present study
cohort, a risk score over 7.993 was associated with a low PPV
(20%) but high NPV (96%), suggesting an ability to correctly
identify low-risk patients (ruled out). For instance, the CA-AKI
hospitalization risk equation can be easily fitted with the most
recent real-time clinical data for automatic screening and
implementation of preventive strategies (ie, to stop nephrotoxic
medication or ordering nephrologists referred care) in general
outpatient and emergency department settings. Recently, a
digital-based AKI care pathway incorporating mobile phone
detection with a multidisciplinary care response team and care
protocol was proposed for the UK National Health System,
which showed significant practical value in the field [37].
Furthermore, the results of implementing the CA-AKI risk score
in practical settings can help to prospectively evaluate its impact
on the quality of patient care, such as reducing AKI risk
exposure, preventive measures, and management to avoid renal
insults.

This study has several limitations. First, it is based on data
obtained from a large hospital cohort in Taiwan. This could
affect the generalizability of the study findings, although based
on previous data, patient characteristics included in the current
study are not different from those of other populations. Similar
to previous retrospective studies, medical histories relied on
previously coded events in EHRs, and thus possible residual
risk may have been underestimated in the baseline period,
thereby increasing the uncertainty of the risk prediction
performance. Biomarkers of kidney injury such as cystatin C
and neutrophil gelatinase-associated lipocalin, which are
important to provide diagnostic information but are not routinely
tested in practice settings, were absent from the developed model
in the present study. Additionally, the study did not address
external validation. Although it is clear that the integration of
different EHR systems remains a challenge to the medical
community in many health systems, including Taiwan, it is still
necessary to conduct further studies to leverage the risk scoring
system to available EHRs. External validations using this
prediction model outside of a study setting and in different
geographic populations are envisioned as future work. Lastly,
the current study focused on the feasibility of using a
machine-learning model for CA-AKI hospitalization risk
prediction, but did not examine the incidence of CA-AKI, cause,
and management of CA-AKI or its implementation on patient
care. The prediction model and risk scoring function developed
in the present study can nevertheless serve as a risk assessment
tool and link clinical decision support systems for prospective
validation.
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Conclusion
This study demonstrated that the selected variables were truly
crucial for predicting the risk of CA-AKI hospitalization, as
both XGBoost and LASSO identified the same top 10 important
variables. The discrimination ability of the CA-AKI risk scoring
function was good with an AUC value of 0.76 and 0.82 in the
detection of CA-AKI hospitalization at any stage and for

moderate to severe stages, respectively, according to decision
thresholds on the validation cohort, and suggested the feasibility
of AKI detection and prevention in wider populations in the
community. In addition, the easy-to-use risk calculator can
facilitate its widespread implementation in daily routines and
workflows for patient-centered care and prospective validation
of machine-learning applications.
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