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Abstract

Background: Intervention measures have been implemented around the world to mitigate the spread of the coronavirus disease
(COVID-19) pandemic. Understanding the dynamics of the disease spread and the effectiveness of the interventions is essential
in predicting its future evolution.

Objective: The aim of this study is to simulate the effect of different social distancing interventions and investigate whether
their timing and stringency can lead to multiple waves (subepidemics), which can provide a better fit to the wavy behavior
observed in the infected population curve in the majority of countries.

Methods: We have designed and run agent-based simulations and a multiple wave model to fit the infected population data for
many countries. We have also developed a novel Pandemic Response Index to provide a quantitative and objective way of ranking
countries according to their COVID-19 response performance.

Results: We have analyzed data from 18 countries based on the multiple wave (subepidemics) hypothesis and present the
relevant parameters. Multiple waves have been identified and were found to describe the data better. The effectiveness of
intervention measures can be inferred by the peak intensities of the waves. Countries imposing fast and stringent interventions
exhibit multiple waves with declining peak intensities. This result strongly corroborated with agent-based simulations outcomes.
We also provided an estimate of how much lower the number of infections could have been if early and strict intervention measures
had been taken to stop the spread at the first wave, as actually happened for a handful of countries. A novel index, the Pandemic
Response Index, was constructed, and based on the model’s results, an index value was assigned to each country, quantifying in
an objective manner the country’s response to the pandemic.

Conclusions: Our results support the hypothesis that the COVID-19 pandemic can be successfully modeled as a series of
epidemic waves (subepidemics) and that it is possible to infer to what extent the imposition of early intervention measures can
slow the spread of the disease.
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Introduction

The coronavirus disease (COVID-19) pandemic has produced
a great number of studies that aim to understand the dynamics
of the disease spread and predict its future evolution (see, for
example, [1-8]). Different types of models can be assumed to
describe this dynamic evolution. In studying past epidemics,
scientists have systematically applied “random mixing” models
that assume that an infectious individual may spread the disease
to any susceptible member of the population, as originally
proposed by Kermack and McKendrick [9]. Recent approaches
consider mobility and contact networks [10,11], epidemic waves
attributable to community networks [12], subepidemic modeling
[13], Bayesian modeling and inference [14], models of spatial
contacts in large-scale artificial cities [15], and power-law
models of infectious disease spread [16], to name but a few
representative examples.

At present, there is a trove of data from different countries that
can serve to put strict limits on plausible models. In this paper
we use simulations from agent-based models and simple
analytical solutions to fit reported data from a range of countries.
This provides a comprehensive picture of likely scenarios of
how the disease evolved in various countries. These scenarios
can be useful in predicting the future spread of the disease and
provide insight on how the imposition of social-distancing
measures can be effective in containing or slowing its spread.

Our work is based on two premises. First, the apparent regular
features in the reported infections in many countries are not
random but rather contain useful information, as their persistence
and regularity suggest. Second, there is a general underlying
dynamic of the spread of the disease, in spirit similar to the
original Kermack-McKendrick model of three populations [9],
the “susceptible population” S(t), the “infected/infectious
population” I(t), and the “removed/recovered population” R(t),
which are related by S(t) + I(t) + R(t) = N, where N is the total
popula t ion.  The t ime evolut ion of  the
susceptible-infectious-removed (SIR) populations is described
by the equations:

The SIR model involves two positive parameters, β and γ, which
have the following meanings:

• β describes the effective contact rate of the disease; an
infected individual comes into contact with β other
individuals per unit time (the fraction that are susceptible
to contracting the disease is S/N).

• γ is the mean removal (recovery) rate, that is, 1/γ is the
mean period of time during which an infected individual
can pass it on before being removed from the group of the
infected individuals.

However, the time evolution of the SIR populations, as captured
by the linear first-order differential equations of the
Kermack-McKendrick model, produce behavior that is much
simpler than the actual reported data of infections. Therefore,
more detailed (microscopic) models of how the disease is spread
from one infected individual to others are required to produce
features that can emulate real data. In this study, we consider
the simplest possible microscopic model to motivate the reasons
that underlie the common features of real data. We then use
these results to propose a simple analytical model for fitting the
data with a few parameters. Finally, we use the results of the
fitting to draw some insights on the actual evolution of the
disease in representative countries.

Methods

The Microscopic Agent-Based Model
To understand the dynamics of the epidemic in more detail, we
use a more detailed model based on individual agents, which
are also classified as susceptible S, infected/infectious I, and
removed/recovered R, that exist on a 2D regular grid of points.
Each of these agents starts as susceptible and can be infected
by another infectious with probability β per unit time (which
we take here to be 1 day), and once infected can infect other
individuals within a range ±D0, as illustrated in Figure 1.

Figure 1. Illustration of the agent-based simulation model on a 2D grid of size L × L; in this illustration L=7, while in our simulations we considered
L=1000. At t=0 (left panel) all the population is susceptible (blue dots), except for one infected individual (red dot). For a period t < 1/γ (middle panel)
the original infected individual can infect others in a neighborhood within a range ±D0 in each direction (shown by the dashed square), and each of
those infected individuals also infects others within a corresponding range. For t > 1/γ (right panel) some of the infected individuals have recovered
(green dots), depending on when each was infected.

J Med Internet Res 2020 | vol. 22 | iss. 7 | e20912 | p. 2http://www.jmir.org/2020/7/e20912/
(page number not for citation purposes)

Kaxiras & NeofotistosJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The size of this range turns out to be a crucial quantity, justifying
the quest for social distancing measures to contain or slow down
the spread of the disease. After being infected, an agent remains
infectious for a period of 1/γ days, at which point the agent is
removed (recovered) from the infectious population and can
neither be infected again (has acquired immunity) or infect
others. We suggest that the “microscopic” model is likely to be
closer to the actual evolution of the disease than the continuous
populations model represented by equation (1). The size of the
2D model, a square of length L in the example discussed below,
corresponds to a small, uniformly populated “virtual country”
of population N = L × L.

We first provided a comparison of the numerical solution of the
continuous SIR populations, represented by equation (1) and
the agent-based simulations. We chose a total population of

N=106 for both cases and a number of I(0)=4 infected agents,
distributed randomly on the 2D grid in the case of the
agent-based simulations. In Figure 2, we give a comparison of
the evolution of the three populations as a function of time for
a total period of 150 days, by which time the infectious
population has been reduced to zero and the susceptible and
removed populations have reached their long-term asymptotic
values in both models. Although the overall behavior of the

three populations in the two models is similar, the tail of the
I(t) population is quite “fatter” for the solution of the differential
equations. The behavior of the tail is important, as it determines
the rate at which the total number of infections (cumulative)
grows with time, a subject of active research [17]. The value of
the range D0 in the simulations can be chosen at will up to
D0=L/2. The continuous SIR model contains no information on
this range, which must be somehow included in the effective
value of β. Keeping the value of β the same and adjusting the
range D0 and the initial condition for I(0) in the continuous
model, we can obtain reasonable agreement between the two
models, as shown by an example in Figure 1. In this example,
the evolution of the S(t) population is captured well through the
entire time range, except for the asymptotic value. This value
is important, because it corresponds to the portion of the
population that has not been infected at the end of the epidemic
and is given by N − Rtot, where Rtot is the total number of
removed; this is also equal to the time integral of the infected
population divided by the mean period of infection, 1/γ, as can
be easily derived from equation (1c):

Figure 2. Comparison of the numerical solution to the susceptible-infectious-removed equations (solid lines) and agent-based simulations (points) for

a population N. In both cases, we use N=106, β=.25 per day, and 1/γ = 14 days. For the simulations, the range parameter is D0=50 (see text for details).

An important consideration in the dynamics of the disease is
the effect of measures that restrict the movement of individuals
in a population. This can easily be captured in the agent-based
simulation model by taking a time-dependent value for the range
that each infected individual has, namely:

where T0 is the time at which the measures are imposed; both
t and T0 are measured from the time of the first infections,
defined as t=0. Since D(t) → 0 for t →∞ (assuming λ>0) the
behavior of the range corresponds to “lock-down” measures in
which individuals are restricted to a small range and eventually
cannot infect anyone else (they are in “quarantine”). We use

λ=2.5 days in our simulations, which means that from the
moment that the measures are imposed (t=T0), the initial range
is reduced by a factor of ∼20 for each week that passes. The
effect of lockdown measures is quite dramatic, as shown in
Figure 3. To provide a quantitative measure of this effect, we
first let D0 be the largest possible, D0 = L/2 (half the size of the
grid on which the agents live) and then consider several values
of T0, from 20 to 65, the last value being the time where the
maximum of I(t) occurs in the case of no imposition of
restrictions, such as lockdown. A useful measure to quantify
this effect is the total population of infected individuals over
the course of the epidemic scaled by the mean period of infection
1/γ, which is the same number as the total population recovered,
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see equation (2). This quantity, given as a percent of the total
population, is shown in Figure 3 for the whole range of

T0 values we considered.

Figure 3. Top: Epidemic disease simulations of the infected population, I(t), as a percentage of the total population, using 1 million individual agents
on a 2D grid, with different lockdown dates, T0, after the initial cases at t=0. The shaded curve in the background corresponds to I(t) with no lockdown
measures. For these simulations, β=.25, 1/γ = 14 days, and λ=2.5 days. Bottom: The percent of the total infected population, Rtot(T0) for different values
of T0, ranging from 0.93%, for T0=20 days, to 86.7%, for T0=65 days. The error bars represent standard deviations from averaging over 30 samples in
each case (for the largest and smallest values, the error bars are too small to be visible). The black dashed curve is the fit from equation (4). The red
dashed line represents the value for no lockdown measures, which is 87.4%.

The asymptotic value, reached for T0=65 is 86.7% (±0.33%),
was almost equal to the value when no lockdown measures were
imposed, 87.4% (±0.06%); this last value corresponds to the
“herd immunity” limit for the parameters we have used in the
present simulation. The smaller T0, the lower Rtot is, reaching
the value of 0.93% (±0.34%) for T0=20. The behavior of these
values is well approximated by the expression:

with I0=43.7, τ=9.1 days, and T1=41.5 days. A clear conclusion
from this set of results is that the early imposition of measures
makes a significant difference in the total infected population;
for example, in a country with a total population of 10 million,
the imposition of measures 20 days after the first few reported

cases can reduce the total number of infected from 8.74 million
to 93,000. The assumptions in this example involve allowing
free movement of all persons for the entire period of the disease
in the worst-case scenario to full quarantine within 2 weeks
after imposing lockdown measures, which reduces the initial
range spanning the entire country by a factor of 270, enough to
essentially stop any disease transmission.

An interesting exercise is to consider what are the effects of
finite D0 much smaller than the size of the system (our “virtual
country”). We give some examples of such simulations in Figure
4. For D0=100 or larger, the result is essentially the same as that
of the limiting case of free motion throughout the entire system,
which was discussed in Figure 3 (background curves with no
lockdown measures). For D0≤75, the curves start deviating from
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this behavior and even exhibit more interesting behavior, with
additional “bumps” in the descending part and long tails, as the
case D0=25 shows. In fact, for D0=25 the curves are not unique
and depend on the initial random distribution of the infected
individuals at t=0; we give an example in Figure 4. Within our
simple microscopic model, this behavior arising from small
values of D0 (like the case D0=50 in Figure 4) can be easily
explained; it corresponds to several small clusters of infections,
which spread through the country in waves, as one cluster
eventually becomes all removed, but before reaching this point,
some infected individuals have moved to a region where there
were no infections at all, starting a second wave of infections.

We emphasize that, independent of the initial conditions that
determine the number and time of the subsequent waves’
occurrence, for a given value of small D0, the asymptotic value
of Rtot for t→∞ is always the same and of course depends on
the specific value of D0. This simply means that the total number
of infections is determined by the effective range of interactions
and, given enough time, the disease will infect the same total
number of agents no matter how it proceeds from one cluster
to others. This behavior of disease evolution may be actually
close to what is seen in reported data, as described in the
following section.
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Figure 4. Top row: Simulations based on individual agents with a finite range of spreading the disease, D0. Left: various values of D0; the case D0=100
already approaches the limit of free motion throughout the system, D0=L/2, see also Figure 3. Right: several instances of D0=25, labeled (a), (b), (c),
exhibiting multiple bumps and long tails. Bottom row: the actual infected populations at the same time moment t=30 days, for D0=50 (left) and D0=100
(right).

In contrast to the situation for small values of D0, for larger
values of D0 all the curves for I(t) are identical and the behavior
is that of one wave smoothly spreading through the entire
system, as shown also by an example (D0=100) in Figure 4. The
critical value separating these two regimes is between 100 and
75 in our simulations. It would be interesting to study what this
critical value is and what is its relation to the system size L in
a more systematic manner using methods from statistical
physics.

The Multiple Wave Forced-SIR Model
Recently, the forced-SIR (FSIR) model was proposed by the
authors and used to describe the evolution of the COVID-19
pandemic in a representative set of countries [18]. This model
treated the evolution of the infected population as a single wave
(single peak wave). It contains three adjustable parameters that
are estimated for each country by fitting actual data. However,
the single-wave assumption cannot explain the entire incidence
curve (infected population curve) in each country. Wavy patterns
(“bumps”) are evident in the actual data for many countries,
which cannot be attributed to simply random fluctuations, due
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to their regularity and similarity among several countries in
which, at first glance, the disease was at different levels of
severity. Here, we expand the analytical FSIR model to capture
the multiple waves (subepidemics), underlying a country’s
overall incidence curve. This is akin to the case of finite D0

discussed previously in the agent-based model. We applied this
multiple wave analytical model to a representative set of 18
countries, in all of which the behavior of the infection as a
function of time is accurately represented by our model.

In its original version, FSIR applies to a single epidemic wave,
in which the infected population is given by the expression:

I(t) = N − S(t) − R(t) (5)

with the approximate solution given by:

where N′, α1, α2, t1, t2 are treated as adjustable parameters, with

t1 and t2 representing the times at which the and 
populations reach their sigmoid midpoint values, respectively.
Here, we extend this model to allow for multiple waves that
capture the subepidemics in the infected population of a country.
As argued in the agent-based microscopic model previously
presented, several clusters of infections can appear in a country
in waves; each cluster eventually becomes all removed, but
before reaching this point, some infected individual has moved
to a region where there were no infections at all, starting a
second local wave of infections. In the extended model, we
assume each wave is captured by a function described by
equation (6), with different values of the parameters involved.

We apply this extended model to fit the multiple wave behavior
of infected populations in different countries, as obtained from
the European Centre for Disease Prevention and Control [19],
for a period ending on May 16, 2020, which corresponds to 120
days from the onset of the exponential growth of reported cases
in China. To obtain a meaningful fit, we had to consider data
for each country that showed a monotonic increase at the
beginning. This means that a few data points in each case were
excluded, as they corresponded to sporadic reports of a few
isolated cases, typically 1-10 in a given day, interspersed by
several days of zero cases. In practice this means that the fitting
begins at a certain cutoff day denoted as t0.

As in the case of the original FSIR model, to make the fit more
robust and simpler, we chose the α1 and α2 parameters to have
the same value α1=α2=α=0.25. We have found this to be the
optimal value for the countries we considered. Moreover, a
common value for the exponential decrease of the susceptible
population, which is captured by the value of α1, and for the
exponential increase of the removed population, which is
captured by the value of α2, is actually more consistent with
the agent-based simulations, as described in Section II.

Finally, instead of using t1 and t2 for each wave as independent
parameters, we elected to use as independent parameters t1 and
∆t = t2 − t1. To make the multiple-wave fit more robust, simpler,
and systematic, we chose ∆t =14 (days) for all waves, which is
a reasonable choice, as it corresponds to a common mean time
period of 14 days before the infected individual is removed (∆t
= 1/γ in the agent-based microscopic model). This mean
time-period has been imposed as a quarantine measure for the
majority of countries imposing measures (interventions) and is
consistent with a reported estimated median time of
approximately 2 weeks from onset to clinical recovery for mild
cases [20]. This condition leaves two adjustable parameters per
subepidemic that can be varied to obtain the best fit to the data,
namely the onset time t1, which corresponds to the midpoint of
the sigmoid representing the decline of the susceptible
population, and N′, which is a parameter representative of the
number of daily cases near the peak of the infected population
curve in the given wave. NT, the total number of infected in the
given wave, can readily be obtained. The best fit here is defined
in the Root-Mean-Square (RMS) sense. The model parameters
were determined by employing the Levenberg-Marquardt
algorithm.

Results

Application to Representative Countries
We were able to obtain reasonable fits for over 30 countries
from the entire database [19], primarily selecting countries for
which the temporal COVID-19 evolution had reached peak
intensity of the infection. Rather than including over 30
countries in the following discussion, we have chosen to focus
on three groups, a total of 18 countries, that span the whole
range of parameter values and could hopefully provide some
insight to the multiple wave behavior of the pandemic. The
choice of the 18 countries also aimed to represent parts of the
world more heavily or less heavily impacted by the disease, as
well as more typical cases. Here we defined the impact as the
total number NT of infected individuals during the first 120 days
of the pandemic, as predicted by the FSIR model [18]; this
number is scaled by the population of the country (NP). In
particular, we have included six countries in which the impact
was small, China, Australia, Greece, Cyprus, Tunisia, and Japan
for which (NT/NP)<1000 infected per million; six countries in
which the impact was moderate, Israel, Denmark, Germany,
France, Canada, and Portugal for which 1000<(NT/NP)<3000
infected per million; and six countries in which the impact was
large, Sweden, Switzerland, United Kingdom, Italy, the United
States, and Spain for which (NT/NP)>3000 infected per million.

We fit 7-day running averages of the daily data, for all countries,
with data up to May 16, 2020. For each country, we estimated
the number of waves (subepidemics) in which the infected
population curve could be analyzed, the model parameters of
each subepidemic, and the expected number of cases for the

first major wave (NT
(1)) and for all waves (NT). Table 1 presents

the model parameters for the countries in our set.
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Table 1. The values of the various parameters that enter in the multi-wave forced-susceptible-infectious-removed (FSIR) model of equation (6), for

the representative countries considered.a

N T
bN T

(1)N′ (4)t1
(4)

(days)
N′ (3)t1

(3)

(days)
N′ (2)t1

(2)

(days)
N′ (1)t1

(1)

(days)

CountryCode

81,991N/AN/AN/AN/AN/AN/AN/Ac586817.3ChinaCHN

6770N/AN/AN/AN/AN/AN/AN/A48421.5AustraliaAUS

27072173N/AN/A3944.511221.5446.21GreeceGRC

821677N/AN/AN/AN/A1130.7499.0CyprusCYP

1014686N/AN/AN/AN/A2321.7509.7TunisiaTUN

14,9667870N/AN/AN/AN/A26274.556268.4JapanJPN

16,45311,179N/AN/AN/AN/A37740.379921.6IsraelISR

11,467707611865.919550.440430.11067.4DenmarkDNK

141,05777,439N/AN/A143662.2330941.4553126.8FranceFRA

179,37969,078114069.1232849.3441133.5493723.5GermanyDEU

30,36519,128N/AN/A18652.561534.4136821.0SwitzerlandCHE

30,28114,911N/AN/A38160.971639.6106622.3PortugalPRT

76,61723,267N/AN/A189163.3192148.2166230.6CanadaCAN

32,47611,08175469.377650.565032.414312.6SwedenSWE

222,91896,243158367.4340451.5406237.1687522.9ItalyITA

241,48966,414N/AN/A663061.7587943.6474430.0United KingdomGBR

246,080145,378173774.1163952.9382440.510,38925.1SpainESP

1,470,776548,817N/AN/A32,81864.033,05947.839,20531.3United StatesUSA

aThe ordering of the countries is discussed in Table 2.
bThe last column includes the values for the expected total number of cases NT when the number of infections has dropped to near zero and is an
extrapolated value.
cN/A: Not applicable, as there is no relevant wave (subepidemic) for the respective parameter value to be obtained.

In the following, we present results obtained by the
multiple-wave FSIR model for selected countries that can be
accurately fitted by 4 waves (Italy, Sweden), 3 waves (United
States, Portugal, Greece), and a single wave (China). The
countries selected fall in two distinct classes: the first class
comprises countries, which implemented stringent intervention
measures rather fast; the second class comprises classes that
implemented measures at rather later times and not at a high
stringency level. The stringency of the measures is tracked daily
by the Oxford COVID-19 Government Response Tracker
(OxCGRT) [21], which systematically collects information on
several different common policy responses governments have
taken, scores the stringency of such measures, and aggregates
these scores into a common Stringency Index. OxCGRT collects
publicly available information on 17 indicators of government
responses, that is, eight policy indicators recording information
on containment and closure policies such as school closures
and restrictions in movement, four indicators recording
economic policies such as income support to citizens or

provision of foreign aid, and five indicators recording health
system policies. Italy, Portugal, Greece, and China had
implemented high stringency measures rather fast, whereas
Sweden, the United Kingdom, and the United States had not
done so at that level.

Figure 5 presents the multiple wave fit for Italy, which was one
of the most heavily impacted countries by COVID-19. An initial
large subepidemic was followed by 3 declining subepidemics.
The use of the term “declining” (or its opposite, “increasing”)
refers to the peak intensity of the subepidemic. Italy has taken
strong intervention measures, since the country’s maximum
stringency level was 94.29 [21]. The shape of the curve is
reminiscent of the shape of the curve produced by the
agent-based microscopic model, Figure 4 for D0=25. There is
an excellent agreement between the 4-wave fit and the actual
data in both daily and cumulative data. As can be seen, the
single wave fit of the data, depicted by the green dashed lines,
significantly underfits the data.
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Figure 5. Results for ITA and PRT, obtained by fitting the multiple-wave forced-susceptible-infectious-removed (FSIR) model with data up to May
16, 2020. Top row: Red dots are the daily data reported by the European Centre for Disease Prevention and Control. The blue dots are 7-day running
averages of the daily data. The green dashed line is the fit by the single-wave FSIR model. The black solid line is the 4-wave fit by the multiple-wave
FSIR model. Middle row: Decomposition of the 7-day running average data (blue dots) in 4 waves for ITA and 3 waves for PRT. The black line represents
the superposition of the multiple waves. The fit is in excellent agreement with the actual data. Bottom row: Blue dots are cumulative daily data (7-day
running averages). The black line is the fit by the multiple-wave FSIR model, and it is essentially indistinguishable from the actual data. The green
dashed line is the fit of the single-wave FSIR model, which clearly underfits the actual data. ITA: Italy; PRT: Portugal.

Figure 5 also presents the multiple wave fit for Portugal, which
is a country experiencing a heavy impact by COVID-19. The
country’s government has implemented stringent measures,
with the highest stringency level at 89.52 [21]. The country’s
incidence curve was fitted by 3 waves. An initial large
subepidemic was followed by 2 declining subepidemics. Here
too, the shape of the curve is reminiscent of the shape of the
curve produced by the agent-based microscopic model, Figure
4 for D0=25. There is an excellent agreement between the
3-wave fit and the actual data in both daily and cumulative data.
As can be seen, the 1-wave fit of the data significantly underfits
the actual data. Italy and Portugal are representative examples
of countries where the initial major wave is followed by several
waves of declining strength, suggesting that, despite the initial
large impact, the countries were successful in eventually
containing the epidemic. Germany, France, Spain, Switzerland,
Denmark, and Spain are exhibiting similar behavior, namely

that of a major initial wave followed by several of declining
strength.

Figure 6 presents the multiple wave fit for the United States,
which appears to be the hardest hit country by COVID-19, in
terms of total number of cases. The country implemented a
series of intervention measures to stop the disease’s transmission
and impact, which were deemed not to be taken aggressively
enough, with highest stringency level 73.57 [21]. The country’s
incidence curve was fitted by 3 waves. An initial large
subepidemic was followed by subepidemics, with seemingly
declining strength. However, the United States is a country
comprising of more than 50 states and territories, and it is not
clear if additional waves, possibly of strength comparable to
the original ones, may materialize or not at later times. A study
of decomposing the United States infected population curve per
state is currently under way by the authors.
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Figure 6. Results for the USA and SWE, obtained by fitting the multiple-wave forced-susceptible-infectious-removed model with data up to May 16,
2020. The meaning of symbols is the same as in Figure 5. SWE: Sweden; USA: United States.

Figure 6 also presents the multiple wave fit for Sweden, which
was also one of the hardest hit countries by the disease.
However, the Swedish Government decided not to impose strict
intervention measures but to inform the citizens to adopt certain
precautionary measures, in a mostly individualistic capacity;
the country’s maximum stringency level was 58.10 [21]. Thus,
the country followed a different mitigation policy, with respect
to the rest of Europe and most of the world. Sweden’s incidence
curve was fitted by 4 waves. An initial small subepidemic was
followed by 3 increasing subepidemics. It seems that the disease
is spreading in waves; once a cluster of infected people is all
removed, another bigger one is getting infected. Thus, the
adoption of voluntary policy makes multiple nondeclining
subepidemics of the disease get hold of the country. Since there
was no clear trend as of May 16, 2020, of the country getting
over the intensity peak, the 1-wave fit predicts a linear increase
of the total number of expected cases. The 4-wave fit estimates

a plateau of the total number of cases after the fourth wave,
assuming that more waves do not materialize. According to the
taxonomy of epidemic waves [13], COVID-19 in Sweden has
generated an endemic wave; it remains to be determined if this
is stationary or temporary.

Canada and the United Kingdom are among the countries
exhibiting a similar subepidemics pattern, that of being impacted
by a major wave followed by several waves of nondeclining
strength.

Figure 7 presents the single wave evolution of the disease in
China, which was the first country to be hit by COVID-19, and
the Chinese Government implemented a series of rather fast
and strict intervention measures to stop the disease’s
transmission and impact. The country’s incidence curve was
fitted by a single wave.
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Figure 7. Results for CHN and GRC, obtained by fitting the multiple-wave forced-susceptible-infectious-removed (FSIR) model with data up to May
16, 2020. The meaning of symbols is the same as in Figure 5. CHN: China; GRC: Greece.

Figure 7 also presents the multiple-wave fit for Greece, whose
government quickly implemented a series of intervention
measures to stop the disease’s transmission and impact, with
highest stringency level 85.95 [21], keeping the total number
of cases at very low levels. The country’s incidence curve was
fitted by 3 waves. An initial small subepidemic was followed
by a larger one, which was followed by one of declining
strength, suggesting that it contained the epidemic efficiently
and fast. Greece is a representative example of countries, such
as Sweden and Denmark, which also exhibit an initial small
wave followed by a larger one. However, Greece and Denmark
countered the epidemic before reaching high levels of cases. In
terms of declining subepidemics, Greece follows the pattern of
countries such as Japan, Israel, Cyprus, and Tunisia, in which
the initial major wave was followed by a single subepidemic
of declining strength.

Similar to China, the imposition of strict measures in countries
such as Australia and New Zealand, shows that countries were
able to reduce the disease’s impact to a single wave. A
quantitative estimate of the gain obtained is presented in the
next-to-last column of Table 1, which presents the number of
cases that could had been saved if countries had reduced the
epidemic to a single wave rather than experiencing multiple
ones; up to two-thirds of the total number of infections, as in

the case of the United States, could have been avoided. Recent
findings on the differential effects of intervention timing on
COVID-19 spread in the United States [22] strongly corroborate
this picture.

The Pandemic Response Index
Countries respond to the pandemic in varied ways. It is an
interesting question to quantify their varied response and make
comparisons, which may be useful for contributing to the
evaluation of the different policies followed. Based on the results
of our model, it is possible to construct an index, the Pandemic
Response Index (PRI), and assign a value to each country
depending on its response to the pandemic.

To do this in an objective manner, we took into account two
factors. First, the total number of infections as given by the
quantity NT of Table 1, divided by the population of the country
NP. The range of this quantity when multiplied by 100 is
between 0 and 0.5 approximately. This is a measure of the
overall impact of the pandemic on the population of the country,
and as argued by our microscopic model, it is a reflection of
how early measures to contain the epidemic were imposed. The
second quantity we considered is ∆NT, the number of cases that
correspond to all the waves except for the first major one, which
in some cases includes the earliest small wave (see Table 2).
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Table 2. Ranking of the various countries according to the PRI, defined in equation (7).

PRIcNT (/million)b∆NT (/million)aCountryCode

9.94590ChinaCHN

9.732710AustraliaAUS

8.7625250GreeceGRC

8.44690121CyprusCYP

8.328828TunisiaTUN

7.5111856JapanJPN

6.551852594IsraelISR

6.111978757DenmarkDNK

5.642106950FranceFRA

4.7621631330GermanyDEU

4.5935651319SwitzerlandCHE

4.5829451495PortugalPRT

4.4520671440CanadaCAN

3.5231892101SwedenSWE

3.4736892096ItalyITA

2.7436322633United KingdomGBR

2.6952672155SpainESP

2.3744952818United StatesUSA

a∆NT is the difference between NT and the total number of cases that were infected by the first major subepidemic (for Sweden, Denmark, and Greece,
both the small initial wave and the second wave have been taken into account). ∆NT has also been normalized by the country’s population in millions.
bNT is the asymptotic value after all waves have decayed, given in Table 1, normalized here by the country’s population in millions.
cPRI: Pandemic Response Index.

Arguably, this number of cases could have been avoided had
the country imposed early and strict measures after the first
wave of the epidemic was plainly evident; this was the case of
single wave countries, for instance, China and Australia for
which ∆NT=0. The larger this number is, the worse the
performance of the country. This number, divided by 2NT, lies
in the range 0-0.5. With these two quantities, we then define
the “Pandemic Response Index” as:

a quantity that lies in the range from 0-10, the higher values
corresponding to better performance. This provides a
quantitative and objective way of ranking the countries
according to their performance. The results of this comparison
and the relevant numbers that enter in the evaluation of the PRI
are given in Table 2. We note that the classification is consistent
with our initial selection of the countries considered here, as
being those on which the disease had greater impact as measured
by the number of infections per million, with arbitrarily chosen
cutoffs in the ranges (smaller than 1000, between 1000 and
3000, and larger than 3000 per million). The only country that
changes category based on the PRI value is Switzerland, which
is raised to higher performance (average, see Table 2); this is a
result of the fact that, although Switzerland had a relatively
large number of cases per million (3565 cases per million), most

of those occurred in the first wave, leaving a rather small
percentage for subsequent waves. This remark suggests that the
PRI is indeed a finer tool for evaluating performance, rather
than relying on crude categorizations like the one based on the
number of infections per million with arbitrary cutoff values
between categories.

Discussion

Principal Findings
Reported cases of COVID-19 infections in various countries
show features that are both common and regular, which we
interpret as successive waves of transmission. We present
evidence for this interpretation, using both agent-based
simulations and a multi-wave model to fit the infected
population data for many countries and give representative
examples. This evidence supports the hypothesis that the
COVID-19 pandemic can be successfully modeled as a series
of epidemic waves (subepidemics). We analyzed the data from
18 countries based on this hypothesis and present the relevant
parameters of a simple analytical model that accurately
represents the data. Based on this analysis, it is possible to infer
to what extent the imposition of early social distancing measures
has slowed the spread of the disease. This analysis provides an
estimate of how much lower the number of infections could
have been, if early and strict intervention measures had been
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taken to stop the spread at the first wave, as actually happened
for a handful of countries.

Comparison With Prior Work
Recent works have emphasized more realistic approaches of
human behavior and mobility involving larger transmission
jumps by incorporating power-law decay of spatial interaction
among human contacts [16], punctuated outbreaks as the disease
progresses from one community to the next [12], and border
effects [23]. In this study, our agent-based simulations start with
4 country-wide initial seeds for the disease onset in the “virtual
country,” thus approximating in a reasonable way the effect of
longer jumps before the imposition of the intervention measures
such as social distancing and lockdown. Nevertheless, the
microscopic model can be extended to encompass network and
community structures as well as border effects by incorporating
weighted interactions among the agents in the simulation grid.

The multiple-wave FSIR model can identify multiple waves
(subepidemics), specifying each one by only three parameters,
t1, ∆t, and N′, all of which are obtained by directly fitting the
reported data of daily populations of infected individuals. Each
of these parameters can be assigned a physical meaning, which
help quantify certain generally held views; a detailed discussion
of the meaning of these parameters can be found in [18].
Moreover, the quantitative picture that emerges from the values
of these parameters produces a rather accurate picture of the
severity of the epidemic in the various countries, and the effect
of the intervention measures if and when any were taken.

A limitation of the original FSIR model is that it provides the
extrapolation to future cases of infection as only a lower limit;
this point has been discussed in an elegant mathematical analysis
of the data by Fokas et al [17], highlighting the need for the
inclusion of nonlinear terms in the underlying differential
equations to capture the slow rate of the infected population
decay. This is evident in the countries that have long passed the
peak of the reported cases; the tail does not asymptote to a
constant value, as the sigmoid (logistic) model predicts, but the
number actually keeps growing at a slow rate. The
multiple-wave FSIR mitigates this limitation of the original
FSIR model; by modeling more accurately the wavy behavior
of the infected population curve, it can provide a better fit to

the daily data and to the cumulative actual data, and a better
estimate to the cumulative number of cases (NT), as can be seen
in all the cases we examined, see Figures 5 and 6.

Limitations
The multiple-wave FSIR model may suffer from the fact that
the number of infections dies off exponentially as the last wave
does, a feature that appears unrealistic according to several other
models that attempt to capture the long-term behavior [24-29].
Another limitation relates to the fact that in many cases, when
∆t is estimated as an adjustable parameter, it tends to provide
an aggregate fit, that is, an initial large subepidemic tends to be
followed by a longer in time and smaller in peak intensity
averaged wave, which is the sum of smaller subepidemics. This
wave can be characterized as a temporary endemic wave
according to the taxonomy of [13]. To improve the resolution
of the model and enable it to specify the underlying smaller
subepidemics, an epidemiologically reasonable value for ∆t is
necessary. Furthermore, caution must be exercised in
interpreting the subepidemics because they may constitute a
superposition of even smaller ones, as in the case of the United
States, a country comprising 50 states with varied responses to
the epidemic.

Conclusions
Multiple waves of transmission during infectious disease
epidemics represent a major public health challenge. Our
agent-based simulations encompassing strong social distancing
measures show epidemics with multiple wave structures. The
analysis of reported data from 18 countries supports the
hypothesis that the COVID-19 pandemic can be successfully
modeled as a series of epidemic waves (subepidemics). The
main strength of the simulations and the models developed and
used in this work is the simplicity and the insight they offer on
how the disease is transmitted in a country and on quantifying
the effect of the intervention measures of the disease dynamics.
Based on the model’s results, the construction of a PRI provides
a finer tool for evaluating each country’s performance, instead
of relying on crude categorizations like the one based on the
number of infections per million with arbitrary cutoff values
between categories.
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