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Abstract

Background: Asthma exacerbation is an acute or subacute episode of progressive worsening of asthma symptoms and can have
a significant impact on patients’ quality of life. However, efficient methods that can help identify personalized risk factors and
make early predictions are lacking.

Objective: This study aims to use advanced deep learning models to better predict the risk of asthma exacerbations and to
explore potential risk factors involved in progressive asthma.

Methods: We proposed a novel time-sensitive, attentive neural network to predict asthma exacerbation using clinical variables
from large electronic health records. The clinical variables were collected from the Cerner Health Facts database between 1992
and 2015, including 31,433 adult patients with asthma. Interpretations on both patient and cohort levels were investigated based
on the model parameters.

Results: The proposed model obtained an area under the curve value of 0.7003 through a five-fold cross-validation, which
outperformed the baseline methods. The results also demonstrated that the addition of elapsed time embeddings considerably
improved the prediction performance. Further analysis observed diverse distributions of contributing factors across patients as
well as some possible cohort-level risk factors, which could be found supporting evidence from peer-reviewed literature such as
respiratory diseases and esophageal reflux.

Conclusions: The proposed neural network model performed better than previous methods for the prediction of asthma
exacerbation. We believe that personalized risk scores and analyses of contributing factors can help clinicians better assess the
individual’s level of disease progression and afford the opportunity to adjust treatment, prevent exacerbation, and improve
outcomes.

(J Med Internet Res 2020;22(7):e16981) doi: 10.2196/16981
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Introduction

Background
Asthma is a common and serious health problem that affects
235 million people worldwide [1] and an estimated 26.5 million
people (8.3% of the US population) in the United States [2].
Asthma takes a significant toll on the population, which imposes
an unacceptable burden on health care systems. In 2013, the
total annual cost of asthma was US $81.9 billion in the United
States [3]. If not well controlled or stimulated by specific risk
factors, asthma may develop into exacerbations (asthma attacks),
which are acute or subacute episodes characterized by a
progressive increase in one or more typical symptoms of asthma
(dyspnea, coughing, wheezing, and chest tightness) [4]. In 2016,
12.4 million current asthmatics (46.9%) in the United States
had at least one asthma exacerbation in the previous year [2].
Exacerbations of asthma can be severe and require immediate
medical interventions, either as an emergency department (ED)
visit or admission to the hospital [5]. Serious asthma
exacerbations may even result in death [6]. Therefore, it is of
practical significance to make early predictions such that
interventions can be carried out in advance to reduce the
probability of an exacerbation.

Investigations on risk factor analysis or prediction for asthma
exacerbation have been respectable, in which the mainstream
adopts traditional statistical methods, such as logistic regression
[7-10], proportional hazards regression [11], and generalized
linear mixed models [12]. However, most of them have only
explored a small group of candidate risk factors and are usually
hard to extend to other data sets and make personalized
predictions difficult [13,14]. With the explosion of health care
data in recent years, machine learning methods have taken a
nontrivial place in this domain, benefiting from their general
superiority over statistical methods in processing larger numbers
of variables and flexibility in modeling more complex
correlations [15]. Typical models include naïve Bayes [16],
Bayesian networks [16-19], artificial neural networks [17],
Gaussian process [17], and support vector machines [16,17].
However, although different attempts have been made, there
are still several deficiencies in traditional machine learning
methods. For example, ignoring temporal dependencies between
variables might not provide a meaningful risk estimation of
future exacerbations for individual patients [14]. Furthermore,
most approaches only concentrate on the quantitative evaluation
of prediction performance, but lack further attention to
personalized risk factors [20].

Recent revolutions in health artificial intelligence started from
deep learning, which has an upper hand on health care
predictions because of its flexibility in dealing with longitudinal
data [21], powerful learning capabilities [22], and ability to
alleviate the problem of data irregularity [23]. One of the most
popular architectures is recurrent neural networks (RNNs),
which make predictions according to the sequence of historical
events. Dozens of successes have been achieved in applying
deep learning to disease predictions [24], mostly using variants
of RNNs with distinct network components, for example, by
adding an attention mechanism to evaluate the weights of each

variable [25-29] or by using special configurations to tackle the
problem of time decays [23,25,27,30-32]. Typical prediction
tasks include the prediction of diabetes mellitus [23], Parkinson
disease [29,33], chronic heart failure [26], sepsis [34], mortality,
and readmission [25]. However, deep learning–based studies
on the prediction of asthma exacerbation remain lacking. Do et
al [35] proposed a protocol for the prediction based on RNNs
and reinforcement learning but did not test the method on
real-world data.

Objectives
Inspired by previous studies, we applied long short-term memory
(LSTM) [33], a popular RNN variant commonly used by
previous predictive models [23-25,29,34] as the main framework
for asthma exacerbation prediction, which can mitigate the
gradient vanishing problem in RNNs. We proposed the
time-sensitive, attentive neural network (TSANN), which
employs a self-attention mechanism [36] to help model the
context of both visit-level and code-level variables. Meanwhile,
to incorporate the impact of elapsed time, we projected the
relative time of each clinical variable into a low-dimensional
space and combined it with the code representations. Using the
attention weights of the TSANN, data analysis was then
conducted to investigate personalized and cohort-level risk
factors.

There are major differences between TSANN and recent
state-of-the-art deep learning–based clinical predictive models
such as time-aware LSTM (TLSTM) [23], Reverse Time
Attention model (RETAIN) [27], and Attention-based
Time-aware Disease Progression (ATTAIN) [32]. First, the
model structures are different. Compared with TLSTM and
ATTAIN, which only include 1 layer of RNN, our two-layer
architecture enables us to analyze the relative importance of
each event within each visit. Although RETAIN also has 2
layers of attention, it does not have explicit hierarchical
structures as TSANN. Instead, an additional inference step is
required to obtain the contribution of each variable. Second,
TSANN uses a different approach to model the elapsed time.
RETAIN, TLSTM, and ATTAIN feed the time elapsed into a
decay function as a single value and multiply it with the network
memory. In comparison, the elapsed time embeddings in
TSANN are more analogous to position embeddings in natural
language processing, which were introduced to model the
relative distance between words by learning multidimensional
and semantic representations to facilitate certain tasks such as
relation classification [37] and neural language modeling
[36,38,39]. By using time embeddings, we assume that time is
no longer a single value as it was used in previous methods, but
it can represent more complex patterns together with clinical
variables such as varying lengths of correlations between
variables.

The primary aims of this study were (1) to propose a novel
predictive model with better performance and (2) to add the
transparency of the model by visualizing contributing factors
at both the individual and cohort levels. Furthermore, the
proposed model can potentially be applied to other clinical
problems. Deep learning models are usually scalable. Although
focusing on asthma exacerbation for this specific project, the
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proposed approach can also be adopted in risk predictions for
other chronic diseases. We hope that the associated pipeline of
deep learning–based predictive modeling, including data
collection, model training, model evaluation, and risk factor
analysis, can help the clinical community better understand the
underlying mechanisms of disease progression and assist in
decision making.

Methods

Problem Statement
Given a sequence of historical clinical variables in patients with
asthma, we aimed to evaluate the risk of developing asthma
exacerbation in the designated time window. Meanwhile,
personalized contributing factors are to be identified to facilitate
the evaluation of disease progression and make early
interventions.

Database
The study used Cerner Health Facts, a Health Insurance
Portability and Accountability Act–compliant database collected
from multiple enrolled clinical facilities, containing mostly
inpatient data. Data in Health Facts were extracted directly from
the electronic health records (EHRs) from hospitals with which
Cerner has a data use agreement. Encounters may include the
pharmacy, clinical and microbiology laboratory, admission, and
billing information from affiliated patient care locations. All
personal identifying information of the patients was anonymized.
In this study, we primarily focused on the impact of clinical
factors on asthma exacerbation; therefore, we extracted
diagnoses, medications, and demographic characteristics such
as gender, race, and age from the database as clinical variables
or clinical events. The University of Texas Health Science
Center (UTHealth) had agreements with Cerner to use these
data for research purposes. The institutional review board at the
UTHealth approved the study protocol.

Study Design
We conducted a retrospective study to predict the risk of asthma
exacerbation. Patients’ records between 1992 and 2015 were
extracted from the Cerner database. For clarity, we defined
several terms in advance (Table 1).

We built 2 cohorts as simulations for both the real-world
application scenario (early prediction) and the model evaluation
(called next-visit prediction in many previous studies [27,32]).
In early prediction, we could not foresee when the exacerbation
would happen but could only evaluate the future risk at each
visit. In our study, we selected the fifth visit from the asthma
index as the prediction date (testing set A) according to the
average number of visits (5.78, SD 6.04) between asthma index
and exacerbation among the patients. The detailed steps for the
cohort selection are listed in Multimedia Appendix 1
[4,25,40-55]. In next-visit prediction, we simply set the
penultimate visit as the prediction date (testing set B). We set
testing set A as our primary evaluation set as it was much closer
to the realistic diagnostic situation.

The TSANN model was trained to evaluate the risk of asthma
exacerbation given the observed time window. The main
outcomes of the proposed method are (1) a score that measures
the risk of asthma exacerbation for each patient and (2)
visualization of the results, including a personalized heatmap
identifying the importance of each clinical variable in the
observed time window, cohort-level risk factors, and their
temporal distributions among patients. On the basis of the
outcomes, further data mining or clinical trials can be carried
out for validation. For example, cohort-level factors will help
data scientists reduce labor and expertise in collecting candidate
risk factors from the literature before conducting a regression
analysis. Patient-level factors will facilitate physicians and
patients in better understanding disease progression. The
workflow of this research is shown in Figure 1.

Table 1. Defined terms for asthma exacerbation prediction.

DefinitionTerm

The date of the first diagnosis of asthma in a patient’s EHRaIndex date

The date of the first diagnosis of asthma exacerbation after the index dateExacerbation date

Patients with asthma and later asthma exacerbations within 365 days and satisfying the inclusion and exclusion criteriaCase group

Patients with asthma but without exacerbations within 365 days and satisfying the inclusion and exclusion criteriaControl group

Training set: for the case group, the visit date before the exacerbation date; for the control group, the penultimate visit date
within 365 days:

Prediction date

• Testing set A: the fifth visit starting from the index date
• Testing set B: defined analogously to the training set

The time window between the index date and the prediction dateObserved time window

aEHR: electronic health record.
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Figure 1. The workflow of the prediction and risk analysis of asthma exacerbation.

Selection of Study Subjects
The subjects in the study were patients with a diagnosis of
asthma. The inclusion and exclusion criteria derived from
previous studies [4,56] were as follows.

Inclusion Criteria
The subjects in the study were patients with at least one record
of asthma diagnosis. The definitions of asthma and exacerbation
are as follows.

Asthma
1. Asthma diagnosis codes were provided according to the

International Classification of Disease Code (ICD; ICD-9
code 493.xx or ICD-10 code J45.xx). This is the first
occurrence of asthma in the patient’s EHR.

2. At least one of the asthma medications was prescribed on
the asthma diagnosis date (the index date). Asthma
medications include short-acting beta agonists, inhaled
corticosteroids (ICS), long-acting beta agonists (LABA),
leukotriene receptor antagonists, anticholinergics, and
ICS/LABA combinations.

Asthma Exacerbation
1. Asthma (ICD-9 code 493.xx or ICD-10 code J45.xx) was

given as a primary diagnosis for an ED visit or
hospitalization.

2. At least one oral corticosteroid treatment was received.

Exclusion Criteria
To allow the data to better fit for machine learning models, we
excluded the following patients:

1. Those with missing or unclear time information (eg, with
a wrongly recorded format of time stamps)

2. Those with a gender other than male or female
3. Those whose number of visits is <5 in the observed time

window

This study only focused on adult patients aged between 18 and
80 years. In the end, 31,433 individuals remained, including
2262 cases and 29,171 controls (case by control ratio
approximately 1:13). The cohort selection process is shown in
Figure 2. A detailed descriptive analysis of the cohort is shown
in Multimedia Appendix 1.
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Figure 2. Cohort selection process for the study of asthma exacerbation. ED: emergency department; EHR: electronic health record; ICD: International
Classification of Disease Code; OCS: oral corticoids.

Time-Sensitive Attention Neural Network

Model Overview
TSANN takes the whole sequence of clinical variables in the
observed time window as inputs and outputs the probability of
asthma exacerbation (Figure 3). The architecture of TSANN is
based on LSTM and strengthened by the addition of hierarchical
attention and elapsed time embeddings.

For each visit, multiple clinical variables were encoded in the
input layer and averaged through the code-level attention

mechanism. The elapsed time embedding is attached to each
visit as complementary information to indicate the time interval
between the date of each visit and the prediction date. LSTM
then accepts the sequence of encoded visits as inputs and outputs
further encodings for each visit. The visit-level attention layer
is then applied to the outputs of the LSTM to summarize all the
visits for each patient. Finally, by feeding the output of
visit-level attention into the Softmax function, a probability
indicating the risk of disease onset is generated.

Figure 3. Overview of the time-sensitive attentive neural network model for asthma exacerbation prediction. ICD: International Classification of
Disease Code; LSTM: long short-term memory.
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Input
The inputs of the model consist of 2 types of features. One type
is clinical concepts (we use clinical concepts and clinical
variables interchangeably), including ICD codes, medications,
and demographic features. All ICD-10 codes were converted
into ICD-9 based on predefined mappings [57] because very
few diagnosis codes in our data set were encoded by ICD-10
as the data collection time range is between 1992 and 2015, but
the implementation of ICD-10 started in October 2015. All
medications were normalized to their generic names. The
demographic features included age, gender, and race, which
were only taken as inputs on the prediction date. Using a

projection matrix (Vc: concept vocabulary
size and Dc: concept embedding dimension), we mapped each
clinical concept into a concept-embedding vector:

where Cij is the generated concept-embedding vector and

is the one hot vector denoting the existence of clinical
concept j in visit i.

The other feature type is time features, which indicates the
occurrence time for each clinical variable. Intuitively, variables
with different time stamps would behave differently in
prediction. For instance, in many cases, a clinical event that
happened several days ago would play a more important role
than one that happened several months ago. Meanwhile, due to
the nature of data irregularity and deficiency of EHRs,
successive visits always have diverse time intervals [23], which
makes it indispensable to consider the time elapsed when
conducting predictive modeling.

Elapsed time embeddings were introduced to represent the
relative time gap for each clinical concept. Specifically, taking
the time of the prediction date T0 as a pivot, the time attribute
of each clinical concept is the absolute difference between its
occurrence time Ti and T0, that is, the relative time gap T0 -Ti.
As the observed time window has an upper bound of 365 days,
the vocabulary size Vt of the time embeddings was set as 365.

We applied a matrix to project each time
value to an m-dimension vector. Unlike the clinical concept
embeddings, elapsed time embeddings are fed into the model
after the code-level attention and assigned to each visit. The
equation to obtain the elapsed time embedding for each visit is

analogous to that for concept embeddings, where: 

Specifically, the minimum time unit in this study was set as
day.

Code-Level Attention
Attention is a mechanism specifically designed for deep neural
networks that acts as an information filter; meanwhile, it can
alleviate information loss when dealing with long sequences.
It selects important sequence steps by assigning them different
weights [58,59]. Through attention, each clinical concept is

assigned a weight such that important concepts would have
larger weights than the others. We adopted the attention
mechanism from Yang et al [60], in which the weight of each
variable is generated according to the sequence and context
vector. Specifically, given the set of codes

in the ith visit, the encoded
representation for visit vi can be generated by:

where Wv and bv are the weight and bias for matrix
transformation, uij is the attention vector for each code j in vi,
uv is the context vector for vi, which is randomly initialized and
updated during training, and ij is the attention weight for the
concept Vij based on which we can generate its final weight.
By assigning time embeddings to the ith visit vi, the

representation of each visit is updated as ,

where denotes the matrix concatenation.

Visit-Level Attentive LSTM Layer
Taking the encoded representation of each visit as input, LSTM
models the sequential information in the observed time window
and obtains the summarization at the final step (the prediction
date). The advantage of LSTMs over traditional RNNs is that
they can alleviate the gradient vanishing problem and are thus
able to retain longer memories from prior time stamps [61,62].
LSTMs are implemented by several matrix multiplications and
nonlinear transformations that aim to mimic the memory
mechanism of human brains, which are called gates, signifying
that the network can select effective information and abandon
useless information. The equations of the LSTMs are as follows:

where Ws and bs are the weights and biases for different gates
or cells (ft: forget gate, it: input gate, Ct: memory cell, ot: output
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gate, and ht: hidden cell) and σ is the activation function, such
as Tanh or sigmoid.

By assigning attention weights to the outputs of LSTM from
each step, we can weight each visit in the observed time window
and obtain a summary of these visits as rp:

where Wp and bp are the weight and bias for matrix
transformation, ui is the attention vector for each visit i given
vi, up is the context vector, and j is the attention weight for each
visit vj. This process can be seen as a simulation of the diagnosis

procedure of a clinic visit, during which a physician would look
back into a patient’s EHR, measure the impacts of each historical
clinical event, and make the final decision.

Output
The visit-level attention layer compresses all the information
in the observed time window into a fixed-length vector rp. The
output of attention goes through a fully connected layer with
nonlinear activation. Finally, a Softmax function is applied to
generate the prediction probability, P:

where P is used as the score to evaluate the risk of developing
asthma exacerbation.

Evaluation
Area under the receiver operating curve (AUC) is widely used
as an evaluation metric for predictive models, which reflects a
balance between sensitivity and specificity [63]. According to
the prediction probability P (between 0 and 1) for each instance,
the AUC value is generated by setting different cutoffs. The
methods listed in Table 2 were compared in our experiments.

Table 2. The methods used for comparisons.

NoteMethod

A popular conventional machine learning algorithm [64], usually serving as a strong baseline in predictive modeling [27]. The input of
LR is a fixed-length feature vector that denotes the frequencies of each variable. For LR considering time, we associate each variable
with its time stamp and expand the vocabulary. We did not use day as the time unit as it would have introduced a greater number of
variables (ie, 12,390×365 [the code vocabulary size×the maximum number of days]), which would have been too sparse and difficult
for computation. Instead, we set month as the time unit, and finally, 148,680 distinct clinical variables were generated. We employed
the Synthetic Minority Oversampling Technique [65] to help alleviate the problem of data imbalance

LRa

The MLP model used in this study contains 1 input layer and 1 Softmax layer [66]. The representations of all the codes were averaged
on each dimension after being projected to the embedding space for each patient

MLPb

The basic LSTM algorithm, taking the sequence of the clinical variables as input ordered by time. The variables in each visit are averagedLSTMc

Comprising 1 layer of LSTM and 1 layer of attentionALSTMd

The time-aware LSTM model, which is one of the state-of-the-art predictive models. In TLSTM, the time gap is used to compute the
information decay in the LSTM unit

TLSTMe

[23]

A two-layer attention model, which is another state-of-the-art model for the prediction of disease onset. In RETAIN, the time features
are not embedded as vectors but real values denoting the gaps from the first visit

RETAINf

[27]

A modification of TLSTM with special types of attention mechanisms added (flexible attention). It also uses a similar time decay
function as RETAIN. We implemented it ourselves using TensorFlow

ATTAINg

[32]

The proposed TSANN model but with the second attention layer removed. Prediction is based on the final state of LSTMTSANNh-I

Apply the time-encoding method from Song et al [39] on TSANN-I. In TSANN-I-step, although time was also encoded using a vector,
it only showed the order of each visit, for example, 1, 2, 3 for consecutive visits, but not the actual elapsed time

TSANN-I-
step

A complete version of the proposed TSANN modelTSANN-II

aLR: logistic regression.
bMLP: multilayer perceptron.
eLSTM: long short-term memory.
dALSTM: attention long short-term memory.
eTLSTM: time-aware long short-term memory.
fRETAIN: Reverse Time Attention model.
gATTAIN: Attention-based Time-Aware Disease Progression.
hTSANN: time-sensitive attentive neural network.
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For evaluation, we first split the data into a training set and a
held-out testing set with a ratio of 8:2. Furthermore, five-fold
cross-validation was performed on the training data set for
parameter tuning. During cross-validation, a grid search was
applied to tune the hyperparameters including learning rate
(0.0005, 0.001, 0.005, 0.01), l2 penalty (0.0001, 0.0005, 0.001),
batch size (32, 64, 128), activation function for LSTM (ReLU
[40] and Leaky_ReLU [41]), whether to add batch normalization
[45], and the optimizer selection between RMSprop [42] and
Adam [43]. We then averaged the AUCs of each epoch (up to
30 epochs) across five folds to obtain the best training epoch.
The optimal hyperparameters were adopted to retrain the model
on the entire training set and produce the AUC on the testing
set. Finally, the hyperparameters for the model TSANN-I, which
has the best AUC value, were as follows: batch size=32, concept
embedding dimension=100, time embedding dimension=20,
Adam as the optimizer with learning rate=0.001, l2
penalty=0.0001 for all parameters, Leaky_ReLU as the

activation function, and adding batch normalization before
Softmax. The codes for RETAIN and TLSTM were reused from
the respective studies. All other deep learning models were
implemented with TensorFlow [44] and trained on Nvidia Tesla
V100, Quadro P6000, and Titan XP GPUs. We shared our code
on GitHub to facilitate other researchers [67].

Results

AUC Values
AUC values with (+time) and without the consideration of time
(–time) on testing set A (the primary evaluation set) are shown
in Table 3. In the table, for TLSTM, we only considered a +time
version as it is defined as a time-aware variant of LSTM, and
for multilayer perceptron (MLP), LSTM, attention long
short-term memory (ALSTM), TSANN-I, TSANN-I-step, and
TSANN-II, we used the elapsed time embeddings introduced
in this study to include time.

Table 3. Area under the curve (AUC) values by different models (–time: time information was excluded and +time: time information was included).

AUC+timeAUCa–timeMethod

0.67730.6447LRb

0.67530.6545MLPc

0.65670.6045LSTMd

0.67140.6346ALSTMe

0.6548—TLSTMf

0.65970.6119ATTAINg

0.68820.6455RETAINh

0.7003 j0.6692TSANNi-I

—0.6463TSANN-I-step

0.68550.6827TSANN-II

aAUC: area under the receiver operating curve.
bLR: logistic regression.
cMLP: multilayer perceptron.
dLSTM: long short-term memory.
eALSTM: attention long short-term memory.
fTLSTM: time-aware long short-term memory.
gATTAIN: Attention-based Time-aware Disease Progression.
hRETAIN: Reverse Time Attention model.
iTSANN: time-sensitive attentive neural network.
jThe optimal value for each column is italicized.

When comparing vertically (different rows) and considering
time information, we noticed that TSANN-I achieved the
optimal AUC value, improving the strongest baseline (RETAIN)
by 1.21% (the difference was significant according to the
Wilcoxon test with P=.03). Among other methods, TSANN-II
achieved a performance comparable with that of RETAIN. The
conventional machine learning method logistic regression (LR)
behaved better than some deep learning methods but was worse
than RETAIN, TSANN-I, and TSANN-II. TSANN-I-step, which
only used time embeddings to denote the relative position of

each visit, did not produce good results. Although TLSTM and
ATTAIN performed well on other tasks, they did not obtain
satisfactory results on our data. For results without time,
TSANN-I and -II performed much better than others, with a
maximum improvement of 2.82%.

When comparing the results horizontally (–/+ time),
considerable improvements were observed after adding time
information on most methods; for example, TSANN-I obtained
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a 3.11% improvement. Surprisingly, TSANN-II, when
integrating time embeddings, did not improve considerably.

Better performances by TSANN models and considerable
improvements after adding the time information could also be
observed on testing set B (we did not list the results here but
showed them in Multimedia Appendix 1 as it is not our primary
evaluation set). As expected, the general results on testing set
B were better than those on testing set A, as a sample conveys
more complete information.

Patient-Level Risk Factors
In this study, a heatmap was used for each patient’s EHR for
the visualization of highly associated variables or possible risk
factors. The heatmap illustrates how each variable behaves in
each visit during the progression of asthma. Each grid in the
heatmap is colored based on the attention weights derived from
the model. The darker an area, the more important the clinical
variable and the higher the association it has with exacerbation.

For example, Figure 4 shows a case where the symptoms of
hypoxemia, shortness of breath, and wheezing (799.02, 786.05,
and 786.07 in ICD 9, respectively) were recognized as highly
associated variables. A possible explanation might be that the
patient’s status of hypoxemia worsened the condition of asthma
following symptoms in the breath, and asthma exacerbation
was then diagnosed.

These highly associated variables can either be signs of asthma
worsening or be triggers for exacerbation, which requires further
confirmation by domain experts. Signs including symptoms and
treated medications may convey important clues for disease
progression and will help clinicians in making final diagnoses,
whereas the triggers behaving as personalized risk factors will
potentially benefit early interventions. In addition, each heatmap
is associated with a probability score derived from equation 15,
indicating the risk of the patient in developing an exacerbation
(the top row in Figure 4, predicting 1 indicates predicting
exacerbation).

Figure 4. An example of a heatmap with highly associated clinical variables, such as hypoxemia (D_799.02), shortness of breath (D_786.05), and
wheezing (D_786.07).

Cohort-Level Risk Factors
We also discovered common highly associated variables at the
cohort level using the normalized multiplication of the visit-level
and code-level attention weights. We then asked the physician
to help distinguish the type of these variables according to their
expertise and literature lookup. Some of these variables can be
confirmed as risk factors, for example, poor control of
respiratory diseases [4] and gastroesophageal reflux disease
[44], although others need further validations, such as chest
pain, migraine, and use of some medications. The top-ranked
variables derived from the model are shown in Table 4. The
details of the method and the explanations of these factors are
described in Multimedia Appendix 1.

Apart from demonstrating the list of cohort-level factors, using
the weights generated by equation 2 and equation 3 in
Multimedia Appendix 1, we can also visualize how each clinical
variable contributes across time; for example, a variable may

behave distinctly among individuals with different action times
or different incidences. Figures 5 and 6 present 2 examples in
which the time distributions for the clinical variables are
displayed through scatters. In these scatters, each circle
represents a patient where its size and color depth denote the
importance of the corresponding variable. In the figures, the
x-axis represents the time gap between the occurrence date of
the variable and the prediction date, whereas the y-axis is
employed merely for cosmesis. We randomly selected a
maximum of 2000 patients to plot this figure.

Figures 5 and 6 were derived from an ICD code (530.81) and
a medication (fentanyl), respectively. We observed different
effective time ranges for these 2 factors, where the first factor
tends to distribute more intensively between the previous 250
to 50 days, whereas the second factor focuses more intensively
on the previous 100 days. We hope that these visualizations can
help determine the temporal distributions of highly associated
factors to aid asthma control.
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Table 4. Clinical variables with the top-ranked weights (/N stands for the clinical variable presented in N months before the prediction date).

Medication/occurrence timeICDa-9/occurrence timeSr. No.

Methylprednisolone/0, 1c493.9×asthma/0-5b (meaning diagnosed with asthma multiple times before exacerbation)1

Prednisone/0, 1, 2c786.07 wheezing/0-2d2

Ipratropium/0, 1, 2c496.0 chronic airway obstruction not elsewhere classified/0, 1e3

Midazolam/0, 1, 2d530.81 esophageal reflux/0b4

Hydromorphone/0-2eV46.2 dependence on supplemental oxygen/0d5

Heparin/0, 1d787.02 nausea alone/0d6

Acetaminophen-oxycodone/0b786.50 unspecified chest pain/0d7

Fentanyl/0eV08 HIV infection status/0e8

Methylprednisolone/2-4e786.59 other chest pain/0d9

Glycopyrrolate/0b786.05 shortness of breath/0d10

Lidocaine/0dV58.69 long-term (current) use of other medications/0e11

Dexamethasone/0d784.0 headache/0e12

Promethazine/0d346.90 migraine, unspecified, without mention of intractable migraine without mention of

status migrainosus/0e
13

Atorvastatin/0dV58.66 long-term (current) use of aspirin/0b14

Furosemide/0c491.21 obstructive chronic bronchitis with (acute) exacerbation/0e15

aICD: International Classification of Disease Code.
bIdentified possible risk factors of asthma exacerbations by the domain expert. The authors regard these as containing valuable information.
cThese medications can be used to treat asthma or control the symptoms of asthma. In this study, it was difficult to determine whether these medications
are risk factors as we were unable to investigate the dosage of these medications in the current study. Inappropriate medication use, short-acting beta
agonists/inhaled corticosteroids, could also lead to asthma exacerbations.
dThese factors were symptoms, comorbidities, or combined medications. We believe they were not risk factors for asthma exacerbations.
eIt could hardly be determined whether these factors caused asthma exacerbations, but they demonstrated high associations. The authors regard these
as containing valuable information.
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Figure 5. Time distribution of the contribution of the clinical variable gastroesophageal reflux disease is denoted by ICD-9:530.81. ICD: International
Classification of Disease Code.

Figure 6. The time distribution of the contribution of the clinical variable fentanyl.

Discussion

Principal Findings
Our proposed method obtains the optimal AUC value on the
prediction task, with hierarchical attention and elapsed time
embeddings as its booster. The visualization also provides useful
tracks for a better understanding of disease progression. The
primary outcomes of this study are as follows: (1) a new
state-of-the-art predictive model for asthma exacerbation
prediction was proposed and validated and (2) a reasonable
pipeline of disease risk prediction and factor analysis was

introduced. Some of the identified risk factors can be validated
from the literature, which shows the effectiveness of the method,
whereas some other factors, although supportive shreds of
evidence were seldom reported in previous studies, offer
meaningful insights for further research. The discussions in this
section are primarily based on the results of testing set A without
additional comments.

Model Performance
TSANN-I and TSANN-II have the capacity to capture
nonlinearities and learn more complex dependency relationships
between variables, benefiting from the structure of hierarchical
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attention and the addition of elapsed time embeddings. It is
difficult for LR and MLP to learn temporal dependencies
between variables according to their natural structures, which
makes them perform worse than TSANNs. However, they
obtained better AUCs than LSTM and ALSTM on testing set
A, partly because the truncation of EHRs by 5 visits weakens
their advantages in modeling longer sequences. Although
TLSTM and ATTAIN also integrated the time information, they
did not obtain satisfactory results as other methods. It is likely
that the combination of the single-layer deep learning structure
and the numerical time decay function is insufficient in dealing
with more complex temporal patterns on this data set and even
confuses the classifiers. RETAIN also has a hierarchical
attention structure, as introduced in the Introduction section.
However, one of its attention mechanisms is applied to each
code-embedding dimension, which is different from ours and
requires an additional inference step for interpretation. In
addition, our addition of time embeddings enhanced the
flexibility of modeling the time information, which contributed
considerably to the performance.

A typical characteristic of the EHR data is irregularity, which
means that the time gaps between clinic visits are irregular and
the visits are often sparsely distributed along the timeline and
sometimes are even missing. Thus, the predictive model is
responsible for serializing the visits for each patient with
consideration of time elapses between continuous visits and
reduces the effect of missing data. The comparisons between
results with and without time information in Table 3 demonstrate
the effectiveness of considering time elapses in this cohort. It
might be inferred that the prediction of asthma exacerbation is
quite time sensitive and most of the critical risk factors should
have been time stamped. For instance, even for a visit just before
the prediction date, if its occurrence is several months earlier,
its impact would be reduced. Similar cases can also be found
in Baytas et al [23], who reported an improvement of 6% from
LSTM to TLSTM. In comparison, for TSANN-I-step, although
time embeddings were also used, they were only used to denote
the relative position of each visit in the sequence but lacked the
ability to represent time decays, which can hardly obtain
satisfying results here. However, adding time to TSANN-II did
not improve much as in other methods, a possible reason might
be that the addition of visit-level attention weakens the
contribution of time embeddings.

Risk Factors
As mentioned earlier, the factors identified by this method can
be roughly divided into possible risk factors and highly
associated factors, for which some pieces of evidence can be
found in the literature. Besides, there were still several candidate
factors proposed by our model that were seldom reported, for
example, HIV infection, or we could not confirm their
associations, for example, abdominal pain. One possible reason
is that we only considered structured data but not textual
information (ie, clinical notes); therefore, that disease or
symptom may not be detailed enough to understand given only
a code (ie, we know abdominal pain but do not know in which
part). Furthermore, according to the AUC values of the model,
the results may not be precise enough and still need to be
improved. Overall, our method is completely data driven,

without any predefined candidate risk factors by experts, which
is different from most studies based on regression analysis [7].
We expect that our method can provide compensational
information and some new findings can be further validated by
clinicians or researchers.

Error Analysis
We analyzed patient samples that are likely to be false-positives
or false-negatives according to the prediction probability (as
we did not require an output label but only a probability
indicating the risk of each patient). One possible reason for the
likely false-negatives (ground truth is case, but the predicted
probability for case is quite low) is the data missing problem.
For example, patient A had some respiratory symptoms such
as asthma, shortness of breath, and chronic airway obstruction
about 6 months before the prediction date; however, all the
diagnosis codes were related to heart disease and hypertension.
Therefore, it is likely that some symptoms that might serve as
better indications were missing. On the other hand, one
explanation for some false-positives (ground truth is control,
but the predicted probability for control is quite low) is the
difficulty in evaluating the severity of certain diseases or
symptoms. For example, patient B had continuous respiratory
symptoms such as chronic airway obstruction, but without any
laboratory test values or knowledge of the drugs, it is difficult
to determine whether these symptoms worsened or were already
well controlled. To mitigate these factors, it is desirable to
integrate more variables and background knowledge into the
model in the future.

Comparison With Prior Work
One of the advantages of machine learning over statistical
analysis is that it can make predictions on unseen samples [15],
and it might be much easier to be deployed in real-world
applications. Although many studies have focused on asthma
exacerbation prediction, the majority of them belong to statistics,
as they did not test their model on held-out data sets [68,69].
Among other machine learning studies, multiple conventional
models have been explored, such as classification and regression
tree [11,70], random forest [71], LR [72], and support vector
machines [16]. However, none of these previous studies used
deep learning as we know. Compared with these conventional
machine learning methods, our deep learning–based method
has multiple advantages. First, no feature engineering is needed,
which will extremely reduce the laborious cost and expertise at
the first step, for example, in comparison, Luo et al [20] included
235 features designed by multiple clinical experts as inputs that
might cost a lot, but we input all the clinical codes to the model
and kept their original formats without any feature selection.
Second, LSTM structures can integrate any temporal patterns;
thus, dependencies between variables can be easily modeled.
Third, deep learning methods usually obtain better performances
compared with conventional machine learning methods because
of their capacities in modeling complex data structures
[22,23,27], which was also proved in our experiments (compared
with LR).

Furthermore, compared with previous studies, we are the first
to make comprehensive visualization and personalization over
the associated factors. One paper mentioned personalize, but it
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only discussed it as a future possibility [16]. In comparison, our
method showed not only cohort-level factors but also
temporal-based personalized risks and factors, which would
greatly facilitate precise medicine. Meanwhile, as we did not
limit our input to the predefined factors, we were able to find
new potential risk factors. However, one drawback of deep
learning–based methods compared with the previous shallow
methods is the lack of interpretability from some perspectives,
for example, they can hardly report statistical evaluation
measures such as P values and CIs, which might need further
exploration.

Limitations and Future Work
Using deep learning, we offered a novel means of identifying
possible risk factors and predicting the risk of asthma
exacerbation. However, this study has some limitations. First,
for the model interpretation part, how multiple clinical variables
interact with each other needs further exploration; simply
considering each variable independently but ignoring the
dependency patterns between them might be insufficient for
interpretation, for example, the prescription of a drug might be
closely associated with a disease or symptom. Second, structured
EHRs have their own drawbacks, such as data irregularity,
sparsity, and noise. Thus, some potential risk factors for asthma
exacerbations might not be recorded or might even be incorrectly
recorded in EHRs. As a result, information integrity cannot be

guaranteed. We may need to find ways to make the data
complete and more reliable, such as including information from
textual reports or patient surveys. Third, it is still difficult for
computer programs alone to distinguish between asthma
symptoms and risk factors, and knowledge injection is needed
in the future. Finally, the performance of the model still has
room for improvement. It might be boosted further by designing
more powerful structures or including background knowledge.

Conclusions
In this paper, we proposed an attentive deep learning–based
model for asthma exacerbation prediction and employed elapsed
time embeddings to model the time decays. By leveraging the
weights of the model, we not only generated personalized
heatmaps and specific risk scores at the individual level but also
identified possible risk factors at the cohort level. Compared
with previous studies, our model is effective in modeling time
information and obtains better overall AUCs. As the model is
completely data driven and relies little on feature engineering,
it can easily be generalized to other prediction tasks. To the best
of our knowledge, this is the first study to predict asthma
exacerbation risks using a deep learning model that includes
elapsed time embeddings. Some of the top-ranked risk factors
identified have gained supporting evidence from previous
medical studies, which proved that our method has good
reliability and accuracy.
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TSANN: time-sensitive attentive neural network
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