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Abstract

Artificial intelligence (AI) is seen as a strategic lever to improve access, quality, and efficiency of care and services and to build
learning and value-based health systems. Many studies have examined the technical performance of AI within an experimental
context. These studies provide limited insights into the issues that its use in a real-world context of care and services raises. To
help decision makers address these issues in a systemic and holistic manner, this viewpoint paper relies on the health technology
assessment core model to contrast the expectations of the health sector toward the use of AI with the risks that should be mitigated
for its responsible deployment. The analysis adopts the perspective of payers (ie, health system organizations and agencies)
because of their central role in regulating, financing, and reimbursing novel technologies. This paper suggests that AI-based
systems should be seen as a health system transformation lever, rather than a discrete set of technological devices. Their use could
bring significant changes and impacts at several levels: technological, clinical, human and cognitive (patient and clinician),
professional and organizational, economic, legal, and ethical. The assessment of AI’s value proposition should thus go beyond
technical performance and cost logic by performing a holistic analysis of its value in a real-world context of care and services.
To guide AI development, generate knowledge, and draw lessons that can be translated into action, the right political, regulatory,
organizational, clinical, and technological conditions for innovation should be created as a first step.

(J Med Internet Res 2020;22(7):e17707) doi: 10.2196/17707
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Introduction

Artificial intelligence (AI) raises many expectations in all sectors
of society. There is no universally agreed upon definition of
what AI encompasses. Generically, it refers to a branch of
informatics that develops systems that—through their ability
to learn—imitate the characteristics associated with human
intelligence: reasoning, learning, adaptation, self-correction,
sensory comprehension, and interaction [1,2].

AI is seen as a strategic lever to improve access, quality, and
efficiency of health care and services [3]. For example, by
exploiting exhaustive data sets from complex systems, it could
contribute to improving clinical decision making (eg, diagnosis,
screening, and treatment), service organization (eg, flow
optimization, triage, and resource allocation), and patient
management and follow-up (eg, drug administration and
compliance) [4].

However, research on the application of AI in health focuses
primarily on technological performance in experimental contexts
or on ethical issues. Although relevant, these studies do not
fully address the broader systemic policy questions surrounding
their use in a real-world context of care and services. In a recent
meta-analysis, Lieu et al [5] concluded that despite a diagnostic
performance equivalent to that of health care professionals, the
diagnostic applications of AI have not been externally validated
in a real-world context of care and services. Poor reporting is
also prevalent in studies on AI, which limits the reliable
interpretation of results. Thus, before being integrated into
clinical routine, AI applications should overcome what is called
the AI chasm, that is, the gap between reported performance in
laboratory conditions and its performance and impacts in a
real-world context of care and services [6]. AI raises issues of
different types, but they are, in practice, closely interconnected:
economic, professional, organizational, clinical, human,

cognitive, legal, ethical, and technological. To date, few scholars
have examined these issues in a systemic and holistic manner
[7].

In this viewpoint paper, relying on the health technology
assessment (HTA) core model [8], which is a methodological
framework used to facilitate production and sharing of HTA
information [9], we examine, based on our own experience as
HTA academics and practitioners and in light of the emerging
literature on the subject, issues raised by the use of AI. More
specifically, we contrast the expectations specific to the health
sector and the risks that should be mitigated for AI to be
deployed responsibly. We limit our analysis to AI-based
applications for clinical use (eg, diagnostic), some of which
would be classified by the US Food and Drug Administration
(FDA) as software as a medical device: “software intended to
be used for one or more medical purposes that perform these
purposes without being part of a hardware medical device” [10].
They are subject to formal regulatory approval [6,11].

In this paper, we offer critical observations and reflections that
are informed by our various roles in HTA as health technology
governance experts, researchers-evaluators, and/or decision
makers. The analysis primarily adopts the perspective of payers
(ie, health system organizations and agencies) because of their
central role in regulating, funding, and reimbursing technologies
[12].

On the basis of the HTA core model, we summarize key
challenges posed by AI in a real-world context of care and
services, which include (1) technological, (2) clinical, (3) human
and cognitive (patient and clinician), (4) professional and
organizational, (5) economic, and (6) legal and ethical
dimensions (Textbox 1). We provide examples for each of these
dimensions and underline how decision makers could approach
them in a more systemic and holistic manner.
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Textbox 1. Synthesis of some key challenges posed by artificial intelligence.

Technological

• Laboratory performance versus a real-world context of care and services

• Data quality and representativeness of the general population or other contexts

• Black box: how and why the decision is made?

• Is artificial intelligence (AI) reliable and free of biases or technical failures?

• How AI would react in situations where input data deviate from initial data?

• Cybersecurity: data and model (algorithm)

• Interoperability: fragmented systems and unstructured data

Clinical

• Reproduction of tropism of practice models

• Actual clinical added value in a real-world context of care and services: difficult to distinguish the effect of the AI's decision from the rest of the
preventive and/or therapeutic strategy

• The level of accuracy of AI in diagnosis and recommendations (reference standard) in a real-world context of care and services

Human and cognitive (patients)

• Evolution of the nature and quality of the clinician-patient relationship

• Loss of human contact: isolation of some people

• Unrealistic expectations in some patients regarding clinical outcomes

• Black box: could be perceived as a restriction on the patient’s right to make a free and informed decision

• AI could be beneficial for one part of the population and not be for others: what is the good target population?

Human and cognitive (clinicians)

• How to integrate AI into the electronic health record (EHR) and clinical routine with minimal effort and disruption for clinicians?

• Nonintuitive technologies: weigh-down workflows and burden for clinicians and cognitive overload

• Disruption of interpersonal communication styles (eg, clinician-clinician and clinician-patient)

• AI as clinical mind: challenge of clinician’s decision-making autonomy

• Absolute confidence in AI: technical dependence

Professional and organizational

• How will it fit into the patient care and services trajectory?

• How will it be integrated into the clinical-administrative processes and workflows of organizations and health system?

• What changes will result in terms of service organization (eg, waiting time, primary care and specialized services relationships)?

• How will it impact on professional jurisdictions (eg, reserved activities, responsibility, training, new skills, and expertise)?

Economic

• Investments required: continuous performance tests, software and data quality tests, infrastructure and equipment upgrades, human expertise,
and training

• Clinical tropism and reimbursement/billing biases: costs for patients, clinicians, organizations, and health system

• Need of new financing mechanisms, appropriate remuneration and/or reimbursement models, and insurance models

Legal and ethical

• When is AI considered as a decision-making support tool? When is it considered as a decision-making tool?

• What are the limits of technology and their potential legal implications?

• If the AI makes a mistake (eg, black box), who will be held responsible? If the patient is harmed, who will pay for the repairs?

• What would be the consequence if the clinician does not comply with the recommendations of an AI and this leads to an error?

• AI needs access to data from different sources: consent is becoming more complex, as patients will be asked to authorize the use of diversified
amounts of data
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Protection and confidentiality: origin of the data, how consent was obtained, and authorization to use and/or reuse the data•

• Who owns the data? Who is responsible for it? Who can use (or reuse) it and under what conditions?

Technological Dimension

Generalizability and Reproducibility
Studies that focus on technological issues indicate that AI should
provide the same level of performance in a real-world context
of care and services as that obtained in laboratory conditions.
However, this requirement is difficult to achieve [13-16]. The
majority of AI applications reported in the literature are not
exploitable in clinical practice [17]. AI is often trained with
so-called clean (exclusion of poor-quality images) and complete
data sets (elimination of imperfect data) [18]. It may not be
operational in other contexts where data are incomplete or of
poor quality (electronic health record [EHR] with missing data
and/or erroneously entered data) [19-21]. This applies to some
categories of the patient population (eg, low economic status
and psychosocial problems) who receive care and services in a
fragmented way in several organizations (institutional
wandering) [21-24]. In addition, AI is usually trained on data
specific to certain sites (hospital) and patients who are not
necessarily representative of the general population. This
includes decontextualized data (lack of psychosocial and
organizational indicators) and data about disproportionately
sick individuals (data enriched by metastases cases), men, and
those from a European origin (ethnodiversity) [23,25-28].

Health organizations and systems produce and manage data in
different ways. Variations may exist in clinical protocols (eg,
diagnosis, procedures, and vital parameters) and devices (eg,
different types of scanners, EHRs, and laboratory devices) on
which AI applications are trained and those on which they are
expected to operate [29,30]. These variations could affect the
AI performance in a real-world context of care and services
[31]. For example, an AI application trained on data from 2
hospitals in the United States performed poorly in a third
hospital [13,32]. In its decision, the AI application had as
predictors the image characteristics (magnetic resonance
imaging machines specifications), imperceptible to humans,
specific to the technological systems of the hospitals where it
was trained. The AI solution had adapted to noise rather than
to the signal of clinical interest [33]. When used in the third
hospital, it was deprived of these expected predictors (noise),
which affected its anticipated performance [32]. In the same
vein, the use of data from the Framingham Heart Study to
predict the risk of cardiovascular events produced biased results,
which both overestimated and underestimated risk when AI was
used in non-white populations [34,35]. The ability of AI to
operate without bias or confounding factors on different devices
and protocols remains a major challenge [36,37]. Thus, the fact
that an algorithm was trained on large data sets does not mean
that its results are generalizable.

Interpretability and Transparency
The interpretability and transparency of AI are important issues.
The black box logic makes some AI applications vulnerable
and at risk to false discoveries via spurious associations: how

is the decision made and on what basis (justification and process
description) [24,38,39]. This issue is central because these
technologies will be diffused on a large scale. The error of a
defective AI could have a greater impact (several patients) than
a clinician's error on a single patient [20,31,40].

Interpretability and transparency are also necessary to identify
the origin of errors, biases, or failures that should be prevented
and/or avoided in the future [3,21,41]. For example, an AI
application could lead to many undesirable impacts related to:
(1) poor-quality training data, which could lead to erroneous or
biased knowledge (garbage in, garbage out), whereas
technology may further amplify how poor data produce poor
results (noisy data and missing values); (2) the presence of a
technical flaw in the algorithm (code), which could lead to
erroneous inferences, even if good-quality data are used; (3)
decision-making criteria that may not be universally acceptable;
and (4) the emergence of new situations for which AI could not
adapt, even with good-quality data and code [21,30,42-45]. For
example, the emergence of new treatments or practices may
require changes in clinical protocols; however, at present, AI
applications are not developed to manage temporal data naturally
in a real-world context of care and services. However, diseases
and treatments evolve in a nonlinear manner [18,45]. The
question thus remains regarding how AI would react, with
observable indicators, in situations where input data deviate
from initial data (EHRs and real-time monitoring devices), in
the medium and long term [45,46].

The risk of cyberattacks is also a major concern. The data could
be modified and/or fed by other false or biased data in a way
that is difficult to detect [1]. For example, a slight intentional
modification of laboratory results in a patient's EHR resulted
in significant changes in the estimates of a well-trained AI of
the same patient's risk of mortality [24]. For AI, the issue is
two-fold because it is necessary to ensure the security of the
data and that of the model (the algorithm). Interoperability is
also a significant issue. The integration of AI in fragmented and
noninteroperable information technology systems and
organizations could create more problems than it will solve; to
deliver its full potential, AI needs integrated and interoperable
systems with fluent and optimal data circulation and exchange
[17].

Finally, addressing interpretably and transparency in AI could
be compromised by intellectual property issues, competitive
strategy, and financial advantages that make companies reluctant
to disclose their source codes [3].

Clinical Dimension
AI can entrench and disseminate practice models specific to
particular contexts (organizations or health systems) and not
necessarily accepted or used in others (tropism) [38]. For
example, clinicians in some countries stopped using IBM Watson
for Oncology because it reflected US specificity in cancer
treatment [1,47].
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To use AI in their decision making, clinicians should understand
how it makes decisions in the first place [38,45,48]. They need
the evidence to support a given conclusion to be able to carry
out the necessary verifications or even corrections [14]: Why
this decision (what information or image—or part of the
image—tipped the final decision of the AI)? Why not another
option (or choice)? When may I consider that the decision is
correct? When should I accept this decision? How can I correct
the error when it occurs?

AI should provide clinically added value for the patient. In a
real-world context of care and services, much information,
decisions, and diagnoses could intersect (eg, symptom
assessment, laboratory tests, and radiology). At present, it is
difficult to distinguish the effect of an AI-based decision from
the overall preventive and/or therapeutic strategy of patient care
[49,50].

Another clinical issue is determining the level of accuracy of
AI for diagnosis and recommendations. In practice, decisions
physicians make could diverge or even contradict each other in
many situations. The gold standard is not always easy to define
in a process that involves complex judgments [38,51,52]. In
this case, should the standard reflect that of the lead clinician
(or clinicians) in the organization? Or the one accepted by the
majority of clinicians? Or the one reported in similar contexts?
Some authors believe that for technologies that aim to provide
pragmatic solutions under suboptimal conditions, AI
performance should correspond to clinically acceptable practice
in a given context and not necessarily to recommended practices
[32]. This last point is likely to be problematic, particularly in
a context where health systems are trying to overcome the
challenge of practice variations to be able to provide equitable
and quality services for all citizens.

Human and Cognitive Dimensions
AI could affect the nature and quality of the clinician-patient
relationship and their expectations for care and follow-up
[53,54]. The loss of human contact could lead to increased
isolation of some people (replacement of health care providers)
[1]. Some patients may feel able to control and manage their
disease, with passive surveillance and/or less contact with the
clinician, whereas others may feel overwhelmed by additional
responsibilities [55]. AI may also create unrealistic expectations
in some patients regarding clinical outcomes, which could have
a negative impact on their care and service experience [56]. In
addition, some AI-based decisions could be perceived as a
restriction on the patient's right to make a free and informed
decision [1,53]. Cultural and social aspects could play an
important role in how patients will respond to AI and therefore
how effective it can prove in practice [57]. Hence, it is important
to know on which basis one may define the target population
that can benefit from it [58]. In this regard, the question of social
acceptability (acceptable risk and public confidence) also needs
to be considered, which goes beyond the simple question of the
effectiveness and usability of AI [59].

For clinicians, the challenge is to integrate AI into the EHR and
clinical routine with minimal effort while respecting their
decision-making autonomy [24]. Nonintuitive technologies
could encumber workflows and become a burden for clinicians

without improving service delivery [30,60]. Otherwise, the
ability of AI to combine data from the scientific literature with
learning from practice data could generate a repository of
clinical practices (clinical mind), which could give AI an
unwanted power or authority [35]. In some situations, AI may
reduce the clinician's ability to take into account patient values
and preferences. In contrast, some clinicians may develop
absolute confidence and become dependent on AI, thus
relinquishing their responsibility to verify or double-check its
decisions [1].

In short, if clinicians feel overloaded and workflows become
more complex, AI may be rejected because of self-perceived
inefficacy and performance, alert fatigue, cognitive overload,
and disruption of interpersonal communication routines
[54,61-63].

Professional and Organizational Dimensions
Global appreciation of the added value of AI should take into
account the nature and magnitude of the professional and
organizational changes required for its use [6]. For example,
the FDA has approved an AI application used for diabetic
retinopathy screening, which may be used in primary care clinics
[11]. As in some countries, the screening procedure is performed
by an ophthalmologist (specialist), some questions arise: How
will this technology fit into patient care and services trajectory?
How will it be integrated into the clinical-administrative
processes of organizations and the health system? If used at the
primary care level, will general practitioners, nurses, or
optometrists be allowed to supervise the AI? If so, under what
conditions? What will be the impact on professional jurisdictions
(regulated activities, remuneration, and training)? What changes
will result in terms of service organization and
clinical-administrative workflows (waiting time at primary care
level, primary care, and specialized services relationships)?

Thus, AI could lead to a redistribution of work between different
professional scopes of practice and highlight the need for other
clinical, administrative, and technical skills and expertise. This
will require clarifying new rules and processes (clinical and
administrative), negotiating and reframing professional
jurisdictions, responsibilities, and privileges associated with
them and reassessing the number of positions needed and the
new skills required to work (with) and/or perform other tasks
that accompany its use. This will have to take into consideration
how new roles in terms of skills in informatics and data science
and the ability to liaise may be introduced within clinical teams
[64].

Finally, today, most AI applications are developed to perform
a single task or a set of very specific tasks (eg, diagnosing only
diabetic retinopathy and macular edema) [65]. They are unusable
for other diagnoses for which they are not trained (eg,
nondiabetic retinopathy lesions and eye melanoma) and are
unable, at least for the moment, to replace a complete clinical
examination [66]. Payers will thus be tasked to determine
whether AI provides sufficient added value in relation to the
nature and magnitude of the clinical, cognitive, professional,
and organizational changes it could generate.
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Economic Dimension
To adapt an AI to a local environment, considerable investments
and expenditures may be necessary. The evolution of AI in a
real-world context of care and services, by integrating large
amounts of data of various types and sources, requires additional
resources to ensure its proper functioning and stability:
continuous performance tests, software and data quality tests,
infrastructure and equipment upgrades, human expertise, and
training [3,67]. However, many health organizations do not
have a secure and scalable technological and data infrastructure
as well as adequate human resources to ensure proper collection
of the data necessary for the training and adaptation of AI to
their local population and clinical environment [17]. The
literature on AI’s promises as well as innovation policies that
support its development downplays the capital-intensive
requirements that are required to properly deploy AI, compared
with the day-to-day work of managers in organizations.

In health systems where activity-based financing is the basis
for funding health organizations, some clinicians tend to enter
the highest paying codes for each clinical activity (ie, the most
complex case of an intervention) to increase performance and
maximize revenue. An AI application trained on data from these
organizations (EHR with invoicing or reimbursement data)
could amplify biases inherent in such practices that do not
necessarily reflect the actual clinical condition [23,44,68]. The
replication and entrenchment at a large scale of these biases
could result in significant costs for patients, clinicians,
organizations, and the health systems [35].

Similarly, some AI applications may be too cautious, resulting
in an increase in requests for unnecessary testing and treatment,
leading to overdiagnosis or overprescription [69]. Their
recommendations, which are not necessarily associated with
improved patient outcomes, could lead to increased costs and
expenses for patients and the health system.

Legal and Ethical Dimensions
Many AI technologies are still considered today as
decision-making support tools for clinicians. It could then be
argued that the legal responsibility for the decision still rests
with the clinician. However, with the growing performance of
AI, clinicians may be increasingly influenced and may more
easily accept AI decisions, even when there is clinical ambiguity.
Determining the clinician's degree of responsibility becomes
more complex [30]. The challenge here is to distinguish between
several situations: When is it considered a decision-making
support tool? When is it considered a decision-making tool?
This distinction is key in defining who is legally responsible in
the event of an error or a malfunction (professional misconduct)
[30,51,70].

For example, if the clinical decision is based on an erroneous
clinical recommendation from the AI (delayed or erroneous
treatment), who will be held responsible? Is it the technology
developer, technology provider, clinician, organization, or do
they all share responsibility (and how)? In some jurisdictions,
to confirm professional misconduct, it is necessary to prove that
the standard of care was not followed. This standard is blurred
when AI comes into play [2]. In addition, the likely consequence

if the clinician does not comply with the recommendations of
an AI and if this leads to an error must be anticipated [2]. It
could be argued that the responsibility should rest with the
human controller of AI, but such a responsibility becomes
difficult to clarify when autonomous technologies are used [57].
In this regard, standards may shift over time: “What happens if
medical practice reaches a point where AI becomes part of the
standard of care?” Medical insurers and regulators will have to
be able to distinguish errors inherent in the tool from those
resulting from misuse by the clinician, the organization, or even
the patient, an issue exacerbated by the black box of AI [51,71].

To generate a complete picture of the patient, AI will need
access to data from different organizations (hospitals and
insurers) [45]. The risk of disclosing sensitive information about
patients or certain populations is real [45]. For example, some
AI applications can reidentify an individual from only three
different data sources [25,38,72]. In the same vein, the issue of
consent is becoming more complex, as patients will be asked
to authorize the use of increasingly large and diversified amounts
of data about them: medical records, audio, videos, and
socioeconomic data [58]. Problems could arise if the patient
only consents to sharing parts of his or her data. Usually,
confidentiality means that the clinician can withhold certain
information—at the patient's request (or not)—and avoid
entering it into the EHR. Incomplete data make AI less efficient
and does not allow patients to benefit from the best possible
services. AI may not be fully operational in a real-world context
of care and services if specific restrictions on data access and
use are applied [38].

Protection and confidentiality requirements imply the obligation
to know several things: the origin of the data, how consent was
obtained, and authorization to use and/or reuse the data for
training and in a real-world context of care and services. As the
data may come from different sources and contexts, different
conditions and precautions will need to be considered [73].
Regulators will need to determine who owns the data and, in
the context of public-private partnerships, who is responsible
for its collection, use, transmission to third parties, and under
what conditions [17]. As the answers will vary according to the
nature of the data, the jurisdictions, and the purpose of use, the
task at hand is sizable [73]. Finally, payers will have to
recognize that the ethical implications of AI affect, directly or
indirectly, all the other dimensions discussed earlier.

Conclusions
The purpose of this viewpoint paper is to provide a structured
roadmap of the issues surrounding the integration of AI into
health care organizations and systems. To the best of our
knowledge, this is one of the few papers that offers a
multidimensional and holistic analysis on the subject [7]. It
contributes to current knowledge by providing a necessary basis
for reflections, exchanges, and knowledge sharing among the
various stakeholders concerned with AI in health care.

In light of the issues we identified, it becomes clear that
regulatory and decision-making organizations as well as HTA
agencies are facing unprecedented complexity: evaluating and
approving so-called disruptive technologies, especially AI,
requires taking several issues into consideration altogether.
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Many studies have reported significant technical performance
of AI technologies, but very few have adopted a holistic
standpoint that can situate their impacts and associated changes
and transformations in health systems. Technical studies are
rarely adapted to the complexity surrounding AI applications,
as they overlook the context-dependent changes or adjustments
the implementation and use of technology requires (variations,
clinical and organizational interactions, and interdependencies)
[74]. According to the frame problem [62,75], which highlights
the difficulty for AI, beyond the specific tasks it masters, to
update its set of axioms to capture the context in which it is
implemented and used (eg, patient preferences, environment
and social support, clinical history, personality/cultural
characteristics and values that influence clinical outcomes, and
empathy in medicine), the complexity inherent in the use of AI
applications in the real-world context of care and services may
seem difficult to overcome [62].

For informed decision making, there is a real need for
evaluations that address AI as a lever of health system
transformation. Given the magnitude of the implications it could
have at all levels, the evaluation of AI’s value proposition should
go beyond its technical performance and cost logic to
incorporate its global value based on a holistic analysis in a
real-world context of care and services. In this vein, technology
brings value when its use in a real-world context of care and
services contributes to the aims of the health system and aligns
with the values of society. Global value appreciation could be
based on the quintuple aim: (1) better quality and experience
of care and services for patients; (2) a better state of health and
well-being for the entire population; (3) reducing costs for
responsible and sustainable resource management; (4) a better
quality of work and satisfaction of health care providers; and
(5) equity and inclusion to avoid exacerbating health disparities
in the population [76]. From this perspective, further research
on the evaluation of AI should no longer be limited to a
technological approach, which only demonstrates quality from
an engineering point of view and costs—motivated mainly by
a logic of short-term savings—but should broaden its horizons
to include the dimensions this paper underscored [77,78].

Real-world evaluations could be a major asset in informing AI
decision making. In the context of uncertainty, iterative and
reflective evaluation approaches should be developed to
encourage dialog and collaboration among all relevant

stakeholders (eg, payers, health care providers, technology
providers, regulators, citizens/patients, academic researchers,
and evaluation agencies) [63,78,79]. In addition, an early dialog
between these stakeholders is needed to identify the evidence
required to inform decision making [63,78]. This approach
would also help AI providers to better understand the
expectations of the health system [78]. This change implies that
HTA should play an active role as a mediator and facilitator of
transparent dialog between different stakeholders who are
implicated throughout the technology’s life cycle [78,80].

Decision making for innovative technologies is inherently
complex, in particular because of visions, perceptions, and
objectives that may differ between the stakeholders involved:
risk sharing is essential to strive to find a balance between
uncertainty and added value [81]. In this regard, “major radical
innovations never bring new technologies into the world in a
fully developed form” but “appear in a crude and embryonic
state with only a few specific uses” [81]. It is their use in a
real-world context of care and services, through a process of
learning by doing (improving users’ skills) and learning by
using (improving users’ knowledge), which makes it possible
to appreciate their global value [81]. With the complexity
associated with AI, value appreciation becomes even more
complex, challenging the traditional methodological foundations
that are the basis for decision making about innovative
technologies [82]. This also presents a unique opportunity for
HTA to evolve and adapt (evaluative framework and
contextualized data), particularly in view of the importance of
contexts in the appreciation of the value of innovative
technologies [83,84]. It is necessary for HTA scholars and
practitioners to explore and exploit other avenues,
complementary to traditional methods, to collect data and
information that can better inform AI-related decisions [85].

Finally, this new context implies mechanisms for continuous
collective learning and sharing of lessons. To do so, there is a
need for learning and flexible health organizations and systems
that are able to adjust and operate under uncertainty. In this
regard, creating the political, regulatory, organizational, clinical,
and technological conditions necessary for proper innovation
is the first step. This requires building trust to ensure stakeholder
engagement to guide AI developments, rapidly generate
knowledge in a real-world context of care and services, and
draw lessons to translate them into action.
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