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Abstract

Background: Using big data and the theory of cumulative deficits to develop the multimorbidity frailty index (mFI) has become
a widely accepted approach in public health and health care services. However, constructing the mFI using the most critical
determinants and stratifying different risk groups with dose-response relationships remain major challenges in clinical practice.

Objective: This study aimed to develop the mFI by using machine learning methods that select variables based on the optimal
fitness of the model. In addition, we aimed to further establish 4 entities of risk using a machine learning approach that would
achieve the best distinction between groups and demonstrate the dose-response relationship.

Methods: In this study, we used Taiwan’s National Health Insurance Research Database to develop a machine learning
multimorbidity frailty index (ML-mFI) using the theory of cumulative diseases/deficits of an individual older person. Compared
to the conventional mFI, in which the selection of diseases/deficits is based on expert opinion, we adopted the random forest
method to select the most influential diseases/deficits that predict adverse outcomes for older people. To ensure that the survival
curves showed a dose-response relationship with overlap during the follow-up, we developed the distance index and coverage
index, which can be used at any time point to classify the ML-mFI of all subjects into the categories of fit, mild frailty, moderate
frailty, and severe frailty. Survival analysis was conducted to evaluate the ability of the ML-mFI to predict adverse outcomes,
such as unplanned hospitalizations, intensive care unit (ICU) admissions, and mortality.

Results: The final ML-mFI model contained 38 diseases/deficits. Compared with conventional mFI, both indices had similar
distribution patterns by age and sex; however, among people aged 65 to 69 years, the mean mFI and ML-mFI were 0.037 (SD
0.048) and 0.0070 (SD 0.0254), respectively. The difference may result from discrepancies in the diseases/deficits selected in
the mFI and the ML-mFI. A total of 86,133 subjects aged 65 to 100 years were included in this study and were categorized into
4 groups according to the ML-mFI. Both the Kaplan-Meier survival curves and Cox models showed that the ML-mFI significantly
predicted all outcomes of interest, including all-cause mortality, unplanned hospitalizations, and all-cause ICU admissions at 1,
5, and 8 years of follow-up (P<.01). In particular, a dose-response relationship was revealed between the 4 ML-mFI groups and
adverse outcomes.
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Conclusions: The ML-mFI consists of 38 diseases/deficits that can successfully stratify risk groups associated with all-cause
mortality, unplanned hospitalizations, and all-cause ICU admissions in older people, which indicates that precise, patient-centered
medical care can be a reality in an aging society.

(J Med Internet Res 2020;22(6):e16213) doi: 10.2196/16213
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Introduction

Population aging is a global phenomenon that poses various
challenges to societies [1]. The health characteristics of older
people and their health care service utilization differ greatly
from those of younger adults [2], and frailty plays a pivotal role
in the health of older people [3-5]. Frailty has been widely
accepted as a geriatric syndrome that substantially increases the
complexity of diseases and the burden of care [3-5]. In addition,
frailty is recognized as an intermediate state between healthy
and unhealthy states, and the potential reversibility of its nature
highlights the importance of considering frailty when aiming
to maintain the health of older people [6]. Moreover, frailty
involves the coexistence of multiple comorbid conditions, such
as polypharmacy, depression, cognitive impairment, falls, and
malnutrition [7]. Therefore, the early identification of frailty
and appropriate intervention remain the core of health care
services for older people.

Despite the clinical significance of frailty, conceptual and
operational definitions of frailty are inconsistent across studies
[8]. Currently, the two most widely accepted approaches include
the phenotypic approach for physical frailty and the frailty index
based on the theory of cumulative deficits [9]. Although the
definitions of frailty provided by the two approaches overlapped
to some extent, the major discrepancy is in the prefrail group,
such that physically prefrail subjects demonstrated a wide range
on the frailty index. Nevertheless, both definitions remain the
most widely accepted [10]. The theory of cumulative deficits
proposed that aging may be characterized by the presence of
cumulative deficits in various domains of health (eg,
multimorbidity, functional assessment, and psychosocial
perspectives) [9]. With a sufficient number of variables, the
individual component of the frailty index was considered the
same weight to constitute the frailty index. Researchers applied
the theory of cumulative deficits to various data sets and
validated the ability of the frailty index (FI) to predict adverse
clinical outcomes [4,9]. Internationally, documented health care
services data sets have been widely used to develop the FI for
the prediction of health outcomes, and studies from different
countries have all shown optimal results [5,11,12]. In the United
Kingdom, researchers developed the electronic FI (eFI) using
electronic medical records, which significantly predicted the
mortality of older people [13,14]. Using similar principles, we
developed the multimorbidity FI (mFI) using Taiwan’s National
Health Insurance data set and significantly predicted mortality,
hospitalizations, and admissions to critical care units [4].
However, it is always challenging to use data sets with large
study samples and many variables to select appropriate variables
to construct an FI and to optimally categorize the FI into risk

classes. Both eFI and mFI adopted expert recommendations in
the selection of variables, and the eFI and mFI were then
categorized into quartiles for group comparisons, which is a
widely accepted approach. Nonetheless, selecting variables
based on expert recommendations may result in a failure to
recognize previously unidentified associations. In addition, the
quartile approach for risk group categorization may successfully
be used to construct the prediction model, but the intergroup
comparisons in survival analysis may overlap and fail to
establish a clear distinction.

Therefore, this study aimed to develop the mFI by using machine
learning methods that select variables based on the best fitness
of the model. Furthermore, we aim to further establish 4 entities
of risk using a machine learning approach and ensure the
dose-response relationship and the best distinction between
groups.

Methods

Study Design and Participants
This is a retrospective cohort study using data from Taiwan's
National Health Insurance Research Database (NHIRD). Details
about the NHIRD have been published [15]. Briefly, the NHIRD
is a nationwide database composed of outpatient and inpatient
claims, and it covers more than 99% of Taiwan's population.
The data are checked for quality and maintained by the Data
Science Centre of the Ministry of Health and Welfare of Taiwan.
We used a subset of the NHIRD, which contains claims data
for one million randomly selected beneficiaries from the
Registry of Beneficiaries of the NHIRD in 2005. The study
cohort consisted of 86,133 older adults aged 65 to 100 years
who had full National Health Insurance (NHI) coverage from
January 1, 2005, to December 31, 2005. Claims data from 2005
to 2013 for the one million beneficiaries was extracted to
compose a 9-year (2005-2013) panel of claims for analysis. The
study protocol was approved by the Research Ethics Committee
of the National Taiwan University Hospital
(NTUH-REC-201403069W).

Construction of the Machine Learning–Based
Multimorbidity Frailty Index
The mFI was constructed following standard procedures [16],
and this method has been validated in the Taiwanese population
[4,5]. Disease diagnoses (International Classification of
Diseases, Ninth Revision, Clinical Modification [ICD-9-CM])
from outpatient and inpatient claims of the NHIRD between
January 1 and December 31, 2005, were used to identify
accumulated deficits to construct mFI. We adopted an algorithm
widely used in studies using NHIRD as the data source to
validate the diagnostic codes of the specified deficits within
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NHIRD; that is, only those who had at least 3 outpatient claim
records or 1 inpatient claim record for that specified diagnosis
code were considered to have the specified deficit. For example,
an older adult must have at least 3 outpatient claim records or
1 inpatient claim record of diabetes mellitus [ICD-9-CM: 250]
to be defined as having a deficit based on our definition.

A random forest method, with significant improvements in
classification accuracy that resulted from growing an ensemble

of trees and letting them vote for the most popular class, was
adopted [17]. The variable importance of the random forest uses
mean decrease accuracy to determine the specific conditions of
machine learning–based multimorbidity frailty index (ML-mFI).
The adequate constructive number of ML-mFI was 38
conditions, when the model accuracy reached the highest level,
0.602 (Figure 1 and Multimedia Appendix 1). The ML-mFI
was calculated as the number of conditions a person encountered
in a year out of the 38 selected ones.

Figure 1. Numbers of diseases versus random forest model accuracy to determine an adequate number of frailty indexes.

Determination of Frailty Status by ML-mFI
All subjects were further categorized into 4 entities (fit, mild
frailty, moderate frailty, and severe frailty) based on their risk
status; this categorization was used by a previous study [4]. The
fundamental rules for risk stratification included the following:
(1) the individual risk groups were significantly different from
each other, and (2) the health risk of these groups showed a
dose-response relationship (ie, those in the severe frailty group
had a higher risk than those in the moderate frailty group, who
had a higher risk than those in the mild frailty group, and so on,
at any follow-up time point after the first year). To achieve this
purpose, we developed two indices, the distance index and the
coverage index, which ensured the distinction and dose-response
relationship of all survival curves.

The distance index measured the distance between each survival
curve and the stability of those distances within groups. At any

time point, the distance index was defined as .
Therefore, the distances within groups are wider and more stable
when the distance index is larger (Multimedia Appendix 2).
Conversely, the coverage index aimed to evaluate the length of
the confidence interval for each survival curve. The total length
of the confidence intervals indicated the overall estimated error

in the grouping method. In Multimedia Appendix 3, the coverage

index was defined as  at any individual time point, where
L_total measured the difference in the estimated survival
probability between the fit group and the severe frailty group,
and L_error measured the total estimated errors within the 4
groups. When the coverage index is smaller, the estimated error
within groups is smaller. With the application of both the
distance index and the coverage index, the levels of frailty were
successfully categorized into 4 groups by values of ML-mFI:
fit was indicated by 0≤ML-mFI<0.026; mild frailty was
0.026≤ML-mFI<0.105; moderate frailty was
0.105≤ML-mFI<0.157; and severe frailty was 0.157≤ML-mFI.
In the survival analysis, the grouping strategy successfully
categorized all subjects into 4 groups with significant distinction
during the follow-up period. In other words, there were no
overlaps between the survival curves and the dose-response
relationship between groups was clearly shown.

Outcomes of Interest
The outcomes of interest in this study include all-cause
mortality, unplanned hospitalizations, and intensive care unit
(ICU) admissions. The date of mortality was identified as the
date of disenrollment from the NHIRD, which has been
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validated in a previous study [4]. Unplanned hospitalizations
were any unexpected hospitalizations after an emergency
department visit. ICU admissions were any hospital admissions
with the use of ICU services. All study subjects were
continuously followed from January 1, 2006, to the occurrence
of each outcome or the end of 2013, whichever came first. For
the outcomes of unplanned hospitalizations and ICU admissions,
subjects were censored at death if it occurred first. Preplanned
analyses were conducted to evaluate the effectiveness of
ML-mFI in predicting outcomes at 1, 5, and 8 years.

Statistical Analysis
Numerical variables were expressed as the mean (SD), and
categorical variables were expressed as a number or percentage.
A random forest method not only determined the number of
disease items comprising ML-mFI but also identified potential
conditions of ML-mFI with prediction accuracy and variable
importance. The distance index and coverage index with
min-max and max-min criteria were used to determine cut points
and categorize the frailty group by ML-mFI automatically. The
Kaplan-Meier survival curve with the log-rank test was used to
examine the association between categories of ML-mFI (fit,
mild frailty, moderate frailty, and severe frailty) and 8-year
mortality and hospitalizations. Cox proportional hazard models
were used to estimate the hazard ratios (HRs) and 95% CIs for
mortality and hospitalizations at 1, 5, and 8 years after the
ML-mFI and mFI were estimated (based on a previous study
[4]), considering both to be the independent variable. We further
included age and gender as covariates in all adjusted models.
Sex-specific analysis was conducted.

All of the analyses were performed using R Version 3.4.4 (R
Foundation for Statistical Computing). A two-sided P value of

<.05 was considered statistically significant. The coxph function
in the survival package showed nonviolation of the proportional
hazards assumption and a linear relationship between the log
hazard and each covariate. The random forest and importance
functions in the randomForest package showed the model
building and variable importance to predict the outcome
occurrence and comprise ML-mFI, respectively.

Results

Construction of ML-mFI
The final ML-mFI with the highest model accuracy (0.6022061)
contained 38 conditions (Multimedia Appendix 1). Details of
convergences and divergences of composing conditions among
ML-mFI and mFI are shown in Multimedia Appendix 4. Table
1 compares the ML-mFI group and traditional mFI by age and
sex. There were two similar distribution patterns on mFI and
ML-mFI. ML-mFI increased with age, but reached a plateau at
age 80 years and older. Both indices were higher in males, which
is compatible with the shorter life expectancy of men in Taiwan.
However, the mFI was calculated based on 32 selected
conditions a person may have in a year, while the ML-mFI was
calculated based on 38 selected conditions a person may have
in a year; thus, the actual numbers on the mFI and ML-mFI
were very different. Among people aged 65 to 69 years, the
mean mFI and ML-mFI were 0.037 (SD 0.048) and 0.0070 (SD
0.0254), respectively. The difference may result from
discrepancies in the conditions selected on the mFI and the
ML-mFI. For example, some conditions were selected only on
the ML-mFI but not on the mFI (eg, ICD-9-CM: 250 [diabetes
mellitus] and, vice versa, ICD-9-CM: 374 [entropion]). These
discrepancies have been shown in Multimedia Appendix 1.

Table 1. Comparisons of mFI and ML-mFI by age and sex.a,b

Female (n=43,219)Male (n=42,914)All subjects (N=86,133)Age (years)

ML-mFI, mean (SD)mFI, mean (SD)ML-mFI, mean (SD)mFI, mean (SD)ML-mFI, mean (SD)mFI, mean (SD)

0.0065 (0.0246)0.037 (0.046)0.0076 (0.0264)0.038 (0.049)0.0070 (0.0254)0.037 (0.048)65-69 (n=28,480)

0.0096 (0.0304)0.046 (0.053)0.0115 (0.0339)0.053 (0.060)0.0106 (0.0322)0.050 (0.056)70-74 (n=23,700)

0.0138 (0.0379)0.056 (0.059)0.0160 (0.0417)0.067 (0.070)0.0150 (0.0400)0.062 (0.065)75-79 (n=18,765)

0.0190 (0.0455)0.064 (0.065)0.0212 (0.0490)0.076 (0.075)0.0201 (0.0473)0.070 (0.071)80-84 (n=9934)

0.0224 (0.0483)0.064 (0.069)0.0245 (0.0531)0.077 (0.080)0.0234 (0.0505)0.070 (0.074)≥85 (n=5254)

0.0113 (0.0341)0.048 (0.056)0.0132 (0.0376)0.056 (0.064)0.0122 (0.0359)0.052 (0.060)Total (N=86,133)

amFI: multimorbidity frailty index.
bML-mFI: machine learning multimorbidity frailty index.

Survival Analysis
Overall, 86,133 subjects aged 65 to 100 years were included in
this study. With a mean follow-up of 6.57 (SD 2.37) years,
30,136 deaths (34.99%) occurred among the study cohort during
the study period. Figure 2 summarizes the results of the
Kaplan-Meier survival curves estimating 4 levels of ML-mFI
on all-cause mortality, unplanned hospitalization, and ICU
admission, and shows that ML-mFI significantly predicted all
these outcomes of interest.

Table 2 shows the hazard ratios of all-cause mortality, unplanned
admissions, and ICU admissions for the ML-mFI and the mFI
at the 1-, 5- and 8-year follow-up periods. Among all three
outcomes of interest, ML-mFI posed higher hazards than did
mFI. For example, those who were categorized as severely frail
by the mFI or the ML-mFI were associated with 4.97-fold
(adjusted HR 4.97, 95% CI 4.49-5.50) and 11.4-fold (adjusted
HR 11.40, 95% CI 10.32-12.59) increases in 1-year all-cause
mortality, respectively. Similar patterns were observed for 5-year
and 8-year all-cause mortality.
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Figure 2. The 8-year Kaplan-Meier survival curve for the outcome of (A) all-cause mortality, (B) unplanned hospitalizations, and (C) intensive care
unit admissions for different frailty categories.
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Table 2. Hazard ratios of all-cause mortality, unplanned hospitalizations, and intensive care unit admissions for the ML-mFI and the mFI at the 1-, 5-

and 8-year follow-up periods.a,b,c All values are given as hazard ratio (95% CI).

Severe frailtyModerate frailtyMild frailtyAdverse outcomes at
follow-up periods

ML-mFI (n=1488)mFI (n=2498)ML-mFI (n=2522)mFI (n=4741)ML-mFI
(n=9366)

mFI (n=14,244)

1-year all-cause mortality HRd

16.62 (15.08-18.32)7.52 (6.81-8.30)8.81 (8.00-9.71)4.09 (3.72-4.50)3.66 (3.38-3.97)2.21 (2.04-2.39)Unadjusted

11.40 (10.32-12.59)4.97 (4.49-5.50)6.79 (6.15-7.49)3.08 (2.80-3.39)3.13 (2.89-3.39)1.86 (1.71-2.01)Adjusted

5-year all-cause mortality HR

9.02 (8.49-9.58)5.00 (4.74-5.28)5.27 (5.00-5.55)2.85 (2.72-2.99)2.57 (2.48-2.67)1.76 (1.70-1.82)Unadjusted

6.15 (5.79-6.54)3.28 (3.11-3.46)4.04 (3.83-4.26)2.14 (2.04-2.25)2.19 (2.11-2.27)1.46 (1.41-1.52)Adjusted

8-year all-cause mortality HR

8.05 (7.61-8.51)4.50 (4.29-4.71)4.72 (4.54-4.94)2.65 (2.55-2.76)2.32 (2.25-2.39)1.69 (1.64-1.74)Unadjusted

5.52 (5.22-5.84)2.98 (2.84-3.12)3.70 (3.53-3.88)2.01 (1.93-2.09)1.99 (1.93-2.05)1.41 (1.37-1.45)Adjusted

1-year unplanned hospitalization HR

7.65 (6.99-8.38)5.29 (4.88-5.73)5.21 (4.82-5.64)3.30 (3.07-3.54)2.86 (2.70-3.02)2.08 (1.97-2.20)Unadjusted

6.20 (5.66-6.80)4.28 (3.94-4.64)4.53 (4.18-4.90)2.85 (2.65-3.06)2.63 (2.49-2.79)1.91 (1.80-2.01)Adjusted

5-year unplanned hospitalization HR

5.43 (5.07-5.83)3.85 (3.65-4.06)3.79 (3.59-4.00)2.51 (2.40-2.62)2.28 (2.21-2.36)1.78 (1.73-1.83)Unadjusted

4.33 (4.04-4.65)3.05 (2.89-3.23)3.23 (3.06-3.41)2.14 (2.05-2.24)2.09 (2.02-2.16)1.61 (1.57-1.66)Adjusted

8-year unplanned hospitalization HR

5.03 (4.69-5.38)3.53 (3.36-3.71)3.53 (3.36-3.71)2.32 (2.24-2.41)2.11 (2.05-2.17)1.67 (1.63-1.71)Unadjusted

3.98 (3.72-4.27)2.79 (2.65-2.94)3.01 (2.86-3.17)1.98 (1.91-2.06)1.93 (1.87-1.99)1.51 (1.48-1.55)Adjusted

1-year intensive care unit admission HR

12.16 (10.98-13.46)7.04 (6.38-7.76)6.70 (6.08-7.38)4.32 (3.95-4.72)3.23 (3.00-3.48)2.34 (2.18-2.52)Unadjusted

9.41 (8.49-10.44)5.35 (4.84-5.91)5.64 (5.11-6.23)3.59 (3.28-3.92)2.91 (2.70-3.13)2.09 (1.94-2.25)Adjusted

5-year intensive care unit admission HR

7.84 (7.30-8.42)4.84 (4.56-5.14)4.75 (4.48-5.04)2.92 (2.78-3.07)2.39 (2.30-2.48)1.86 (1.79-1.93)Unadjusted

6.00 (5.58-6.44)3.65 (3.43-3.87)3.96 (3.74-4.21)2.42 (2.30-2.54)2.14 (2.06-2.23)1.64 (1.58-1.70)Adjusted

8-year intensive care unit admission HR

7.10 (6.63-7.60)4.28 (4.05-4.52)4.35 (4.12-4.59)2.69 (2.58-2.81)2.20 (2.12-2.28)1.74 (1.69-1.79)Unadjusted

5.46 (5.10-5.85)3.24 (3.06-3.42)3.68 (3.49-3.89)2.23 (2.14-2.34)1.98 (1.92-2.05)1.54 (1.49-1.59)Adjusted

aFor all outcomes, the comparator is the study subjects in the fit categories (n=64,650). All data were adjusted for age and gender.
bML-mFI: machine learning multimorbidity frailty index.
cmFI: multimorbidity frailty index.
dHR: hazard ratio.

For unplanned hospitalizations, those who were categorized as
severely frail by the mFI or the ML-mFI were associated with
4.28-fold (adjusted HR 4.28, 95% CI 3.94-4.64) and 6.20-fold
(adjusted HR 6.20, 95% CI 5.66-6.80) increases in 1-year
unplanned hospitalizations, respectively. Similar patterns were
observed for 5-year and 8-year all-cause unplanned
hospitalizations.

For ICU admissions, those who were categorized as severely
frail by the mFI or the ML-mFI were associated with 4.28-fold
(adjusted HR 5.35, 95% CI 4.84-5.91) and 9.41-fold (adjusted
HR 9.41, 95% CI 8.49-10.44) increases in 1-year ICU

admissions, respectively. Similar patterns were observed for
5-year and 8-year all-cause ICU admissions.

Sex-specific analysis showed that both indices were higher in
men than in women for various outcomes and follow-up periods
(Tables 3 and 4 for males and females, respectively). For
example, men in the severe frailty group (as defined by the
ML-mFI) were associated with a 12.64-fold increased risk of
1-year mortality, while women in the severe frailty group (as
defined by the mFI) were associated with a 10.37-fold increased
risk of 1-year mortality.
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Table 3. Male hazard ratios of all-cause mortality, unplanned hospitalization, and intensive care unit admission for ML-mFI and mFI among 1-, 5-,

and 8-year follow-up periods.a,b,c

Severe frailtyModerate frailtyMild frailtyAdverse outcome and
follow-up period

ML-mFI (n=1488)mFI (n=2498)ML-mFI
(n=2522)

mFI (n=4,741)ML-mFI
(n=9366)

mFI (n=14,244)

All-cause mortality

12.64 (11.20-14.27)4.84 (4.26-5.49)7.67 (6.76-8.69)2.70 (2.37-3.07)3.71 (3.37-4.09)1.83 (1.65-2.04)1-year

6.92 (6.40-7.48)3.07 (2.86-3.28)4.60 (4.29-4.93)1.93 (1.82-2.06)2.53 (2.42-2.65)1.41 (1.35-1.48)5-year

6.27 (5.83-6.74)2.77 (2.61-2.94)4.19 (3.94-4.47)1.85 (1.75-1.95)2.29 (2.21-2.38)1.35 (1.30-1.41)8-year

Unplanned hospitalization

6.34 (5.63-7.14)4.24 (3.83-4.71)4.90 (4.41-5.45)2.73 (2.48-3.00)2.83 (2.64-3.04)1.87 (1.73-2.01)1-year

4.59 (4.19-5.03)3.00 (2.80-3.21)3.49 (3.25-3.76)2.05 (1.93-2.17)2.25 (2.16-2.35)1.58 (1.51-1.64)5-year

4.29 (3.92-4.69)2.76 (2.59-2.95)3.30 (3.08-3.54)1.91 (1.81-2.01)2.07 (1.99-2.15)1.48 (1.43-1.53)8-year

Intensive care unit admission

9.50 (8.31-10.86)4.85 (4.27-5.51)5.91 (5.18-6.74)3.28 (2.91-3.69)3.35 (3.06-3.67)2.02 (1.83-2.23)1-year

6.28 (5.72-6.89)3.39 (3.15-3.66)4.33 (4.00-4.69)2.24 (2.10-2.40)2.42 (2.31-2.55)1.58 (1.50-1.66)5-year

5.80 (5.30-6.35)2.99 (2.79-3.21)4.04 (3.75-4.35)2.05 (1.94-2.18)2.22 (2.13-2.32)1.48 (1.42-1.54)8-year

aFor all outcomes, the comparator is subjects in fit categories (n=64,650). All data were adjusted for age and gender.
bML-mFI: machine learning multimorbidity frailty index.
cmFI: multimorbidity frailty index.

Table 4. Female hazard ratios of all-cause mortality, unplanned hospitalization, and intensive care unit admission for ML-mFI and mFI among 1-, 5-,

and 8-year follow-up periods.a,b,c

Severe frailtyModerate frailtyMild frailtyAdverse outcome and
follow-up period

ML-mFI (n=1488)mFI (n=2498)ML-mFI (n=2522)mFI (n=4741)ML-mFI (n=9366)mFI (n=14,244)

All-cause mortality

10.37 (8.97-12.00)5.29 (4.46-6.27)5.95 (5.19-6.82)3.73 (3.22-4.32)2.56 (2.28-2.87)1.88 (1.66-2.13)1-year

5.52 (5.04-6.05)3.79 (3.46-4.15)3.51 (3.25-3.78)2.52 (2.34-2.71)1.87 (1.77-1.97)1.54 (1.46-1.62)5-year

4.89 (4.49-5.32)3.48 (3.22-3.76)3.24 (3.04-3.46)2.31 (2.17-2.46)1.72 (1.65-1.80)1.48 (1.42-1.55)8-year

Unplanned hospitalization

6.19 (5.40-7.09)4.36 (3.81-4.98)4.17 (3.72-4.66)3.03 (2.72-3.38)2.45 (2.26-2.65)1.95 (1.80-2.11)1-year

4.12 (3.71-4.58)3.16 (2.89-3.46)2.98 (2.77-3.21)2.28 (2.14-2.44)1.94 (1.86-2.03)1.66 (1.59-1.73)5-year

3.71 (3.34-4.12)2.85 (2.62-3.11)2.74 (2.55-2.94)2.10 (1.98-2.22)1.81 (1.74-1.88)1.56 (1.50-1.62)8-year

Intensive care unit admission

9.73 (8.40-11.27)6.44 (5.49-7.55)5.39 (4.71-6.16)4.09 (3.56-4.70)2.48 (2.22-2.76)2.18 (1.95-2.44)1-year

5.89 (5.29-6.56)4.21 (3.82-4.65)3.62 (3.33-3.93)2.70 (2.50-2.91)1.88 (1.77-1.99)1.73 (1.64-1.82)5-year

5.27 (4.76-5.85)3.79 (3.47-4.15)3.34 (3.10-3.61)2.54 (2.37-2.71)1.77 (1.69-1.86)1.62 (1.55-1.70)8-year

aFor all outcomes, the comparator is subjects in fit categories (n=64,650). All data were adjusted for age and gender.
bML-mFI: machine learning multimorbidity frailty index.
cmFI: multimorbidity frailty index.

Discussion

In this study, we successfully used a machine learning approach
to define ML-mFI. Specifically, we selected disease/deficit
items by the random forest method and ranked the importance
of each individual disease accordingly. The selection of these

diseases/deficits items to construct ML-mFI was driven solely
by data, while the conventional mFI included disease/deficit
items based on expert recommendations. Moreover, the
combined use of the distance index and coverage index
successfully distinguished 4 groups with dose-response risks
of adverse outcomes. In epidemiological studies, researchers
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have often encountered similar challenges in selecting
appropriate variables for analysis and optimally categorizing
continuous variables into categorical variables for further
comparisons. Traditionally, researchers need to search for
literature support or adopt a generic approach to develop an
optimal statistical model for data interpretation [18-20]. The
hypothesis-driven approach for a research question is of great
importance in scientific development; however, previously
unknown or unidentified factors may be overlooked in the
analysis, which may lower the statistical power in the
interpretation of the phenomenon. Compared to our previous
work where we used a hypothesis-driven approach to construct
the mFI [4], the machine learning model selected significantly
different disease/deficit items for ML-mFI construction. The
traditional approach selected the diseases/deficits of older adults
based on the selection criteria, and the machine learning
approach identified more disease/deficit items, including chronic
diseases, infectious diseases, and even some cancers, but these
items did not comprise the majority of disease/deficit items.

The FI developed by Rockwood et al [18] hypothesized that
cumulative deficits in various health domains may represent
the process of biological aging, and this FI has been widely
validated to predict adverse health events and mortality in
different countries [5,11,12]. In theory, an FI may consist of as
many variables as possible, so there are no issues regarding
variable selection. However, to meet the needs of the busy
clinical environment, the mFI is derived from the concept of
the FI; a selection of age-related chronic conditions were the
key variables used to construct the prediction model. Existing
studies have shown that these previously developed mFIs can
significantly predict the mortality of older adults [13.14].
However, to maximize the effectiveness of the prediction model,
using a data-driven approach to construct the ML-mFI may
provide better prediction accuracy. Moreover, in the survival
analysis, the dose-response relationship is usually expected
when grouping continuous measurements into distinct risk
groups in association with outcomes. However, the distinction
between individual groups from the continuous measurements
is not always statistically significant even though the whole
model reached statistical significance. For example, in one
Taiwanese study, the developed FI was found to predict the
adverse outcomes of older adults, which was in line with most
related studies [5]. However, in that study, different risk groups
that were categorized based on FI tertiles resulted in overlapping
survival curves of the intermediate- and high-risk groups; it
failed to achieve the stratification of risk groups. The combined
use of the distance index and coverage index developed in this
study engenders the ability to address the overlapping
phenomenon of survival curves.

Although the mFI we developed adequately predicted adverse
outcomes for older adults, the ML-mFI showed relatively higher
hazard ratios than did the mFI for all health outcomes. Overall,
the data-driven ML-mFI may identify different at-risk
populations than the hypothesis-driven mFI. The data-driven
approach may disclose the phenomenon of the whole data set
[21-23], but the hypothesis-driven approach may provide a
better explanation for the observations [24,25]. The data-driven
approach may not be superior to the hypothesis-driven approach,

since the study purpose and research questions may vary greatly.
Although a data-driven approach may usually establish a
prediction model with better accuracy, it is difficult to
implement intervention programs for the observed phenomenon.
Applying the theory of cumulative deficits, a large number of
variables may be used to construct the prediction model, but it
becomes challenging to further utilize the prediction model with
a large number of variables. Therefore, researchers have
attempted to reduce the number of variables while maintaining
optimal prediction accuracy. Our previous study used factor
analysis to reduce the 125 selected variables into 35 factors to
improve the clinical application [5]. However, the machine
learning approach in this study may play a similar role in
reducing the selected number of variables and optimizing
prediction accuracy. The main strength of this study was to
demonstrate the methodological advance of processing a large
data set to select appropriate variables to construct a prediction
model and to ensure the distinction of different risk groups with
dose-response relationships. This methodological advance may
facilitate public health or social sciences research, or
interdisciplinary research that uses a large data set with a wide
array of data characteristics. In particular, the distance index
and coverage index would be of great importance for future
research to categorize the results of continuous variables into
distinct entities with different health risks. Avoiding the overlap
of the survival curves of different risk groups by using the
distance index and coverage index is important to strengthen
the observed phenomenon and the risk group classification.

Therefore, this ML-mFI demonstrated an automatic approach
to predict adverse outcomes in older people, and it can be
applied to different populations in different countries. Using
the same approach, different diseases can be selected to
construct the new ML-mFI in another population to predict
adverse outcomes in the corresponding population. For example,
we further stratified our study population into 3 subcohorts,
including those aged 65 to 75 years, 76 to 85 years, and 85 years
and older, and we constructed three kinds of ML-mFI for each
age group according to the same automatic machine learning
approach and model selection criteria. We found that the total
deficit number and composing deficits on the ML-mFI, as well
the cut-off points of different frailty statuses, are quite different
in distinct age groups. For example, the total deficit numbers
on the ML-mFI were 59, 47, and 39 for those who were aged
65 to 75 years, 76 to 85 years, and 85 years and older,
respectively. In addition, the composing deficits were different,
as displayed in Multimedia Appendix 5. Although the
composing deficits of the ML-mFI are different in distinct age
groups, all of these ML-mFI can successfully predict all-cause
mortality (C index>0.6). These findings are inspiring because
they indicate that the same machine learning approach can be
used to construct one’s own ML-mFI to fulfill this purpose.
Individual diseases may have different clinical impacts in
different countries due to diagnosis, treatment, and quality of
care. Therefore, the results of this study can be applied to
different countries and populations using the same approach to
construct their own ML-mFI to meet their needs.

Therefore, our ML-mFI could have clinical implications in
public health or in health care administration. For example, in
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large long-term care facilities management, the administration
needs to optimize the admission waiting list through the
estimation of the mortality of all residents. On the other hand,
in public health settings, the government is able to accurately
estimate the health risk of residents in a certain geographic area
and to provide optimal health care or palliative care services.
Traditionally, these decisions were made based on existing
medical knowledge, but a data-driven approach may better
predict outcomes and optimize the government’s public health
policy. In clinical practice, the ML-mFI may enable physicians
and families to quantify health risks for optimal care planning.
Hence, using available electronic medical records, the ML-mFI
can be automatically generated and integrated as part of the
medical record to facilitate certain forms of decision-making
in care planning.

Despite all the effort that went into this study, there are still
some limitations. First, like all data-driven studies, the results
of this study could not provide or validate a well-established
hypothetical framework due to the nature of machine learning.

Second, it remained difficult to develop further intervention
programs based on the diagnostic entities identified by machine
learning. Third, another data set is needed to examine whether
overfitting exists in the machine learning model. Finally, as in
most of the previous frailty index studies, although we adjusted
for age and sex as covariates in the Cox model, we were unable
to access some residual confounders not routinely captured in
a claims database, such as disease severity or lifestyle factors
(eg, physical activity and diet).

In conclusion, the ML-mFI significantly predicted adverse health
outcomes for older adults, and the risk groups defined by the
combination of the distance index and coverage index
distinguished the different risk groups with dose-response
relationships and clear distinctions. The methodological advance
of this study also had further research implications for studies
with similar data and research questions. The data-driven
approach may provide better prediction accuracy than the
hypothesis-driven approach, but the superiority of the
data-driven approach requires further study for confirmation.
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