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Abstract

Background: Timely allocation of medical resources for coronavirus disease (COVID-19) requires early detection of regional
outbreaks. Internet browsing data may predict case outbreaks in local populations that are yet to be confirmed.

Objective: We investigated whether search-engine query patterns can help to predict COVID-19 case rates at the state and
metropolitan area levels in the United States.

Methods: We used regional confirmed case data from the New York Times and Google Trends results from 50 states and 166
county-based designated market areas (DMA). We identified search terms whose activity precedes and correlates with confirmed
case rates at the national level. We used univariate regression to construct a composite explanatory variable based on best-fitting
search queries offset by temporal lags. We measured the raw and z-transformed Pearson correlation and root-mean-square error
(RMSE) of the explanatory variable with out-of-sample case rate data at the state and DMA levels.

Results: Predictions were highly correlated with confirmed case rates at the state (mean r=0.69, 95% CI 0.51-0.81; median
RMSE 1.27, IQR 1.48) and DMA levels (mean r=0.51, 95% CI 0.39-0.61; median RMSE 4.38, IQR 1.80), using search data
available up to 10 days prior to confirmed case rates. They fit case-rate activity in 49 of 50 states and in 103 of 166 DMA at a
significance level of .05.

Conclusions: Identifiable patterns in search query activity may help to predict emerging regional outbreaks of COVID-19,
although they remain vulnerable to stochastic changes in search intensity.

(J Med Internet Res 2020;22(7):e19483) doi: 10.2196/19483
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Introduction

Early detection of regional coronavirus disease (COVID-19)
outbreaks is essential for efficient medical resource allocation,
public health messaging, and implementation of infection
prevention and control strategies [1]. It is particularly important
given the probability of future waves of COVID-19 cases and

the difficulty of applying traditional epidemiological forecasting
models in areas with low case levels [2,3]. However, laboratory
testing capacity is limited, and confirmed case reports lag behind
underlying infections, decreasing their predictive capacity in
the early days of an outbreak or resurgence.
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Internet browsing data, such as search-engine query results, can
provide a real-time indication of symptoms in a population and
have been used extensively to predict and model outbreaks like
influenza and dengue [4-7]. Such methods generally assume
that specific and detectable patterns in internet behavior, such
as search trends or social media postings, reflect health-seeking
behavior in real time at the population level. Forecasting models
based on search queries, such as Google Flu Trends, have shown
predictive value without direct reliance on formal case reports,
although historical inaccuracies mean that they can only
supplement, not replace, traditional forecasting methodologies
based on confirmed cases [8-10].

COVID-19 case rates display significant regional heterogeneity
that requires locally tailored containment strategies. Google
search trends, encompassing a majority of internet queries in
the United States and publicly available through Google Trends
(GT), provide a powerful resource for systematic comparison
of browsing behavior between US regions. We hypothesized
that keyword libraries could be screened for specific terms
whose aggregate activity would reflect regional differences in
COVID-19 case rates, as has been demonstrated for influenza
[4]. While several studies have previously attempted to model
the COVID-19 pandemic using search query data, such attempts
have largely focused on specific regions, like Taiwan and Iran,
and a limited number of individually selected search terms
[11-14]. We explored the potential of large-scale, publicly
accessible search query data to signal new COVID-19 cases at
the state and metropolitan-area levels in the United States.

Methods

Data Collection and Processing
We obtained confirmed case data for US states and counties
from the New York Times (NYT) data set from January 21, the
date of the first confirmed US case, to April 2, 2020, comprising
county-specific, lab-confirmed COVID-19 case reports compiled
daily from local and state health authorities [15]. We used the
NYT data set because of both its inclusion of county-level case
geotags and its strong correlation with other case tracking
sources [16]. Next, we used GT to compile a library of 463
unique search queries and their associated daily activity levels
over the same time period. Library terms were automatically
retrieved based on the likelihood of user association with a set
of prespecified coronavirus-related seed terms (Multimedia
Appendix 1), using the GT “Related Queries” function.

We compared the z-transformed correlation of each query’s
search activity with an in-sample data set comprising daily
confirmed national cases rates for days through March 10 with
>100 new cases per day. Each query’s search activity was offset
by temporal lags of between 0 and 14 days, generating a list of
best-fitting queries and their associated optimal lag times. To

focus on terms with early predictive power, we excluded queries
whose optimal lag was less than 9 days. We selected the five
best-fitting queries and constructed a single explanatory variable
by summing the lag-adjusted, relative activity levels of each
query. Finally, we linearly fit the explanatory variable to national
data through March 10 to generate a single scalar coefficient.

Data Analysis
We measured the correlation of state-specific activity levels for
our explanatory variable with daily reported case levels in
individual states using out-of-sample data from March 11
through April 2. We also measured how well the explanatory
variable explained out-of-sample case rates in 166 designated
market areas (DMA), which are collections of approximately
15 counties each constituting the highest-resolution regional
data available on GT. Means and confidence intervals for
correlation coefficients were calculated using the inverse
z-transformation of the averaged z-transformed coefficients.
The strength of model predictions over time was measured using
a partial correlation of first confirmed case dates with
z-transformed correlation coefficients in all regions with >100
cases, controlling for regional population. We used
root-mean-square error (RMSE) as an additional measure of
model performance. Model predictions were adjusted for
regional population and internet access [17]. All data were
anonymous, and the study protocol was approved by the
institutional review board of the Icahn School of Medicine at
Mount Sinai.

Results

Search Query Characteristics
Queries incorporated into the final explanatory variable were
highly correlated with national case data, with correlation
coefficients ranging from 0.996 to 0.999 on the in-sample data.
The optimal temporal lags for incorporated queries were from
11 to 12 days, indicating a prediction horizon of up to 10 days
(assuming that a day’s full GT query results become available
on the subsequent day). The final variable, the linear sum of
weighted, lag-adjusted activity levels for the five best-fitting
terms from the 463-term library, fit the in-sample data with a
correlation of 0.998.

Characteristics of additional screened queries validated our
methodology. For instance, acute topics like medical care and
testing had smaller associated lag times with confirmed case
rates, as would be expected for urgent inquiries (Table 1).
Queries unrelated to COVID-19 had correspondingly weaker
correlations with the observed data. The best-fitting category
of queries was “COVID-19 guidance,” which included terms
related to coronavirus-specific medical advice from health
authorities. Relative levels of search activity had no significant
effect on fit with case data.
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Table 1. Characteristics of query topics screened for fit with coronavirus disease (COVID-19) case data.

Activity weightingdAssociated lag time

(days)c, mean

Correlation with national

case rateb, mean
Unique queriesa, n (%)Search query category

0.389.10.9632 (6.9)COVID-19 guidance

1.008.30.9657 (12.3)COVID-19 news

0.418.90.9491 (19.7)COVID-19 symptoms

0.3110.10.9334 (7.3)Medical treatments

0.115.40.8958 (12.5)COVID-19 testing

0.607.20.8933 (7.1)Medical care

0.576.80.8962 (13.4)Nonspecific symptoms

0.125.90.8628 (6.0)Economic effects

0.766.60.8651 (11.0)Unrelated to illness

0.778.30.8417 (3.7)Symptoms of other illnesses

aNumber of queries of each type in the query library (eg, the category “COVID-19 testing” would include the specific query “coronavirus test near me,”
and the category “nonspecific symptoms” would include the query “cough”).
bExpressed as the inverse z-transformation of the averaged z-transformed correlations with in-sample national data.
cMean lag time between best-fitting query activity and confirmed case rate, in days.
dRelative mean search activity levels, normalized.

Regional Case-Rate Predictions
The query-based predictions fit well with out-of-sample case
rate data at the national level, with a correlation of 0.84 (P<.001)
for out-of-sample data and 0.83 (P<.001) for all available data.
The predictions were also well correlated at the state level in
nearly all cases, fitting case data in 49 of 50 states at a
significance level of α=.05 and 41 of 50 states at α=.005 (mean
r=0.69; 95% CI 0.51-0.81; Figure 1A; Multimedia Appendix
2). RMSE was less than 4 cases per 100,000 residents for model
predictions in 44 of 50 states (median 1.27; IQR 1.48; Figure
1B).

At the DMA level, the query-based predictions fit with daily
case data for 62% (103/166) of regions at α=.05, or 79%
(84/107) excluding DMA with fewer than 100 cases (mean r

for all DMA=0.51; 95% CI 0.39-0.61; Multimedia Appendix
3). RMSE was slightly higher for DMA-level compared to
state-level predictions but was less than 7 for 92% (152/166)
of DMA (median 4.38; IQR 1.80). Furthermore, at both the
state and DMA levels, the strength of the correlation was not
significantly associated with the date of a region’s first
confirmed case (P=.51 for states and P=.71 for DMA for partial
correlations in regions with >100 cases, controlling for
population), suggesting that predictive search behaviors may
precede new cases regardless of the timing of a regional
outbreak (Figure 1C and D). The explanatory variable
consistently produced well-fitting predictions with data available
10 days in advance of predicted new case activity (Figure 2),
even in regions where fewer than 100 new cases were confirmed
per day.
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Figure 1. Correlation of query predictions with regional coronavirus disease (COVID-19) confirmed case rates. (A) Correlation of predicted case rates
with actual case rates for the 50 states. Values are Pearson correlation coefficients. * indicates significance at α=.05; ** at α=.01; *** at α=.005. (B)
Root-mean-square error (RMSE) between predicted case rates and actual case rates for the 50 states, in units of daily new cases per 100,000 population.
(C) Prediction correlations at the state level do not depend on outbreak timing, as measured by the date of the first confirmed case. Circle size indicates
the relative population of the state. Color indicates US census-designated region (blue: Northeast; orange: Midwest; gray: South; green: West). (D)
Prediction correlations at the designated market area (DMA) level do not depend on outbreak timing, as measured by the date of the first confirmed
case. Circle size indicates the relative population of DMA. Color indicates the US census-designated region, as described. n.s.: not significant.
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Figure 2. Correlation of query predictions (red) with regional coronavirus disease (COVID-19) case rates (black) at the state and designated market
area (DMA) levels, February 20 to April 2, 2020. (A) Comparison of predicted case rates (red) with actual case rates (black) at the state level, with
Arizona shown as an example. Dashed lines indicate 95% CIs. (B) Comparison at the DMA level, with the Butte-Bozeman area shown as an example
of predictions in a low-population region.

Discussion

These data suggest that specific patterns of internet search
behavior, which can be curated automatically from libraries of
search terms, precede and correlate with regional case rates of
COVID-19. Such patterns, which we captured using a single
explanatory variable, remain correlated with case rates in regions
with a broad range of populations, locations, and outbreak times,
making aggregate search trends a useful tool for estimating
regional COVID-19 outbreaks in the days preceding confirmed
case reports. Correlation strengths were not significantly
associated with the date of onset of regional outbreaks, making
it unlikely that a single national event, such as a press release,
could explain the strength of model predictions in all regions.
Furthermore, search queries explicitly related to COVID-19
have more predictive power than unrelated keywords, and acute
queries, such as those concerning testing or medical care, have
smaller associated lag times.

Taken together, these results suggest that systematic screening
of key term libraries can identify search queries reflecting
real-time health-seeking behaviors at the regional level,
expanding the suite of “infoveillance” methods that may assist
in monitoring COVID-19 cases. This type of approach does not
directly depend on either regional testing capacity or local media
reports, making it particularly relevant in areas with small
populations, limited medical infrastructure, or low case numbers.
Such information can supplement traditional epidemiological
approaches, such as estimates based on a compartmental

framework, to guide community health interventions in the early
days of an outbreak.

Several aspects of query-based approaches to case estimation,
such as this work, must be further characterized for COVID-19.
First, while correlations were statistically strong across most
US regions, elevated RMSE indicated lower accuracy for
predictions in the New York City and New Orleans areas, both
regions with major outbreaks. However, comparable losses in
accuracy were not observed for other major outbreak sites, such
as Philadelphia, Los Angeles, or Chicago. This may reflect
region-specific differences in both internet browsing behavior
and patterns of community infection and may be a limitation
of query-based models using fixed terms. As evidenced by
previous attempts to predict influenza outbreaks based on search
data, browsing behavior will also likely change as public
understanding evolves over the course of disease spread [18].
Therefore, search-term relevance is likely to vary with time,
which may require continuous supplementation or reselection
of query terms to ensure representativeness of current population
behaviors. Furthermore, although we generally observed strong
historical correlations, query-based models must also be
monitored for sudden changes in COVID-related query activity
due to external events, such as unrelated news reports. Such
distortions would be particularly important in regions with
limited internet access. Future models incorporating learning
and real-time updating of region-specific search terms may
improve query-based prediction efforts for future COVID-19
outbreaks.
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