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Abstract

Background: Education and learning are the most important goals of all universities. For this purpose, lecturers use various
tools to grab the attention of students and improve their learning ability. Virtual reality refers to the subjective sensory experience
of being immersed in a computer-mediated world, and has recently been implemented in learning environments.

Objective: The aim of this study was to analyze the effect of a virtual reality condition on students’ learning ability and
physiological state.

Methods: Students were shown 6 sets of videos (3 videos in a two-dimensional condition and 3 videos in a three-dimensional
condition), and their learning ability was analyzed based on a subsequent questionnaire. In addition, we analyzed the reaction of
the brain and facial muscles of the students during both the two-dimensional and three-dimensional viewing conditions and used
fractal theory to investigate their attention to the videos.

Results: The learning ability of students was increased in the three-dimensional condition compared to that in the two-dimensional
condition. In addition, analysis of physiological signals showed that students paid more attention to the three-dimensional videos.

Conclusions: A virtual reality condition has a greater effect on enhancing the learning ability of students. The analytical approach
of this study can be further extended to evaluate other physiological signals of subjects in a virtual reality condition.

(J Med Internet Res 2020;22(6):e17945) doi: 10.2196/17945
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Introduction

Virtual reality refers to the subjective sensory experience of
being immersed in a computer-mediated world. Accumulating
evidence [1,2] points to the exciting opportunity and potential
of integrating virtual reality technology in education
environments, which can add elements of reality to improve
understanding of complex subjects such as the life sciences (eg,
biology and anatomy) compared to traditional classes in which
students must imagine the structures for comprehension. In
addition, students have been shown to pay more attention to the
lecturer when making direct eye contact [3]. However, a lecturer
is only able to look at one or two students at a time during a

lecture. Therefore, presenting a virtual image of a lecturer to
students might increase their attention and consequently improve
their learning ability, which can be applied to an electronic
learning environment.

Along with the growing empirical evidence that virtual reality
is a valuable learning tool, further investigations are needed to
study how the use of virtual reality can improve the learning
ability of students. In addition, few studies have focused on
changes in physiological signals to understand the effect of
virtual reality on the human body. Previous studies in this field
have compared the brain reaction of anxious participants at rest
and under a virtual reality condition [4], compared
electroencephalogram (EEG) signals in virtual reality and the
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traditional display condition [5], analyzed brain activity in
response to increasing levels of task complexity in virtual reality
[6], employed a deep-learning approach to improve the rate of
excitement to well above the 90% accuracy level [7], and
analyzed reactions of the heart and brain in different virtual
reality environments [8].

The aim of the present study was to investigate the attention
and learning ability of students using virtual reality technology.
We also investigated the variability of students’ physiological
state (facial reaction) under the virtual reality condition. To
study the attention and learning ability of students, we recorded
their brain signals (ie, EEG signals) and to study facial reactions,
we recorded their electromyography (EMG) signals. For
comparison, we also recorded the brain signals and facial
reactions of the students in a traditional classroom learning
condition. EMG was used to capture the engagement of facial
muscles during visual perception, which we expected to be more
strongly affected under the virtual reality condition.

Since both EEG and EMG signals have complex patterns, we
adopted complexity theory for our analysis. In other words, the
concept of complexity was employed to define the structure of
EEG and EMG signals. Complexity theory can help to
characterize the behavior of a system with many parts that
interact with each other in highly variable manners [9].
Specifically, we analyzed the recorded EEG and EMG signals
using fractal theory, which can be used to quantify the
complexity of a system (EEG and EMG signals in this case).
Fractals are self-similar or self-affine objects that have complex
structures [10]. A self-similar fractal has the same scaling
exponent at every scale, whereas a self-affine fractal has
different values of the scaling exponent at different scales. EEG
and EMG signals are self-affine fractals that have a nonlinear
structure. An object with a greater fractal dimension (as a
measure of complexity) has a greater level of complexity [11].
Several studies have analyzed different types of physiological
signals using fractal theory to date, including analyses of
magnetoencephalography [12], galvanic skin response [13],
heart rate [14], respiration [15], speech-evoked auditory
brainstem response [16], eye movement [17], and human DNA
[18]. Similarly, many studies have applied fractal analysis to
investigate the nonlinear structure of EEG signals under different
conditions, including the influence of auditory [19,20], olfactory
[21], and visual [22,23] stimuli; brain diseases [24]; body
movements [25,26]; and aging [27].

Some previous studies have also applied fractal theory to analyze
EMG signals, including a decoded finger [28,29], hand [29-31],
and functional movements and force patterns [29], along with
analysis of the effect of complexity of walking on a path with
respect to the leg muscle reaction [32]. However, to our
knowledge, only one study has employed fractal theory to
analyze the facial muscle reaction to date [33].

To analyze and compare the physiological conditions of subjects
in virtual reality versus traditional class conditions, we used
fractal analysis to relate the complexity of EEG and EMG
signals to the nature of the viewed videos.

Methods

Study Design
We aimed to analyze students’ physiological state and learning
ability under the three-dimensional (3D) virtual reality condition
in comparison to those recorded under the traditional
two-dimensional (2D) condition. For analysis of the
physiological state, we chose EEG and EMG signals as
indicators of the brain and muscle response, respectively. EMG
signals were selected for the facial muscle reaction since the
subjects were stimulated using visual stimuli. For this purpose,
we used fractal theory to analyze the complexity of facial EMG
and EEG signals. The fractal dimension, as the main quantitative
measure of fractal theory, indicates the complexity of the process
in which greater values of a fractal dimension reflect greater
complexity of the object.

Various methods have been developed to calculate the fractal
dimension, which are mainly based on the entropy concept. In
this study, we used the box-counting method to calculate the
fractal dimension [34]. In the box-counting algorithm, the object
of interest is covered with boxes of the same size (ε). The
number of boxes (N) required to cover the object is then counted.
This process is repeated several times, while the box size keeps
changing in each step. Finally, the slope of the regression line
fitted to a log-log plot of the number of boxes versus the scale
is calculated as an estimate of the fractal dimension for the
object under consideration [35]:

Equation (2) defines the so-called generalized fractal dimension
of order c [35]:

where is the Rényi entropy of order c, and the
probability of occurrence (rj) is defined as:

In Equation (3), the total time of the signal value occurrence
within the jth value interval is denoted by tj, whereas T
represents the total duration of the recorded signal [36].

In this experiment, we showed the students 6 sets of videos (3
videos in the 2D condition and the same 3 videos in the 3D
condition), and then investigated the reaction of the brain and
facial muscle under both the 2D and 3D conditions using fractal
theory to assess the students’ attention to the videos.

In addition, to investigate the learning ability, we designed three
questions based on the content of each video (9 questions in
total for the 3 videos) that were asked to the students after
watching each video in each condition. This questionnaire
allowed for assessing the extent to which the students retained
and learned the content of the videos.
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Data Collection and Analysis
All procedures from recruiting subjects to conducting the
experiment were approved by the Monash University Human
Research Ethics Committee (MUHREC; approval number
20965). The study was carried out in accordance with the
approved guidelines.

We conducted the experiment with 9 healthy students from
Monash University Malaysia. We explained the experiment to
the participants and then asked them several questions about
their health conditions. Since mental disorders, some
medications, as well as drinking beverages that contain alcohol
or caffeine affect brain activity and cause inconsistent results,
we excluded potential participants within these categories. In
addition, participants were excluded if they had consumed
beverages containing alcohol or caffeine within 24 hours before
the experiments. The students who were deemed to be suitable
for experiments signed the consent forms and were included in
the study.

We conducted the experiment in a quiet room to isolate the
participants from other external stimuli that could potentially
affect the recorded EEG and EMG signals. The participants
were asked to sit comfortably on a chair during the experiment,
and were instructed to focus on watching the videos without
engaging in any other task.

As mentioned above, we chose 6 sets of videos (3 videos in the
2D condition and the same 3 videos in the 3D condition) for
our experiment. The 2D videos were selected from YouTube,
which were then converted into 3D videos for our experiment.
The first and second videos (same content) were about biology
(Multimedia Appendix 1 and Multimedia Appendix 2), the third
and fourth videos (Multimedia Appendix 3 and Multimedia
Appendix 4) were about architecture, and the fifth and sixth
videos (Multimedia Appendix 5 and Multimedia Appendix 6)
were about space. Some screenshots from these videos are
shown in Figure 1.

Figure 1. Representative screenshots of scenes from three different videos.

The videos were displayed to the participants via a mobile
phone. The participants watched the 2D videos with the naked
eye, whereas the 3D videos were viewed through VeeR MINI

VR Glasses (VeeR, Atlanta, GA, USA) (see Figure 2) in front
of the mobile phone. We noninvasively recorded EEG and facial
EMG signals from the participants using an EMOTIV EPOC+
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14 Channel Mobile EEG headset (Emotiv, San Francisco, CA,
USA) and Shimmer EMG device (Shimmer, Ireland) with a
sampling frequency of 128 Hz and 256 Hz, respectively. As

shown in Figure 2, the EEG device was placed on the
participant’s head and five electrodes of the EMG device were
connected to the facial muscles.

Figure 2. Data collection from a participant.

First, we recorded EEG and EMG signals from the participants
for 2 minutes while they watched the first 2D video. When the
video was complete, we then asked the participants three
questions related to the content. After a 1-minute rest period,
the participants watched the first video again in the 3D condition
for 2 minutes. The content of this video was identical to that of
the 2D video, except that it was presented in 3D mode. Three
questions were then asked about the content of the 3D video,
followed by another period of rest for 1 minute. We continued
this procedure to collect EEG and EMG signals from the
participants (along with the responses to content-related
questions) with the third, fourth, fifth, and sixth videos (each
video lasted for 2 minutes), providing the participants with 1
minute of rest between watching the videos. The data collection
was repeated for each participant in the second session to
validate the repeatability of results.

Initially, we preprocessed the raw data to remove noise. For
this purpose, we wrote a set of codes in MATLAB (MathWorks,
Natick, MA, USA) based on the Butterworth filter. The
frequency bands of 1-40 Hz and 25-125 Hz were chosen for
filtering the EEG and EMG signals, respectively. Of note, two
electrodes of the EEG device had some disconnection problems

during data collection; therefore, we processed the collected
data only from the other 12 electrodes.

After initial filtering, we proceeded with the analysis by
computing the fractal dimension of the recorded EEG and EMG
signals. The computation of the fractal dimension was based
on the box-counting algorithm using boxes with sizes (1/2, 1/4,
1/8, etc) as the scaling factor. Although we recorded 120 seconds
of data during each period of watching the 2D and 3D videos,
we analyzed only 118.2 seconds of each dataset. This selection
was due to the fact that the devices did not always have a
consistent sampling frequency, which caused the data recording
to be less than 2 minutes long, leading to a difference of a few
seconds in the duration of collected data among some
participants.

After confirming the normal distribution of the data, statistical
analysis of the computed fractal dimension for EEG and EMG
signals was performed to assess the effect of stimulation on
variations of the fractal dimension of EEG and EMG signals
using one-way repeated-measures analysis of variance
(ANOVA). We also conducted the Student t test to compare
the difference in mean values of EEG or EMG signals between
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the 2D and 3D condition. P<.05 was considered to reflect a
statistically significant difference in our analysis.

Results

The variations of fractal dimensions of EEG signals for the first
to the sixth visual stimuli are shown in Table 1. As mentioned

above, the first, third, and fifth stimuli refer to the 2D condition,
whereas the second, fourth, and sixth stimuli refer to the 3D
condition.

Table 1. Fractal dimension of EEGa signals with the first to sixth stimuli.

Fractal dimension of EEG signalStimulus

1.7027First

1.7266Second

1.7196Third

1.7222Fourth

1.6928Fifth

1.7272Sixth

aEEG: electroencephalogram.

Based on the result of ANOVA (F=7.6334, P<.001), the effect
of stimulation (2D and 3D) on variations of fractal dimensions
of the EEG signal was significant. As shown in Table 1, for all
stimuli, the EEG signal recorded from the participants in the
3D condition had a greater fractal dimension compared to that
recorded in the 2D condition. Since the fractal dimension reflects
the complexity of the signal, this result indicated that the EEG
signal is more complex in response to 3D visual stimuli
compared to 2D visual stimuli. In other words, the human brain
becomes more engaged with a stimulus when it is presented in
the 3D condition compared to the 2D condition. Differences
between the mean values of the EEG signal from the first and

second stimuli (P=.001) and from the fifth and sixth stimuli
(P<.001) were greater than the difference between the third and
fourth stimuli (P=.72). This suggested that the participants’
brains were more engaged with the second and sixth stimuli
compared to the third stimuli. This result is reasonable given
that the second and sixth stimuli mainly contained animated
scenes, whereas the fourth stimulus included more photos with
less animated scenes. Therefore, the difference between the
fractal dimension of the EEG signals in the third and fourth
stimuli was lower than that observed under the other conditions.

The variations of the fractal dimension of the EMG signals for
the first to the sixth visual stimuli are summarized in Table 2.

Table 2. Fractal dimension of EMGa signals with the first to sixth stimuli.

Fractal dimension of EMG signalStimulus

1.2361First

1.2594Second

1.2554Third

1.2580Fourth

1.2488Fifth

1.2675Sixth

aEMG: electromyography.

Based on the result of ANOVA (F=0.2468, P=.94), the effect
of stimulation (2D and 3D) on variations of the fractal dimension
of the EMG signals was not significant. Upon receiving a visual
stimulus (2D or 3D), the brain processes the stimulus and then
sends the impulses to the facial muscles. Therefore, the stimulus
should have a greater effect on the brain than on the facial
muscles, which explains why there was a significant effect of
the stimuli on variations of EEG signals but not on the facial
muscles.

As shown in Table 2, for all stimuli, the EMG signal had a
greater value of the fractal dimension in response to 3D videos
compared to 2D videos, indicating that the EMG signal is more

complex in response to 3D videos compared to 2D videos. In
other words, the facial muscles are more engaged with stimuli
where they are presented in 3D rather than in 2D. In addition,
the difference between the mean values of the EMG signal in
the first and second stimuli (P=.43) and the fifth and sixth
stimuli (P=.56) was greater than that between the third and
fourth stimuli (P=.93). This indicates that the participants’ facial
muscles were more engaged with the second and sixth stimuli
compared to the third stimuli. As mentioned above, this
difference can be explained by the content of the videos, in
which the second and sixth stimuli contained more animated
scenes compared to the fourth video.
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Despite these differences among videos, there was no significant
difference in the fractal dimension of the EMG signal between
each pair of stimuli. This suggests that although presenting the
videos in 3D caused some changes in the muscle reaction, these
changes were not substantial. Comparison of the results for
EMG and EEG signals indicates that changing the visual
stimulus from 2D to 3D could cause significant variations in
the complexity of the EEG signal, but not in the EMG signal.
Therefore, changes in the state of the brain are greater when
changing a visual stimulus from 2D to 3D.

Moreover, evaluating the relationship between variations of
EEG and EMG signals can provide further insight. The brain
controls all parts of the human body, including the reactions of
the facial muscle. When exposed to 2D or 3D videos as visual
stimuli, the brain sends impulses to the facial muscles.
Therefore, when the brain is more engaged with the stimuli, the
muscle reaction will also be greater, which is reflected in the
greater variations in the fractal dimension of the EMG signal.

The rate of correct responses to the questions posed after
watching the 3D video was 92.60%, which was higher than that
obtained after the 2D videos at 80.87%. This difference
suggested that the 3D videos resulted in greater attention paid
to the details of videos and therefore increased the learning
ability of the students.

Discussion

In this study, we compared the effect of virtual reality on
students’ learning ability and physiological state with those
recorded in a normal 2D condition based on watching 3 sets of
videos each presented in 2D and 3D. We simultaneously
recorded EEG and facial EMG signals of the participants during
stimulation. Overall, the EEG and EMG signals had greater
fractal dimensions in the 3D video condition, indicating that
both the brain and facial muscles have a greater reaction to 3D
videos compared to 2D videos. In addition, videos with more
animated scenes resulted in a significantly greater brain reaction
compared with that resulting from watching a video with less

animated scenes, as reflected by the lack of a significant
difference in the fractal dimension of EEG signals between 2D
and 3D conditions. For the EMG analysis, although the 3D
condition caused greater reaction in the facial muscle, there was
no significant difference from the reaction recorded under the
2D condition.

We also examined the learning ability of the students after
watching each video by asking them several content-related
questions, demonstrating improved learning ability after
watching 3D videos than 2D videos (92.60% vs 80.87% correct
answers). These results clearly showed that students pay more
attention to videos when they are presented in 3D. The present
study offers a step forward compared to previous studies that
only analyzed the learning ability or brain reaction [4-7] in a
virtual reality condition without considering the reaction of
facial muscles and investigating how that reaction correlates
with brain activity.

The method of analysis employed in this study can be extended
to investigate other physiological signals of students in a virtual
reality condition. For instance, we can analyze how the heart
rate changes in a 3D condition compared to a 2D condition. We
can also expand this work by applying other types of stimuli,
including olfactory stimuli, while students are watching videos
in the virtual reality condition and investigate the effect of these
additional stimuli on their learning ability. Developing a model
between input (videos) and outputs (human physiological
signals) is another important aspect of future work in this regard.
For this purpose, we can benefit from different tools such as
machine learning [37-39] and fractional-based mathematical
equations [40]. Such analysis could allow for predicting human
conditions (physiological signals) before exposure to different
stimuli, providing guidance on the types of videos and
characteristics of videos that are most likely to arouse the
attention of students and facilitate learning. These efforts
therefore have great importance in advancing research on
students’ learning ability and can provide strong
recommendations to educational institutions.
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Multimedia Appendix 3
2D Architecture.
[MP4 File (MP4 Video), 13047 KB-Multimedia Appendix 3]

Multimedia Appendix 4
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[MP4 File (MP4 Video), 35200 KB-Multimedia Appendix 4]

Multimedia Appendix 5
2D Space.
[MP4 File (MP4 Video), 29040 KB-Multimedia Appendix 5]

Multimedia Appendix 6
3D Space.
[MP4 File (MP4 Video), 36793 KB-Multimedia Appendix 6]
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Abbreviations
2D: two-dimensional
3D: three-dimensional
ANOVA: analysis of variance
EEG: electroencephalogram
EMG: electromyography
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