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Abstract

Background: Influenza epidemics result in a public health and economic burden worldwide. Traditional surveillance techniques,
which rely on doctor visits, provide data with a delay of 1 to 2 weeks. A means of obtaining real-time data and forecasting future
outbreaks is desirable to provide more timely responses to influenza epidemics.

Objective: This study aimed to present the first implementation of a novel dataset by demonstrating its ability to supplement
traditional disease surveillance at multiple spatial resolutions.

Methods: We used internet traffic data from the Centers for Disease Control and Prevention (CDC) website to determine the
potential usability of this data source. We tested the traffic generated by 10 influenza-related pages in 8 states and 9 census
divisions within the United States and compared it against clinical surveillance data.

Results: Our results yielded an r2 value of 0.955 in the most successful case, promising results for some cases, and unsuccessful
results for other cases. In the interest of scientific transparency to further the understanding of when internet data streams are an
appropriate supplemental data source, we also included negative results (ie, unsuccessful models). Models that focused on a single
influenza season were more successful than those that attempted to model multiple influenza seasons. Geographic resolution
appeared to play a key role, with national and regional models being more successful, overall, than models at the state level.

Conclusions: These results demonstrate that internet data may be able to complement traditional influenza surveillance in some
cases but not in others. Specifically, our results show that the CDC website traffic may inform national- and division-level models
but not models for each individual state. In addition, our results show better agreement when the data were broken up by seasons
instead of aggregated over several years. We anticipate that this work will lead to more complex nowcasting and forecasting
models using this data stream.
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Introduction

Background and Motivation
Every year, an estimated 5% to 20% of people in the United
States become infected with influenza [1]. The typical influenza
season begins in October and ends in May, with the peak
occurring in the winter months. Annually, 3000 to 50,000 people
die from the flu, with another 200,000 people requiring
hospitalization [2]. The yearly flu burden is estimated to cost
around US $11.2 billion in lost productivity, with some estimates
as high as US $87 billion [2,3]. Timely surveillance of influenza
can help reduce this burden, allowing health care facilities to
more adequately prepare for the influx of patients when flu
levels are high [4].

One common surveillance measure is the fraction of patients
presenting with influenza-like illness (ILI), consisting of a fever
of at least 100°F (37.8°C) and a cough or sore throat with no
other known cause [5]. ILI data are collected from about 2900
volunteer health care providers throughout the United States,
although each week, only about 1800 of them report their data.
These data are then aggregated and made public after a time lag
of about 1 to 2 weeks [1,6-10]. As the ILI data are collected
from volunteer health care providers, the dataset is incomplete.
If policies were enacted to provide incentives for health care
providers who report these data or to make reporting
compulsory, the result would be a more complete dataset. Other
surveillance systems include virological data from the World
Health Organization, emergency department visits, electronic
health records, crowd-sourced ILI reports, Widely Internet
Sourced Distributed Monitoring, Influenzanet, and Flu Near
You [11,12].

Internet Data Streams
In the United States, 87% [13] of adults use the internet. Of
those internet users, 72% [13] have used the internet to search
for health information within the last year. The most common
health-related searches are for information regarding a specific
disease or condition (66%) and information about a specific
treatment or procedure (56%) [13,14].

There are two main types of health-related internet activity. The
first is health sharing, in which internet users post about
health-related topics (eg, a tweet about being sick). The second
is health seeking, in which users use the internet to obtain
information about health-related topics [6]. In this paper, we
focused on health-seeking behavior. Previous studies have
shown that analyzing web-based health-seeking behavior can
improve early detection of disease incidence by detecting
changes in disease activity [9,15-19]. Similarly, other studies
have shown that internet data emerging from search queries can
aid detection of outbreaks in areas with large populations of
internet users [20] because web-based health-related search
queries and epidemics are often strongly correlated [20,21].

Internet data have been used to forecast disease incidence in
other models. Polgreen et al [9] developed linear influenza
forecasting models with lags of 1 to 10 weeks for each of the 9
US census regions using search queries from Yahoo [9]. The
best performing models had lags of 1 to 3 weeks and an average

r2 value of 0.38 (with a high of 0.57 in the East South Central

region) [9]. These low r2 values demonstrate potential problems
in relying on search information alone. Ginsberg et al [15] were
able to predict influenza epidemics 2 weeks in advance using
Google search queries to fit linear models using log-odds of ILI
visits and related searches.

Using a Poisson distribution and Lasso regression, McIver and

Brownstein [8] obtained an r2 value of 0.946 using Wikipedia
data, although some data were excluded from analyses because
of increased media attention and higher than normal influenza
activity. Generous et al [7] used Wikipedia data to train a
statistical model with linear regression, which demonstrated its
potential for forecasting disease incidence worldwide, including

influenza in the United States, which had an r2 value of 0.89.
Hickmann et al [1] conducted a similar study of linear regression
models, which showed that using Wikipedia to forecast influenza
in the United States for the 2013 to 2014 season resulted in an

r2 value greater than 0.9 in some instances.

Integrating both Wikipedia data and Google Flu Trends, Bardak

et al [22] obtained r2 values of 0.94 and 0.91 using ordinary
least squares (OLS) and ridge regression, respectively, for

forecasting influenza outbreaks. For OLS nowcasting, the r2

value was 0.98 in the best case. For the best fit, the weekly data
were offset by 1 week, so that ILI visits were correlated with
internet data from the prior week [22].

As part of the Centers for Disease Control and Prevention
(CDC)’s 2013 to 2014 Predict the Influenza Season Challenge,
9 teams used digital data sources to create forecasting models.
The digital sources these teams used were Wikipedia, Twitter,
Google Flu Trends, and HealthMap. The teams used either
mechanistic or statistical models to create their forecasts, with
the most successful team using multiple data sources, which
may have reduced biases usually associated with internet data
streams [23]. Broniatowski et al [24] used Twitter data to detect
increasing and decreasing influenza prevalence with 85%
accuracy. Zhang et al [25] used Twitter data to inform
stochastically, spatially structured mechanistic models of
influenza in the United States, Italy, and Spain.

Internet data streams have also been used to supplement
traditional surveillance techniques with nowcasting models.
Paul et al [26] used Twitter along with ILI data from the CDC
to produce nowcasting influenza models as well as nowcasting
models using solely ILI data. They concluded that the addition
of Twitter data led to more accurate nowcasting models.
Santillana et al [27] combined Google Trends data and
CDC-reported ILI data to create models for nowcasting and
forecasting influenza. Lampos et al [28] used search query data
to explore both linear and nonlinear nowcasting models. Yang
et al [29] used Google search data to create an influenza tracking
model with autoregression.

In contrast, we considered data on page views of the CDC
website rather than search data from sites not solely devoted to
public health. We used this dataset because we expect it to be
inherently less noisy because of its focus on public health issues.
We used OLS to nowcast influenza nationally, across the 9 US
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census divisions, and across 8 states using access data from 10
influenza-related CDC pages. Our nowcasting models cover
influenza seasons from 2013 to 2016, with the 2012 to 2013
season being partially included because the CDC page view
dataset begins on January 1, 2013. The inclusion of an
incomplete influenza season serves to inform if this dataset can
be used given a more restrictive time frame. We included both
positive and negative results to advance our knowledge
regarding when internet data may or may not work. The negative
results are crucial to advancing the field of disease surveillance
using internet data, as they demonstrate when these data sources
contribute to unreliable surveillance. We focus on answering
the following two research questions: (1) Can CDC page visits
be used as an additional data source for monitoring disease
incidence? and (2) What is the appropriate time shift of the page
view data needed to obtain the best data fit?

Methods

Data Sources
We used page view data provided by the CDC. Each data point
contains the page name, date and time of access, and the
geographic location from where the page was viewed. These
data are available at geographic resolutions of national and state
levels and include some metropolitan areas (eg, New York City).
The data are available at a number of temporal resolutions
beginning on January 1, 2013. For these models, we used weekly
page view data to coincide with the ILI data temporal resolution.
The data are available as raw page view counts and page view
counts normalized with respect to all CDC page views, and we
considered the latter for this work. We selected pages associated
with general influenza information, treatment, and diagnosis.
Pages were sometimes renamed, but we were able to follow the
evolution of each selected page by using keywords in the page
titles as well as the date ranges for available data.

As the majority of health-related internet searches concern
specific conditions, treatments, and procedures [14], we selected
pages related to those topics. These pages also align with the
study by Johnson et al [30], who used pages in the categories
of diagnosis and treatment as well as prevention and vaccination
for influenza surveillance [30]. Specifically, we used the
following pages: antivirals, flu basics, FluView, high risk
complications, key facts, prevention, symptoms, treating
influenza, treatment, and vaccine. We then aggregated the page
views of interest for each of our models. FluView has the
potential to be an outlier page, especially when used alone, as

this page tracks the severity of the influenza season and could
have higher page views as a result of media attention and severe
influenza seasons. However, when combined with other pages
focused on treatment and prevention, we expected these page
view data to be useful for our models. A complete list of pages
can be found in Multimedia Appendix 1.

The states we selected were based on the severity of flu
(determined from FluView) during the available seasons and
the availability of ILI data at the time of the study, which is not
standardized and is dependent on each state’s reporting
mechanism. ILI data for each state include the week ending or
starting date and the percentage of ILI for the specified week.
Although some states also report additional data, such as school
closures and hospitalizations, these data are not made available
by every state. Note that ILI reporting and accessibility vary
across all states. The states we selected were (1) California, (2)
Maine, (3) Missouri, (4) New Jersey, (5) New Mexico, (6) North
Carolina, (7) Texas, and (8) Wisconsin. With the exception of
Texas, these states did not release ILI data outside of the typical
flu season. As the purpose of this study was to demonstrate the
viability of nowcasting, we considered only those ILI data
available during the study period. Although some states have
made their ILI more accessible since the end of the study, we
did not consider these data, as they were not available during
the study period. The exclusion of additional data not available
during the study period helps to preserve the premise of
nowcasting by focusing only on data sources available during
the study period. Likewise, our state ILI data often came from
the state’s individual weekly reports during the seasons used in
the study. A complete list of the data sources for the state ILI
can be found in Multimedia Appendix 2, and the clinical data
are available in Multimedia Appendices 3 and 4.

Figure 1 shows the percentage of ILI visits for each state
considered in this study and the national percentage of ILI visits.
We see distinct spikes that indicate the peaks of the flu seasons.
With the exception of Maine, which behaves as an outlier at
times, the figure shows spikes indicating there are peak weeks
for influenza-related page views. Texas also exhibits outlier
behavior with ILI percentages consistently higher than the
typical national baseline of 2%, which is used to determine
when the flu has reached epidemic status. These 2 outliers are
shown in teal (Texas) and dark blue (Maine). The national ILI
is shown in black. The remaining states exhibit behavior
consistent with the national ILI trend. Figure 2 shows the CDC
page view data as a heat map: weeks with more page views are
shown darker than weeks with fewer page views.
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Figure 1. Percentage of ILI visits per state compared with the typical national baseline of 2%. Maine (dark blue) and Texas (teal) exhibit outlier
behavior, with Texas having a greater ILI percentage and Maine having a lesser ILI percentage. The remaining states follow the national ILI trend,
shown in black. ILI: influenza-like illness.
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Figure 2. Normalized CDC web traffic as a heat map. Darker areas indicate more page views and appear to correlate with increases in influenza-like
illness. The page views also appear to be more prevalent during the typical influenza season, October to May. CDC: Centers for Disease Control and
Prevention.

In addition to selected states, we also considered the 9 US census
divisions: New England, Middle Atlantic, East North Central,
West North Central, South Atlantic, East South Central, West
South Central, Mountain, and Pacific. Multimedia Appendix 5
provides a list of states included in each division. Data for the
census divisions were obtained from the CDC and are presented
in Multimedia Appendix 3.

Linear Regression
We used statsmodels version 0.9.0 [31], a statistical analysis
module for Python, to perform linear regression on our datasets
using OLS. This creates a linear model M, the summation of
regression coefficients multiplied by page view data. Figure 3

shows the mathematical formula of M, where are the
regression coefficients and X=1, X1, ... Xn is the vector of CDC
page view data, with n representing the number of CDC pages
used for the model, ranging from 1 to 10. M is a value between
0 and 1, representing the fraction of ILI visits. To plot the
models and data on the same axes, we normalized M for
visualization purposes, with M=1 corresponding to the ILI
percentage during the peak week of the influenza season. We
correlated ILI and CDC page views for the same week or with

a 1-week shift. In the shifted cases, we shifted the ILI data
forward by 1 week, so that the model associates the current
week’s page views with the following week’s ILI data. This
shift is performed to account for the incubation period of
influenza and the time between the onset of symptoms and the
first doctor visit. Statsmodels [31] uses the CDC page view and
ILI data to determine the appropriate regression coefficients;
fits parameters with OLS; and computes the goodness-of-fit,

r2, also referred to as the coefficient of determination. The r2

value measures how well 2 time series correlate. An r2 value

of 1 indicates a perfect fit, whereas an r2 value of 0 indicates

no correlation. Although r2 is not necessarily the best metric to
judge goodness-of-fit [6], it is nonetheless the most common
metric used and still provides one with a decent overall sense
of fit quality. In addition, we examined the root mean square
error (RMSE) and the normalized root mean square error
(NRMSE) using Python scikit-learn libraries. The RMSE and
NRMSE metrics measure how the model prediction differs from
the actual data, with the NRMSE normalized so that the greatest
possible value is 1. For these metrics, lower numbers indicate
a better fit.

J Med Internet Res 2020 | vol. 22 | iss. 7 | e14337 | p. 5https://www.jmir.org/2020/7/e14337
(page number not for citation purposes)

Caldwell et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Mathematical formula of the linear ILI models created in this study. The model M represents the fraction of ILI visits, where <inline-graphic
xlink:href="jmir_v22i6e14337_fig7.png" mimetype="image" xlink:type="simple"/> are the regression coefficients and X=1, X1, ... Xn is the vector of
CDC page view data, with n representing the number of CDC pages used for the model, ranging from 1 to 10. ILI: influenza-like illness; CDC: Centers
for Disease Control and Prevention.

Results

Format of Results
We analyzed the data at the national, division, and state levels

and computed r2 for each geographic resolution. In this section,
we discuss the results of our experiments, both successes and
failures. We include figures of models at the national, census
division, and state levels. Owing to the varying scales between
page views and ILI percent, we chose to normalize the data and
our models to plot them on the same axes. Raw data were used
to create the models and then each model was normalized with
respect to its maximum. We also normalized the ILI data and
CDC web traffic data with respect to their maximums for the
given period so that all 3 curves may appear in the same plot.
Additional model successes and failures not discussed here can
be found in Multimedia Appendix 6.

National Results
We selected pages that corresponded to the topics most often
searched during web-based health-seeking activities.
Aggregating all 10 pages in a single model, we were able to

achieve an r2 value of 0.889 for the national 2012 to 2013
influenza season after implementing a 1-week shift. We also
succeeded in modeling the national 2015 to 2016 influenza

season with no shift, achieving an r2 value of 0.834. We obtained
better results when limiting the pages to FluView, Symptoms,
and Treatment, which we attribute to the information on these
pages aligning with topics most commonly used for internet
health seeking. For these pages, the most successful models did
not have a shift. For the 2012 to 2013 influenza season, we

achieved an r2 value of 0.906. The model for the 2015 to 2016

season had an r2 value of 0.891. Table 1 shows the most
successful model for each influenza season included in this
study. Figure 4 shows these models, with each figure caption
indicating which page(s) comprise CDC web traffic, which
appears in each figure and are the data used in the model.

Table 1. Pages and shifts for the most successful models for each influenza season at the national level.

Normalized root mean square errorRoot mean square errorr2ShiftSeasonPages used in model

0.0700.4230.912None2012-2013FluView, Symptoms, and Treatment

0.0600.2130.892None2015-2016Symptoms

0.1110.5100.802None2013-2014FluView

0.1030.6150.778None2014-2015Antivirals and Prevention
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Figure 4. These plots show national models and the associated pages and influenza seasons. (A) FluView, Symptoms, and Treatment, 2012 to 2013.
(B) Symptoms, 2015 to 2016. (C) FluView, 2013 to 2014. (D) Antivirals and Prevention, 2014 to 2015. CDC: Centers for Disease Control and Prevention;
ILI: influenza-like illness.

Census Division Results
Using the data for each of the 9 census divisions, we were able

to achieve an r2 value greater than 0.7 for at least one case for
each division. We considered all seasons together and separately,
with the better results obtained from modeling each individual
season. We considered all 10 pages together as well as
combinations of one or more of these pages. In the most

successful case, the model was able to closely match the 2015
to 2016 influenza season for the West North Central division,

with an r2 value of 0.955 using the FluView, Symptoms, and
Treatment pages. Although we had successes using all 10 pages,
the most successful model for each division involved only these
3 pages. Figure 5 shows some of these models, and Table 2
highlights these successes.
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Figure 5. Census division model successes using the FluView, Symptoms, and Treatment pages for the 2012 to 2013 influenza season. (A) West North
Central, 2012 to 2013. (B) Mountain, 2012 to 2013. (C) East North Central, 1-week shift, 2012 to 2013. (D) Pacific, 2012 to 2013. (E) West South

Central 2012 to 2013. These plots represent the census division models that had the highest r2 value in the 2012 to 2013 influenza season. CDC: Centers
for Disease Control and Prevention; ILI: influenza-like illness.
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Table 2. The 9 census divisions and the season and shift for which the division’s model had the highest r2 value. The table also shows the root mean
square error and the normalized root mean square error. The results presented correspond to the FluView, Symptoms, and Treatment pages aggregated.

Normalized root mean square errorRoot mean square errorr 2ShiftSeasonDivision

0.0570.3670.955None2012-2013West North Central

0.0770.3360.921None2012-2013Mountain

0.0960.0960.920None2015-2016New England

0.0760.3310.8991 week2012-2013East North Central

0.0650.2180.893None2015-2016South Atlantic

0.0730.3020.861None2015-2016Middle Atlantic

0.0940.5030.849None2012-2013Pacific

0.1050.9860.828None2012-2013West South Central

0.0820.3650.7931 week2015-2016East South Central

State Results

We found r2 for each of the states considered in this study, using
a variety of pages and page combinations. Table 3 lists the most

successful models for each state, the season, the data shift, and

the r2 value.

Table 3. The most successful results for each state considered in this study.

Normalized root mean square errorRoot mean square errorr 2ShiftSeasonPage(s)State

0.0670.6670.9301 week2012-2013AllaTexas

0.1270.5330.833None2012-2013FVSTbWisconsin

0.1170.7670.8321 week2012-2013AllNew Jersey

0.1270.8010.8231 week2012-2013FVSTMissouri

0.1060.4550.7811 week2015-2016FVSTNorth Carolina

0.1971.1840.7711 week2015-2016AllNew Mexico

0.1250.7770.7581 week2012-2013FVSTCalifornia

0.1710.4450.662None2012-2013AntiviralsMaine

aAll refers to the aggregation of all 10 pages.
bFVST refers to the aggregation of the FluView, Symptoms, and Treatment pages.

Figure 6 shows both successes and failures at the state level.

Adding all the pages together, we were able to obtain r2 values
of 0.930 and 0.801 for Texas and Wisconsin, respectively, for
the 2012 to 2013 influenza season. For the 2013 to 2014 season,

the highest r2 value was 0.187 for Wisconsin. For the 2014 to

2015 season, the highest r2value was 0.322 for Missouri. For

the 2015 to 2016 season, the highest r2 value was 0.647 for
North Carolina.
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Figure 6. Different states during different seasons. (A) Texas, 1-week shift, 2012 to 2013. (B) Wisconsin, 2013 to 2014. (C) Missouri, 2014 to 2015.

(D) North Carolina, 2015 to 2016. (E) Wisconsin 2012 to 2013. The r2 values of each of these models ranged from 0.187 to 0.930. These models
aggregated all 10 pages, and the success varied by state. CDC: Centers for Disease Control and Prevention; ILI: influenza-like illness.

We were not surprised that Texas had the best fit. Texas was
the only state we included that provided ILI data not only for
the typical influenza season but also for the off-season. These
additional data likely contributed to the success of the Texas
models. In keeping with our nowcasting scenario, we only
included data available during the study period. During that
period, Texas was the only state that provided off-season ILI

data. These data have since been made available from other
states, but the availability was not present during the study. The
lack of success we encountered in modeling Maine was also
expected because of Maine’s outlier behavior in ILI, having
values considerably lower and out of pattern with other states.
The models in Figure 6 included all 10 pages aggregated
together. However, as indicated by the individual state results,
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this does not always lead to the best fit. Successful models often
include a combination of select pages (such as FluView,
Symptoms, and Treatment) but not an aggregation of all 10.
Furthermore, aside from Texas, we did not have ILI data for
the states outside of the typical flu season. Without these
additional data, we are unable to determine how strongly the

lower page views in the off-season correlate with off-season
ILI.

We then shifted the ILI data forward by 1 week. The regression

analysis yielded 7 state/season combinations with r2 values
greater than 0.7 (Table 4). The table also includes both the
regular RMSE and NRMSE.

Table 4. States with models that had an r2 value greater than 0.7 when aggregating all 10 pages and shifting the influenza-like illness data forward by
1 week. The regular and normalized root mean square errors are also displayed.

Normalized root mean square errorRoot mean square errorr 2SeasonState

0.0670.6670.9302012-2013Texas

0.1170.7670.8322012-2013New Jersey

0.1971.1840.7712015-2016New Mexico

0.1290.7970.7462012-2013California

0.1530.6260.7272012-2013Wisconsin

0.2041.0280.7082015-2016North Carolina

0.1651.0390.7022012-2013Missouri

Adding only the FluView, Symptoms, and Treatment pages,

we obtained an r2 value of 0.7 or greater for 6 state/season

combinations. For the 2013 to 2014 season, the highest r2 values
were 0.612 for California and 0.568 for Wisconsin. Although
this is still less than desired, it is a vast improvement from the

r2 values found from adding all 10 pages. For the 2014 to 2015

season, the highest r2 was 0.575 for Missouri. Again, although
the correlation appears to be weak, it is a stronger correlation
than taking all 10 pages together. Using the same 3 pages and

implementing a 1-week shift, we obtained an r2 value of 7 or
greater for 10 state/season combinations. For the 2014 to 2015

season, the highest r2 value was 0.548 for Missouri.

State Influenza-Like Illness Data Availability
The purpose of this study was to demonstrate the viability of
near real-time nowcasting during the influenza seasons from
2013 to 2016. To maintain the premise of nowcasting, we chose
states with publicly available data, or data available on request,
during the period of the study. During the study period, state
ILI data were not readily available on the CDC website. Instead,
we had to rely on data available through state health-related
organizations for each state. In addition, throughout the course
of influenza seasons, ILI numbers are often updated as delayed
data are reported and made available. However, because we are
focusing our study on a nowcasting scenario, we do not consider
the ILI data from those seasons as they are reported today but
rather as they were reported during the study period.

Model Failures
We generally found the models to be successful when
considering pages most closely related to typical health-seeking
behavior and when considering each flu season individually.
When trying to model multiple influenza seasons together, we
had a number of unsuccessful models. Considering all pages
and national ILI data, the model combining the 2012 to 2013

and 2013 to 2014 influenza seasons had an r2 value of 0.061

and RMSE of 0.553. The combined 2013 to 2014 and 2014 to

2015 model had an r2 value of 0.241 and RMSE of 0.208. The

combined 2014 to 2015 and 2015 to 2016 model had an r2 value
of 0.251 and RMSE of 0.286. At the state level, combining all
pages resulted in a number of unsuccessful models. For the

2013 to 2014 season, the Wisconsin model had an r2 value of
0.187 and RMSE of 0.523. For the 2014 to 2015 season, the

Missouri model had an r2 value of 0.322 and RMSE of 1.845.
Model failures not included in this section can be found in
Multimedia Appendix 6.

We speculate that a number of factors could contribute to these
negative results. Although influenza is a seasonal disease,
similar strains can span multiple years, affecting the susceptible
populations in subsequent years. Our data stream may be biased
toward individuals with more awareness of the CDC.
Furthermore, individuals who search for influenza information
in one season may not search for that information the next year.
Finally, with the exception of Texas, we only have ILI data for
the influenza season itself. Thus, although we do have internet
data for off-season influenza page views, we do not have
corresponding ILI data.

Discussion

Conclusions
Internet surveillance data have proven beneficial in predicting
ILI incidence during flu seasons. However, our results show
that the benefit of internet data streams on informing disease is
inconclusive; that is, this study shows that the CDC website
traffic can be informative in some cases (eg, national level) but
not in others (eg, state level). To determine the extent, we must
return to our original research questions.

Research Question 1
Given the successes of some of our models, we can conclude
that CDC page view data can be used as an additional data
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source for monitoring disease incidence in some cases (eg, at
the national level). The degree to which these data can be used
appears to rely on the page selection and time frame. The results
of the best models varied across geographic and temporal
resolutions, but some trends were consistent in most cases. We
obtained successful nowcasts when selecting pages related to
topics most commonly used for web-based health queries
(specific diseases and treatments) during the time span of a
typical influenza season. Longer time spans and pages less
associated with specific diseases and treatments led to less
successful models. Outlier behavior, such as the ILI data in
Maine, affected our models and resulted in less successful
models than states with ILI curves exhibiting expected behavior.
These results can assist others in selecting appropriate
supplemental datasets for disease surveillance as well as
appropriate spatial and temporal resolutions.

Research Question 2
We obtained our most successful results using a 1-week shift.
Moreover, 2-week shifts were successful in some cases but were
overall less correlated than 1-week shifts (Multimedia Appendix
6). Using no shift at all proved successful in some cases but not
in others. We surmise that the shift required for the best fit
depends on the incubation period for the disease in question as
well as the period of reporting. The CDC internet data are
available daily; however, ILI data are available weekly, so we
are limited in the types of shifts we can apply to the datasets.
Another factor that could contribute to the need for a 1-week
shift is the amount of time between the page view and the
subsequent visit to a health care center. If there are one or more
days between the page view and the visit, then these 2 events
could occur during different weeks. Shifting the data by 1 week
accounts for this behavior.

Future Work
We conclude that more studies on internet data streams are
needed to understand when and why internet data work. Our
methods are consistent with other feasibility studies and provide
insight into the conditions under which internet data streams
may inform influenza models. Future work should include
rigorously testing the predictive power of the models by
separating data into training and testing sets [6].

More studies on geographic resolution could provide a better
insight into why some models outperform others at various
spatial resolutions. National models across single influenza
seasons performed well, with each season included in the study

having at least one model with an r2 value greater than 0.75.
We attribute the national model successes to the representation
of all 50 states. Internet access may not be as prevalent in all
states, but the inclusion of all 50 states allows for more data to
be considered. Likewise, the census division models performed

well, with overall r2 values greater than those achieved from
national models. Each census division had at least one model

in the study with an r2 value greater than 0.79. We attribute
these successes to not only the inclusion of all states but also
the division into geographic areas. There are instances in which
a person may live in one state and seek medical care in another,
perhaps because of working in a neighboring state. These
instances are not accounted for by simply looking at states but
can be accounted for by considering several neighboring states
for 1 model. At the state level, models were overall less
successful than at national and census division levels, but each

state considered in the study had at least one model with an r2

value greater than 0.65, and all but Maine had models with an

r2 value greater than 0.75. We attribute the overall lower success
of state models to a combination of varying levels of internet
access across populated and rural areas, the possibility of people
living near neighboring states seeking health care in another
state, and the inconsistencies in data availability during the
study period. As our study focused on using data sources
available during the study, we were limited in the states we
could model because of the scarcity of the data.

More studies on temporal resolution could provide a better
insight into how best to model seasonal diseases over multiple
seasons. Models across multiple seasons were not successful,
which we attribute in part to the off-season ILI data being
unavailable during the study period. As influenza is a seasonal
disease, modeling multiple seasons with 1 model may not be
the correct approach, and our multiseason models support this
idea. However, more exhaustive studies are needed to draw
definitive conclusions on the appropriate spatial resolution for
modeling influenza.
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OLS: ordinary least squares
RMSE: root mean square error
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