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Abstract

Background: In the era of information explosion, the use of the internet to assist with clinical practice and diagnosis has become
a cutting-edge area of research. The application of medical informatics allows patients to be aware of their clinical conditions,
which may contribute toward the prevention of several chronic diseases and disorders.

Objective: In this study, we applied machine learning techniques to construct a medical database system from electronic medical
records (EMRs) of subjects who have undergone health examination. This system aims to provide online self-health evaluation
to clinicians and patients worldwide, enabling personalized health and preventive health.

Methods: We built a medical database system based on the literature, and data preprocessing and cleaning were performed for
the database. We utilized both supervised and unsupervised machine learning technology to analyze the EMR data to establish
prediction models. The models with EMR databases were then applied to the internet platform.

Results: The validation data were used to validate the online diagnosis prediction system. The accuracy of the prediction model
for metabolic syndrome reached 91%, and the area under the receiver operating characteristic (ROC) curve was 0.904 in this
system. For chronic kidney disease, the prediction accuracy of the model reached 94.7%, and the area under the ROC curve
(AUC) was 0.982. In addition, the system also provided disease diagnosis visualization via clustering, allowing users to check
their outcome compared with those in the medical database, enabling increased awareness for a healthier lifestyle.

Conclusions: Our web-based health care machine learning system allowed users to access online diagnosis predictions and
provided a health examination report. Users could understand and review their health status accordingly. In the future, we aim
to connect hospitals worldwide with our platform, so that health care practitioners can make diagnoses or provide patient education
to remote patients. This platform can increase the value of preventive medicine and telemedicine.

(J Med Internet Res 2020;22(6):e18585) doi: 10.2196/18585
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Introduction

In the ever-changing technological era, the internet can provide
rapid and convenient medical services in the form of health
care, preventive medicine, and telemedicine. Medical
informatics is a multidisciplinary field that comprises medicine
and computer science. As computer technology continues to
advance, medical informatics can be used to develop various
applications such as electronic medical records (EMRs), medical
image processing, clinical diagnosis decision systems, hospital
information management systems, telemedicine, and internet
and health information systems [1-4].

To construct a health care information system, several factors
must be considered: the hospital information system, including
both clinical management and diagnosis services; the storage
and processing of patient information, such as EMRs and
electronic health records; decision support systems, such as
expert diagnosis systems; and the artificial intelligence (AI)
algorithms that need to be applied to those factors (eg, data
mining in EMRs and decision-making in clinical diagnosis)
[5-8].

The mass application of EMRs and the digitalization of medical
equipment and instruments have led to the continuous expansion
of information capacity in hospital databases. Therefore,
informatics research should focus on basic electronic medical
database construction, data collection and analysis, medical
decision support, and automatic knowledge acquisition.
Furthermore, the use of machine learning (ML) technology in
AI to extract the most important information has led to
cutting-edge research in medicine [9-13]. The goal of AI is to
construct an intelligent machine that imitates the natural
intelligence of humans. Computers, robots, and software that
are made with such technology will have human-like thinking
processes, but with the ability to utilize superhuman speed and
power effectively. Knowledge engineering is an essential part
of AI research, especially ML, because AI operations require a
significant amount of real-world data.

ML is defined as a “machine that is capable of self-learning
without any guidance.” Therefore, the main purpose of ML is
to make computers self-learning and auto-correcting when
analyzing data. The core technology of ML must identify
specific patterns and information hidden within very large data
sets using statistical analysis and prediction automatically
[14-17].

Disease and disability are influenced by several factors:
environmental factors, genetic predisposition, pathogens, and
lifestyle choices. Some conditions are a dynamic process that
can affect an individual before they are aware of any problem
[18-20]. The core of preventive medicine is to prevent chronic
diseases among people who are at risk of certain diseases. In
some cases, it can also be used to reverse their condition,
returning them to a good health status. In the past, due to
information asymmetry, doctors and hospitals led the medical
environment, and patients did not have access to any appropriate
methods or information to implement real-time
self-management. Patients who failed to obtain an early
diagnosis would have to pay higher health care costs. Therefore,

the spirit of prevention medicine is that “an ounce of prevention
is worth a pound of cure” [21-23].

Metabolic syndrome (MetS) is a cluster of conditions comprising
high blood sugar, high blood pressure, abnormal blood lipid
levels, abdominal obesity, and other metabolic risk factors. It
is a warning sign of potential future chronic disease. People
with MetS have an increased risk of subsequent development
of type II diabetes, hypertension, hyperlipidemia, heart disease,
and stroke compared with healthy people [24-28].

Chronic kidney disease (CKD) is defined as kidney function
that is impaired for longer than 3 months, leading to irreversible
damage. The National Kidney Foundation Kidney Disease
Outcome Quality Initiative guideline classifies CKD into 5
stages according to the estimated glomerular filtration rate
(eGFR) and using the recommended Modification of Diet in
Renal Disease (MDRD) equation [29]. There are many causes
of CKD, such as congenital anomalies of the kidney, urinary
tract obstruction, urinary tract infection, and glomerulopathy.
In addition, hypertension, diabetes, and gout are common
chronic diseases that cause CKD if undertreated [30,31].

Telemedicine uses information and telecommunication
technology to deliver medical information and physicians’
diagnoses to patients without the limitations of time and space.
It combines information and communication technologies with
medical expertise to provide various services: remote
consultation and conferencing for doctors; comprehensive
medical care for residents in remote and outlying islands; and
teaching and training opportunities for medical staff. The
internet can be used to assist with the popularization of
telemedicine to achieve a two-way communication channel
between patients and medical practitioners [32,33]. Therefore,
this study aims to construct an online ML-driven medical
database system from EMRs of subjects who have undergone
health examination, and provide online self-health evaluation
for MetS and CKD.

Methods

Setting
The study was conducted at the Health Management Center
(HMC) of Taipei Medical University Hospital (TMUH).
Electronic medical records (EMRs) were obtained and reviewed
from the HMC, which receives approximately 60 to 70 visits
per month.

Ethics
The study was approved by the Institutional Review Board
(IRB) of TMUH prior to data collection (TMUH TMU-JIRB
number N202003088), in accordance with the original and
amended Declaration of Helsinki. The IRB waived the need for
informed consent because of the retrospective nature of this
study.

EMR Database and System
The databases and the selected predicting variables (Table 1)
were derived from previous publication on MetS and CKD
[34-36]. Figure 1 shows an overview of the system and the main
functions. Briefly, using a series of complicated procedures,
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the two databases (MetS and CKD) were connected to an
internet platform to construct one integrated system. This
web-based system was embedded with ML models to provide
various medical evaluations and analyses. The online system
was constructed on a server as a web-based environment. The
frontend implementation included the programming language
JavaScript (Oracle Corp), the framework VueJS (Vue), and the
styling Syntactically Awesome Style Sheets (Sass). The backend
implementation used Java and R as the programming languages,
and all ML calculations and evaluations were conducted using
the statistical program R (version 3.6.1, R Foundation for
Statistical Computing). The back web framework was Spring

Boot (Pivotal Software), connecting the MySQL (Oracle Corp)
database as the storage system.

Study Populations
Figure 2 [37-39] shows an overview of the main study
population and the validation populations. Briefly, the starting
study population included 48,628 EMRs of Taiwanese adults
aged over 18 years who underwent a self-paid health
examination at TMUH from July 2015 to December 2019. All
the study participants completed a self-questionnaire on
demographics, existing medical conditions, and the use of
medications.
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Table 1. The list of predicting variables in the electronic health care records.

UnitDisease and predicting variable

Metabolic syndrome

Male/FemaleSex

yearsAge

kg/m2Body mass index

cmWaist circumference

IU/LGlutamic-oxaloacetic transaminase

IU/LGlutamate pyruvate transaminase

U/Lγ-Glutamyl transpeptidase

mg/dLTotal bilirubin

IU/LAlkaline phosphatase

mg/dLBlood urea nitrogen

mg/dLCreatinine

mg/dLUric acid

g/dLAlbumin

mg/dLCholesterol

mg/dLHigh-density lipoprotein

mg/dLLow-density lipoprotein

%Hemoglobin A1c

mg/dLGlucose AC

mg/dLTriglycerides

mm HgSystolic blood pressure

mm HgDiastolic blood pressure

kPaElastic modulus (E) score

dB/mControlled attenuation parameter (CAP) score

Chronic kidney disease

Male/FemaleSex

yearsAge

kg/m2Body mass index

cmWaist circumference

IU/LGlutamic-oxaloacetic transaminase

IU/LGlutamate pyruvate transaminase

U/Lγ-Glutamyl transpeptidase

mg/dLTotal bilirubin

IU/LAlkaline phosphatase

mg/dLBlood urea nitrogen

mg/dLCreatinine

mg/dLUric acid

g/dLAlbumin

mg/dLCholesterol

mg/dLHigh-density lipoprotein

mg/dLLow-density lipoprotein
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UnitDisease and predicting variable

%Hemoglobin A1c

Yes/NoHypertension

Figure 1. The structure of web-based machine learning medical system. API: application programming interface; EMR: electronic medical record;
ML: machine learning.
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Figure 2. Flowchart of data collection and preprocessing for MetS and CKD data sets including training and validation sets. SAS Enterprise Guide is
a software that combines the analytic ability of SAS software with a user-friendly interface. It provides several functions of Structured Query Language
(SQL), which includes a text mining technique. ACC: accuracy; AUC: area under the curve; BUN: blood urea nitrogen; CKD: chronic kidney disease;
KNN: k-nearest neighbors algorithm; MetS: metabolic syndrome; UA: uric acid. * Centers for Disease Control and Prevention (CDC) and National
Center for Health Statistics (NCHS) [37], ** Iimori et al [39], *** De Nicola et al [38].

Subsequently, the starting population data underwent data
cleaning and preprocessing to form two distinct databases (MetS
and CKD) for ML. For the MetS database, there were a total of
1129 participants after the exclusion of participants without
FibroScan (Echosens) measurements. For the CKD database,
there were a total of 2287 participants after the exclusion of
participants without values for creatinine, blood urea nitrogen,
and uric acid.

Due to the inconsistent definition of MetS across the world, the
ML performance of the MetS database and the CKD database
were validated using different study populations. The ML
performance of the CKD database was validated using
Taiwanese, Italian, US, and Japanese data sets, but the ML
performance of the CKD database was only validated using a
Taiwanese data set [37-39]. Since different variables may be
unavailable in different validation data sets, unavailable
variables were simply excluded in ML performance analysis
for a balanced comparison.

ML Techniques
The ML techniques used in this system included supervised
learning models, such as classification and regression tree

(CART) and random forest [35,36]. Supervised learning was
applied to classify the patients in the training set and predict
patients with a specific chronic disease or syndrome in the
validation set before the prediction model was available on this
system [40,41]. In addition, unsupervised learning (hierarchical
clustering using the Ward method and Euclidean distance) was
embedded in a heat map, providing classified visualization
between new input records and the database. An interactive heat
map that could be rearranged or zoomed in and out was applied
to this system [42-47].

All outcomes were presented on the web platform after the ML
system evaluated the users’ EMRs. Although the ML system
was developed on a web-based interface, it could be embedded
in the Internet of Medical Things (IoMT) environment, for
example, as apps or real-time monitoring systems between
several medical centers and hospitals [48-50].

Questionnaire Selection
To measure the usability of websites, we invited potential users
of the ML system (physicians, medical staff, and potential users)
to fill out a system usability scale (SUS) evaluation
questionnaire. SUS was chosen as the usability test tool because
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previous studies found it to be reliable and quick to answer, and
the final score is provided with interpretation based on a
well-established reference standard [51,52]. In general, the
higher the SUS score, the better the usability of the website.
Details about the questionnaire design (the 10 questions), score
summary, and results of reliability and validity tests are given
in Multimedia Appendix 1.

Results

The web-based health care ML system provides online diagnosis
of three diseases (Figure 3), and it is available on the internet
[53]. The website provides an assessment of MetS and CKD;
the system for noncancer liver disease is still under beta testing.
Report pages are provided for online diagnosis of each disease.
Therefore, users from all over the world can choose the
evaluation provided depending on their requirements. Users
input the predicting variables (Table 1) into the website to

evaluate their health (Figure 4), and the evaluation results will
appear in <5 seconds when there is a single request. Missing
predicting variables are allowed, and the missing values will
be imputed based on the mean values from the database.
However, the users are warned that missing predicting variables
may result in poorer prediction accuracy. The details of stress
tests with different numbers of requests (100 to 800) can be
found in Multimedia Appendix 2. Briefly, a stress test with 800
requests reports a throughput of 4.7 requests per second. To
evaluate the usability of the system, we invited 30 volunteers
to complete the SUS evaluation questionnaire. The volunteers
included 6 physicians, 12 medical staff, and 12 potential users
(Multimedia Appendix 1). It was found that the average SUS
score is 74, which indicates a good usability rating [54]. In
addition, results were found to be reliable and valid by
Kaiser-Meyer-Olkin and Bartlett tests. The entire analysis
process follows a strict privacy policy, so that none of the
patients’ private information is ever recorded.

Figure 3. Home page of the machine learning health care system.
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Figure 4. Interface of the input page for disease assessment.

The clinical outcomes established by our database are reported
on the website when users have finished entering their medical
record data on the website (Figure 5). The CART model and
ensemble learning model (random forest) are shown in the
output interface. A scoring prediction model obtained using the
supervised learning model is also provided online. For
unsupervised learning, a color visualization of the clustering
heat map depicts a vivid medical pattern of the patient’s EMR
data, and a record of each user is also constructed using
hierarchical clustering with yellow highlights labeling in the

heat map (Figure 6). The user will then be classified as more
similar to either a healthy subject (green column on the lower
left) or an unhealthy subject (orange column on the upper left).
A blue bar depicts abnormal values, while a red bar depicts
normal values. In addition, on the web system, users can choose
to view it as landscape or portrait. The zoom-in and zoom-out
functions and the height of the cluster are also dynamic, with
users being able to change the settings online to inspect the
medical outcomes in detail.
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Figure 5. Outcome page for supervised learning models and the scoring system for disease diagnosis.
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Figure 6. Dynamic interactive heat map obtained using unsupervised clustering. Green: healthy patients; orange: CKD patients; blue: normal values;
red: abnormal values. The new patients (yellow bar in red rectangle) are compared and clustered into the system’s patient database.

Characteristics of participants in the training and validation data
set for MetS can be found in Table 2 and the characteristics of
participants of the training set and the validation sets for CKD
can be found in Table 3. In general, there are minimal
differences in patient characteristics between the training data
set and the validation data set for the Taiwanese population of

MetS and CKD. However, when comparing the characteristics
of the Taiwanese population with other populations (US, Italy,
and Japan) for CKD ML performance validation, it was found
that there are substantial differences in age and presence of
hypertension (Table 3).
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Table 2. Characteristics of participants in the training and validation data set for metabolic syndrome.

Validation data set (n=225)Training data set (n=904)Characteristics

Sex

108 (48.0)411 (45.5)Female, n (%)

117 (52.0)493 (54.5)Male, n (%)

43 (38-50)44 (37-50.25)Age, years, median (IQR)

22.9 (21.2-26)23.6 (21.3-25.9)Body mass index, kg/m2, median (IQR)

80.5 (74-87)81.75 (74.5-88)Waist circumference, cm, median (IQR)

4.6 (4.4-4.8)4.6 (4.4-4.8)Albumin, g/dL, median (IQR)

58 (48-69)58 (49-69)Alkaline phosphatase, IU/L, median (IQR)

20 (17-25)20 (17-24.25)Glutamic-oxaloacetic transaminase, IU/L, median (IQR)

19 (14-28)20 (14-31)Glutamate pyruvate transaminase, IU/L, median (IQR)

0.6 (0.4-0.8)0.6 (0.5-0.9)Total bilirubin, mg/dL, median (IQR)

17 (11.55-25)18 (12-27)γ-Glutamyl transpeptidase, U/L, median (IQR)

241 (216-282)247 (211-284)Controlled attenuation parameter (CAP) score, dB/m, median
(IQR)

4 (3.3-4.8)4.2 (3.4-4.9)Elastic modulus (E) score, kPa, median (IQR)

12 (10-14)12 (10-15)Blood urea nitrogen, mg/dL, median (IQR)

0.8 (0.6-0.9)0.8 (0.6-0.9)Creatinine, mg/dL, median (IQR)

91.28 (82.72-107.26)90.23 (80.49-104.77)Estimated glomerular filtration rate (eGFR) using the Modifica-
tion of Diet in Renal Disease (MDRD) equation, median (IQR)

5.4 (4.3-6.6)5.5 (4.5-6.6)Uric acid, mg/dL, median (IQR)

114 (105-126)114 (105-125)Systolic blood pressure, mm Hg, median (IQR)

72 (66-81)73 (67-80)Diastolic blood pressure, mm Hg, median (IQR)

185 (168-209)189 (165-209)Cholesterol, mg/dL, median (IQR)

86 (63-126)90 (65-135.2)Triglycerides, mg/dL, median (IQR)

54 (47-66)55(45-67)High-density lipoprotein, mg/dL, median (IQR)

123 (102-145)123 (102-145)Low-density lipoprotein, mg/dL, median (IQR)

5.4 (5.2-5.5)5.4 (5.2-5.6)Hemoglobin A1c, %, median (IQR)

90 (85-95)91 (86-96)Glucose AC, mg/dL, median (IQR)
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Table 3. Characteristics of participants in the training and validation data sets for chronic kidney disease.

Validation data set,
Japan (n=996)

Validation data set,
Italy (n=655)

Validation data set, United
States (n=4434)

Validation data set,
Taiwan (n=457)

Training data set
(n=1830)

Characteristics

696 (69.88)384 (58.63)2165 (48.83)209 (45.73)902 (49.29)Sex, male, n (%)

919 (92.27)523 (79.85)410 (9.25)38 (8.32)164 (8.96)Chronic kidney disease,
n (%)

908 (91.16)599 (91.45)1730 (39.02)140 (30.63)522 (28.52)Hypertension, n (%)

70 (61-77)67 (56-74.5)53 (36-65)45 (37-55)46 (38-55)Age, years, median
(IQR)

23.25 (21-25.8)28.4 (25.8-31.6)28.6 (24.8-33.5)23.4 (21.3-26.2)23.8 (21.4-26.4)Body mass index,

kg/m2, median (IQR)

——a99.5 (89-111.3)81 (75-89)82.5 (75.5-89.5)Waist circumference,
cm, median (IQR)

——19 (16-24)20 (17-25)21 (17-26)Glutamic-oxaloacetic
transaminase, IU/L,
median (IQR)

——18 (13-26)19 (13-28)20 (14-30)Glutamate pyruvate
transaminase, IU/L,
median (IQR)

——21 (15-33)18 (12-33)19 (13-30)γ-Glutamyl transpepti-
dase, U/L, median
(IQR)

——0.4 (0.3-0.6)0.6 (0.4-0.8)0.6 (0.4-0.8)Total bilirubin, mg/dL,
median (IQR)

——75 (62-91)63 (50-78)62 (51-76)Alkaline phosphatase,
IU/L, median (IQR)

—28 (21.2-37.3)14 (11-18)13 (10-15)13 (11-16)Blood urea nitrogen,
mg/dL, median (IQR)

1.8 (1.2-2.75)1.49 (1.2-1.9)0.85 (0.71-1.01)0.7 (0.6-0.9)0.8 (0.6-1.0)Creatinine, mg/dL, me-
dian (IQR)

—6.3 (5.2-7.6)5.3 (4.4-6.4)5.4 (4.5-6.5)5.5 (4.5-6.7)Uric acid, mg/dL, medi-
an (IQR)

4 (3.5-4.3)4 (3.7-4.3)4.1 (3.9-4.3)4.6 (4.4-4.8)4.6 (4.4-4.8)Albumin, g/dL, median
(IQR)

—189 (162.5-218)185 (160-214)185 (160-209)186 (164-210)Cholesterol, mg/dL,
median (IQR)

——51 (42-61)53 (43-64)52 (44-64)High-density lipopro-
tein, mg/dL, median
(IQR)

———120 (100-142)121 (100-145)Low-density lipopro-
tein, mg/dL, median
(IQR)

——5.6 (5.3-6)5.4 (5.2-5.7)5.4 (5.2-5.6)Hemoglobin A1c, %,
median (IQR)

aNot available.

Table 4 shows the validation performances of supervised
learning models in predicting MetS and CKD. In general, it was
found that the random forest ML model has higher accuracy
than the CART model. Using the random forest ML model,
MetS can be predicted with an accuracy of 0.909, and CKD can
be predicted up to an accuracy of 0.947. Due to the inconsistent
definition of MetS globally, the ML performance of the MetS
database has only been validated using the Taiwan data set.
However, the ML performances of the CKD database have been

validated using data sets from Taiwan, Italy, the United States,
and Japan. In general, the CKD database shows good external
applicability, and has high AUC for all 4 validation data sets
(Taiwan: AUC=0.982; USA: AUC=0.929; Italy: AUC=0.977;
Japan: AUC=0.923). However, the validation accuracy and F1
value of CKD prediction differs more substantially, as the
unavailable data were excluded from the analysis. When
compared to the Taiwanese CKD data set, the respective
unavailable data are approximately 6% for the US data set, 50%
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for the Italy data set, and 67% for the Japan data set. Therefore,
it is observed that the Japanese validation data set has the lowest

accuracy (0.743) in predicting CKD, as it also has the highest
proportion of unavailable data.

Table 4. The performance of supervised learning models on predicting metabolic syndrome and chronic kidney disease.

F1 scoreArea under the curve (AUC)AccuracyModel and disease

Classification and regression tree (CART)

0.4480.8870.874Metabolic syndrome (Taiwan)

0.9650.9280.945Chronic kidney disease (Taiwan)

Random forest

0.6100.9040.909Metabolic syndrome (Taiwan)

0.9890.9820.947Chronic kidney disease (Taiwan)

0.6790.9290.951Chronic kidney disease (United States)

0.9200.9770.881Chronic kidney disease (Italy)

0.8380.9230.743Chronic kidney disease (Japan)

Discussion

Overview
This ML medical system for three common diseases in family
medicine (MetS, CKD, and liver diseases) was constructed from
EMR subjects who underwent self-paid health examination.
Several ML prediction models are applied to the databases, and
the outcomes are summarized and presented visually on the
website for users and medical staff. The accuracy of predicting
MetS reached 90.9%, and AUC was 0.904 in this system. For
chronic kidney disease, the prediction accuracy reached 94.7%,
and the AUC was 0.982. In general, users who were invited to
test this system rated it with good usability and could easily
assess their health online through this web-based ML monitoring
system.

CART
Decision trees are an important type of ML algorithm for
predictive modeling. They are commonly used in data mining
with the objective of creating a model that predicts the
dependent variable (the target) based on numerous independent
variables [34,37].

A decision tree is a nonparametric ML modeling technique used
for regression and classification problems. In classification
problems, the target variable is categorical, and the tree is used
to identify which group or class a target variable would likely
fall into. In regression problems, the target variable is
continuous, and the tree is used to predict its value. To find
solutions, a decision tree makes a sequential, hierarchical
decision about the outcome’s variable according to the predictor
[55-57].

Hence, CART can provide a visual tree-based diagram for
medical practitioners to disseminate health care information to
patients. It also helps users to understand the significance of
different risk factors for specific diseases. For example, the
cut-off controlled attenuation parameter (CAP) score was used
to separate patients with MetS and those with other health
observations. The CAP score was brought to the attention of
users, thereby increasing their awareness of self-health [34].

Random Forest
Random forest, also called random decision forests, is a popular
ensemble learning method in ML. Ensemble methods use
multiple learning algorithms to improve ML results by
combining several decision tree models. This approach allows
better predictive performance compared with a single model.
Random forest is a parallel ensemble method in which the base
learners are generated in parallel. The basic motivation of
parallel methods is to exploit independence between the base
learners because the error can be reduced dramatically by
averaging [58,59]. As random forest provides a bagging
technique for feature estimates, it also offers efficient estimates
of the test error without incurring the cost of repeated model
training associated with cross-validation. Moreover, random
forest ranks risk factors in prediction models, which clinicians
can use as a reference for diagnosis, and remote users can use
to review their risk assessment of related diseases [34,60-62].
For instance, clinicians can refer to significant factors of certain
diseases to determine whether those factors exceed the
thresholds or not, allowing patients to be more vigilant about
their risk of developing such diseases. In addition, sequential
ensemble methods such as AdaBoost and XGBoost will be
implemented and uploaded to our system in the future.

Clustering
Hierarchical clustering is a widely used unsupervised learning
technique that groups data with similar characteristics. Both
agglomerative and divisive approaches use dendrograms for the
results. A heat map is a color graphical representation of data,
which uses a matrix with color gradients to present the similarity
of data.

Many studies on genetic bioinformatics and bacterial ecology
have used heat maps for the analysis of large and complicated
data sets, and some medical studies have used heat maps with
clustering to present the relationship between various biomarkers
according to their characteristics [34,63-65]. Furthermore, our
system provides an interactive clustering heat map for health
care. From the perspective of big data, users can evaluate their
health status by using ML models and EMR databases. In
addition to online health evaluation, in the future, this system
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could be implemented into different IoMT to assist medical
practitioners in achieving real-time health evaluations and
monitoring remote patients or patients in specific wards. For
the heat map, the EMR data of users were grouped into clusters
of patients with diseases in the database; they would then be
classified as clinically high-risk objects requiring close attention
in the clinical setting [34]. Therefore, whether it is applied in
preventive medicine for health management, in a monitoring
system for critical care, or in the telemedicine environment, our
system can provide real-time monitoring and help predict patient
conditions.

Limitations and Future Work
To the best of our knowledge, this is the first web-based machine
learning system based on self-paid health examination subjects
that can provide an online self-health evaluation for several
common diseases (MetS, CKD, and liver diseases). The version
1.0 web-based system still has several limitations that may be
improved in the next update. First, the 1.0 system is not yet
ready for embedding into a hospital for real-time assessment.
We are currently working on an improved system to accept
unstructured data input and multimodal data, which are
especially essential for the prediction of eye diseases such as
macular degeneration. Second, the 1.0 system did not have a

user login or account security function. Retrievable prediction
and security will be improved as the system is matured for
hospital embedment. Third, the 1.0 system does not have whole
dynamic analyses such as an interactive decision tree; whole
dynamic analyses will be incorporated in subsequent versions
to improve communication between the medical staff and
patients.

In the future, more clustering algorithms will be implemented
in subsequent versions to make the prediction results more
robust and reliable. Although the 1.0 system can currently only
evaluate three chronic diseases (MetS, CKD, and liver diseases)
frequently encountered in family medicine, more chronic disease
prediction models, such as those for coronary artery disease,
will be added in the near future.

Conclusion
We constructed an ML health monitoring system to offer an
online health assessment service to medical units, telemedicine
patients, and all health-conscious users worldwide. Our aim is
that this system will be implemented in medical centers as a
real-time patient monitoring system and provide regular health
evaluations for telemedicine patients. Online users can now
access our platform and use ML technology to estimate their
health status, increasing self-health awareness.
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