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Abstract

Background: A large Midwestern state commissioned a virtual driving test (VDT) to assess driving skills preparedness before
the on-road examination (ORE). Since July 2017, a pilot deployment of the VDT in state licensing centers (VDT pilot) has
collected both VDT and ORE data from new license applicants with the aim of creating a scoring algorithm that could predict
those who were underprepared.

Objective: Leveraging data collected from the VDT pilot, this study aimed to develop and conduct an initial evaluation of a
novel machine learning (ML)–based classifier using limited domain knowledge and minimal feature engineering to reliably
predict applicant pass/fail on the ORE. Such methods, if proven useful, could be applicable to the classification of other time
series data collected within medical and other settings.

Methods: We analyzed an initial dataset that comprised 4308 drivers who completed both the VDT and the ORE, in which
1096 (25.4%) drivers went on to fail the ORE. We studied 2 different approaches to constructing feature sets to use as input to
ML algorithms: the standard method of reducing the time series data to a set of manually defined variables that summarize driving
behavior and a novel approach using time series clustering. We then fed these representations into different ML algorithms to
compare their ability to predict a driver’s ORE outcome (pass/fail).

Results: The new method using time series clustering performed similarly compared with the standard method in terms of
overall accuracy for predicting pass or fail outcome (76.1% vs 76.2%) and area under the curve (0.656 vs 0.682). However, the
time series clustering slightly outperformed the standard method in differentially predicting failure on the ORE. The novel
clustering method yielded a risk ratio for failure of 3.07 (95% CI 2.75-3.43), whereas the standard variables method yielded a
risk ratio for failure of 2.68 (95% CI 2.41-2.99). In addition, the time series clustering method with logistic regression produced
the lowest ratio of false alarms (those who were predicted to fail but went on to pass the ORE; 27.2%).

Conclusions: Our results provide initial evidence that the clustering method is useful for feature construction in classification
tasks involving time series data when resources are limited to create multiple, domain-relevant variables.
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Introduction

Background
According to the Centers for Disease Control and Prevention,
motor vehicle crashes (MVC) are the leading cause of death in
adolescents aged 12 to 19 years in the United States [1]. MVC
risk is disproportionately high among novice drivers, particularly
those aged 16 to 17 years, and peaks immediately after licensure
during the first months of unsupervised driving [2,3]. Previous
studies have demonstrated that the majority of these crashes
early in licensure are attributed to critical driving errors because
of skill deficits, inexperience, and inattention/distraction rather
than recklessness and deliberate risk taking [4-7]. Research has
demonstrated initial evidence for the ability of web-based
screening tests (eg, web-based assessment of cognitive
impairments) to predict poor driving simulator performance [8].
However, there remains a critical need for a screening test to
quantify skill level at the time of licensure to identify those who
are underprepared to drive safely.

In 2017, a large Midwestern state’s driver licensing agency
aimed to address the need to identify underprepared license
applicants (likely to fail the on-road examination [ORE]) by
developing and deploying a new portable virtual driving test
(VDT) as a potential prescreen tool for ORE [9]. The VDT was
built on the Ready-Assess platform [10] (Diagnostic Driving,
Inc) and was designed as a safe, reliable, and portable method
for evaluating novice drivers’ preparedness to respond to
common and serious potential crash scenarios [11-13].
Ready-Assess incorporates and expands on the scenarios and
metrics of the previously validated simulated driving assessment
(SDA) [14] to provide a variety of traffic situations to manage
that go beyond what is feasible to assess during an ORE.

Objectives
The VDT assessment (which lasts approximately 7 min) includes
both high-risk and common driving scenarios. The potential
crash scenarios included in the VDT driving environments were
determined by the National Highway Traffic Safety
Administration [15,16], including intersections (3- and 4-way,
stop sign, and traffic light), curved roads, rear-end events (lead
car brakes suddenly), and hazard zones (construction zones,

school zones, and pedestrian crosswalks). These typical driving
scenarios were specified by subject matter experts from the
state's licensing and motor vehicle safety body encompass a
variety of settings (eg, urban and rural) and on-road elements
(eg, school buses, ambulances, pedestrians, and hazards) to
reproduce local driving environments. As a result, the VDT
provides an opportunity for a wide variety of driving responses.

Consequently, a large quantity of applicant time series data was
generated from the VDT assessment. To efficiently create a
prediction (ORE pass/fail) scoring algorithm, steps must be
taken to reduce the dimensionality of the data for analysis. Many
traditional machine learning (ML) methods (out-of-the-box)
require multiple domain-specific features that are well defined
and created before being evaluated in an ML pipeline. Given
the task of predicting the ORE outcome at the individual level,
manually defining features with optimized predictive capabilities
is an extremely resource-intensive task and often reliant on
subject matter expertise (SME) and considerable domain
knowledge.

Therefore, by leveraging data collected from the VDT pilot,
this study aimed to develop and conduct an initial evaluation
of a novel ML-based classifier using limited domain knowledge
and minimal feature engineering to reliably predict applicant
pass/fail on the ORE. Such methods, if proven useful, could be
applicable to the classification of other time series data collected
within the medical field and other settings.

Methods

Apparatus
The VDT used in this pilot was delivered by Diagnostic Driving,
Inc [17] in collaboration with Children’s Hospital of
Philadelphia (CHOP) and designated state-employed highly
experienced driving examiners (SMEs). The VDT software
evolved from a prior laboratory-based SDA into a highly
scalable, portable, and self-directed tool (Figure 1) that could
be delivered on ubiquitous hardware without the need for
additional personnel to help facilitate its delivery (eg, research
assistants and administrative personnel; Multimedia Appendices
1 and 2).
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Figure 1. Workstation Setup: 1) Standard Monitor, 2) Standard Desktop Computer, 3) Off-the-shelf USB Steering Wheel and Pedals.

Virtual Driving Test Implementation Procedure
Applicants were directed to an available VDT workstation in
the testing facility by state personnel, and applicants were asked
to put on headphones (Multimedia Appendix 2) and enter the
provided unique identification number that could be linked to
their ORE results (Figure 2).

The VDT is a self-directed workflow (containing both on-screen
and voice-directed instructions) that typically takes less than
15 min to complete after the applicant logs in to the VDT
workstation with a unique identification number provided by
state personnel. A short orientation video introduces the
importance of safe driving and provides the applicant with an
overview of the stages of the VDT workflow. This is followed
by a simulated practice drive, a short orientation drive with
built-in instructions to orient the applicant to all VDT controls
(eg, turn signals, transmission controls, and navigation system)
and to allow the applicant to test drive basic maneuvers (eg,
steering, accelerating, braking, and 90° turns) on a course
without additional traffic. This drive ends with a brief
comprehension test that evaluates the driver applicant's ability

to manage the controls and to follow basic instructions covered
in it.

Next, the applicant begins the simulated assessment drive, a
planned route through a randomly assigned environment selected
from a bank of 10 possible environments (eg, city 1, city 2, ...,
city 10), all of which contain variations of common and serious
crash scenarios. In all the environments, driver applicants are
never explicitly prompted to react to changing traffic conditions
or traffic controllers (eg, grant pedestrians in the crosswalk
right of way and wait for the light to turn green). They are,
however, given navigational instructions to follow a planned
route (eg, turn left at the stop sign and shift into the right lane).
The assessment drive has no explicit time limit and finishes
once the applicant brings his or her simulated vehicle to the end
of the planned route.

On completion of the assessment drive, the applicant receives
a series of 3 debriefing questions to answer on the screen (using
a 5-point Likert scale: 1=strongly disagree and 5=strongly agree)
to assess his or her ability to understand VDT directions and
general comfort with the VDT controls.
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Figure 2. Virtual driving test workstation.

Dataset
We received a deidentified dataset containing individually linked
VDT and ORE performance data for 4643 driver applicants
from 3 licensing facilities collected between July 2017 and
March 2018. These data were collected by a large Midwestern
state during a pilot phase of implementing the VDT in
collaboration with Diagnostic Driving, Inc, and CHOP to test
its utility as a screening tool in the context of a high-demand
and established state government licensing workflow. During
this pilot phase, no additional research or demographic
information (eg, age and sex) was collected, and all driver
applicants who completed the VDT went on to complete the
ORE regardless of VDT performance.

In addition, neither the driver applicant nor the licensing
examiner had access to the VDT results; therefore, no bias
because of VDT performance was introduced when
implementing the ORE. Driver applicant ORE outcomes were
linked to VDT data and entered into a deidentified dataset that
was shared with the research team. CHOP’s institutional review
board determined that this study does not meet the criteria for
human subjects research primarily because (1) data were not
obtained by the researchers through intervention or interaction
with the individual and (2) no identifiable private information
was included in the dataset received.

Derivation of Sample
Figure 3 shows the derivation of the sample included in the
analyzable dataset. Of the 4643 driver applicants who attempted
the VDT in the pilot, the vast majority completed it: 58 (1.2%)
applicants did not complete the practice drive, 31 (0.7%) did
not complete the comprehension test, and 205 (4.4%) did not
complete the assessment drive (descriptions of comprehension
and assessment drives are given in the Virtual Driving Test
Implementation Procedure section). Driver applicants who did
not complete the entire VDT workflow, 6.3% (294/4643) were
excluded from our analysis. SMEs from the licensing facilities
provided information on why some applicants could not
complete the workflow, and reasons included applicant had a
language barrier, applicant did not understand the instructions,
applicant was frustrated with the VDT software, applicant was
called for their ORE earlier than expected, applicant walked
away from the VDT workstation, applicant experienced
symptoms of simulator sickness, and applicant elected not to
continue (<1%). In addition to not completing the entire VDT
workflow, an additional 41 (0.9%) applicants who completed
the workflow did not have their replay files (raw time series
information) successfully uploaded to the VDT cloud server
(because of internet connectivity issues). These cases were also
removed from our analysis, and the final analyzable sample
included 4308 (92.8%) driver applicants.
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Figure 3. Sample derivation: data from 335 (7.2%) enrolled driver applicants were excluded from the final sample of 4308 because they either did not
complete the VDT workflow or their assessment replay file was unavailable for analysis. VDT: virtual driving test.

Data Collected: Time Series Channels
The VDT software is fully cloud based and collects raw time
series–driving performance data, sampled at 60 Hz, including
the driver’s vehicle position; driver inputs (ie, steering wheel,
brake, and throttle); additional driver attributes (ie, velocity);
and information regarding ambient vehicles, pedestrians, and
environmental objects. This raw and rich representation is then
downsampled (for the purpose of storage) at approximately 10
Hz with the true elapsed time between contiguous frames
recorded, with the added benefit of reducing the replay file size
for permanent cloud storage while retaining the faithfulness of
the time series representation. As each replay file (the
downsampled recording of a VDT assessment) is stored as a
multichannel sequence of frames averaging about 8 min in
length downsampled to roughly 10 Hz, it provides more than
30,000 data points of information regarding driving
performance.

Each frame of the recorded time series data includes several
raw values regarding the applicant’s physical interaction with
the VDT workstation, including (1) the percentage of complete
brake depression (with 1=full depression/stop) and throttle
pedals (with 1=full depression/maximal acceleration), (2) the
signed percentage of steering wheel rotations both left (negative)
and right (positive) of its resting position, and (3) the position
and heading of the applicant’s vehicle within the simulated
environment. Also recorded in each frame is the use of turn
signals and steering wheel buttons that allow the driver to scan
left or right to look for oncoming traffic.

The lane offset (sometimes referred to as lane position) [18] of
the applicant’s vehicle within its lane on the simulated road is
computed for each frame and recorded as one of the time series
channels. These channels comprise each applicant’s VDT

assessment recording and are used as the basis for feature set
construction to represent driving performance.

Outcome Variable
For all driver applicants who completed the VDT, the result of
the ORE is provided in a numeric form (score), where a higher
score indicates a more severe accumulation of infractions cited
by the examiner during their ORE. According to the state
licensing agency’s ORE scoring protocol, any driver with a
score greater than or equal to 26 fails the ORE and any driver
with a score less than 26 passes the ORE (a score of 0 indicates
a perfect score). These data (both numerical and dichotomous
pass/fail representations) for each applicant are linked to the
corresponding VDT record and added to the deidentified dataset.
For the purposes of internal analysis, we define the gray zone
of ORE scores between 20 and 35, where drivers either barely
pass or accumulate just enough infractions to fail the ORE.

Analytical Procedure
To maximize our ability to reliably predict an applicant’s
likelihood of failing the ORE, we evaluated 2 alternative ways
to represent the time series data. The first, standard approach
(which we call the variables feature set) involves the reduction
of the driver applicant's input time series data into manually
created variables that represent driver behavior These variables
further represent both continuous features (eg, velocity) and
count/dichotomous data (eg, crash). The second method is novel
and involves viewing the environments as a series of predefined
event zones to which the applicant is exposed (eg, a crosswalk,
an intersection, or a school zone). The corresponding applicant’s
input time series data (how the applicant responds to each of
these event zones) are then partitioned according to these event
zones. The range of applicant behaviors (combinations of
steering, brake, and throttle on the simulated roadway) is then
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clustered for each segment without any preprocessing or manual
reduction of the data. This time series clustering feature set has
no shared features with the variables feature set.

To build classifiers of driver performance, we constructed these
2 feature sets as input for supervised ML algorithms (Figure 4).

Figure 4. Time Series Clustering for highlighted event zone with cluster centers representing prototypical driving behaviors in that zone.

Standard Method for Data Reduction: Variables Feature
Set
For every simulated drive, there are events corresponding to
common and serious potential crash scenarios. Applicants’
responses that have been tracked and tabulated in real time from
within the VDT-simulated environment (eg, reduction of speed
entering a construction zone) are augmented with manually
created variables from the stored data, which indicate aberrant
or hazardous driving behaviors (eg, number of instances
applicant ran a red traffic light).

A summary of speed management within a sample is represented
by the global maximum, mean, and median of the applicant
vehicle velocities as well as the ratio of the applicant vehicle’s
velocity to the posted speed limit recorded. The same statistics
on velocity and speed ratio are computed for the following event
zones: crosswalks, school zones, construction zones, playground
zones, and banking curves. To flush out adherence to the posted
speed limit, the global percentages of each sample driven more
than 10, 15, and 20 mph above and below the posted speed limit
are used as potential predictors.

These values, along with other computed driving performance
metrics, result in a representation of each sample as a vector of
67 engineered features plus the outcome variable (ORE
pass/fail). With this representation of the tabulated data,
supervised learning methods are deployed using standard 10-fold
cross-validation; we examined the resulting confusion matrices.
To evaluate the predictive power of this representation, we
examined the resulting confusion matrices.

Novel Method for Automated Data Reduction: Time
Series Clustering Feature Set
Each applicant’s stored time series data were truncated to begin
at the first downsampled frame with a simulated speed above
0.5 m per second to align replay files via a common starting
condition. As assessment drives are of nontrivial length (on
average, approximately 8 min in duration), relying on global

measurements to compare driving behaviors may wash out
highly predictive features from smaller segments of the
assessment’s planned route.

The time series clustering representation attempts to derive new
features from sections of the drives that are designed to elicit
specialized behaviors in response to environmental or traffic
conditions. Unlike the standard variables approach, this new
approach derives features automatically without the need for
manual data reduction. Time series samples are grouped by the
simulated environment to which the applicant is assigned, where
each environment comprises a sequence of stationary event
zones defined by entry and exitwaypoints. Given a sample that
drives through a particular event zone, a subinterval of the time
series is extracted that corresponds to the vehicle traveling
between the zone’s entry and exit waypoints. This subinterval
is grouped in a set with all other subintervals from the drives
that pass through the designated event zone.

The purpose of clustering is to reveal prototypical behaviors
so that drivers can be categorized within each event zone (as
defined by their lane position, throttle, brake, accelerator, and
steering wheel usage in each frame). For example, at a
crosswalk, there might be a cluster for those who slow to a stop
and another for those who speed through the crosswalk without
slowing. The variance in behaviors should be represented in the
cluster centers, where all sample subintervals assigned to a given
cluster have been determined to be most similar to the cluster
center’s prototypical behavior.

Speed and traffic conditions determine each driver’s subinterval
length in an event zone. Thus, to compare subintervals of
unequal lengths, dynamic time warping [19,20] is used as the
(dis)similarity measure, where the time steps of pairs of
subintervals are aligned to minimize the time-warped aggregate
difference between them. k-Medoids [21], a derivative of
k-means, is used to pigeonhole the n samples into k clusters
(k=8 in all the reported experiments) by electing k initial

subintervals to act as medoids, cluster centers
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representing prototypical behaviors. A dissimilarity matrix

is constructed, where each cell 

compares subintervals χi and  numerically.

The subinterval χi is assigned to cluster , with the most similar
medoid at round r of iteration. The algorithm elects new medoids

in each round by identifying the candidate

subinterval within each cluster that maximizes the aggregate
similarity (ie, minimizes dissimilarity) between it and all other
cluster members.

At every round of clustering the inertia, the sum of squared
residual dissimilarities between subintervals and their assigned
medoids is computed. If the newly elected medoids reduce
inertia from the round before, the cycle repeats itself, although
we imposed a limitation of 100 repetitions. Once k-Medoids
converge on a clustering that cannot be improved upon, the
dissimilarities between each sample subinterval χi to medoids

are arranged as a feature vector.

This method of reporting the medoid dissimilarities can be
thought of as soft clustering, where we report the relative
membership of each subinterval to all clusters. As the initial
medoids are randomly selected, 20 initializations of clustering
are run for each event zone, using the medoids that minimize
the overall inertia to represent the range of prototypical
behaviors for the given event zone. This is done to select the
most compact clusters where samples grouped together minimize
aggregate dissimilarity from the medoids, distilling the
prototypical behaviors that best represent the range of behaviors
observed.

Illustrated on the far-left side of Multimedia Appendix 3 is a
bird’s-eye view of 1 of the 10 simulated environments’ track,
with a specific event zone highlighted (eg, prescripted traffic
interaction and avoid collision response to white car ahead
suddenly stops in roadway). Depicted on the right side of
Multimedia Appendix 3 is the range of prototypical behaviors
exhibited by the identified medoids while navigating through
the indicated event zone.Beneath the depictions of each
prototypical behavior is recorded the number of subintervals in
its cluster, the percentage of those subintervals that had
collisions in the defined event zone (both with vehicles and
pedestrians), as well as the means and standard deviations of
ORE scores from all cluster members.

With 166 different event zones in our dataset, each sample was
converted to a concatenated feature vector of 1328 medoid
dissimilarity features (k×166). For samples that never encounter
a given event zone, the dissimilarities to the generated medoids
are left as k blank entries. With the data table of medoid
dissimilarities constructed as features and every sample having
an actual pass/fail outcome label, supervised learning is trained
and tested on the dataset using standard leave-one-out 10-fold
cross-validation.

Supervised Learning Methods
Supervised learning methods evaluated features (both observed
and derived) to establish their ability to predict a given driver

applicant’s outcome label (ORE pass/fail). Specifically, all
methods were evaluated using a standard 10-fold
cross-validation in an attempt to minimize the overfitting of
any model. We evaluated 2 classification methods within the
Waikato Environment for Knowledge Analysis [22,23]: logistic
regression and support vector machines (SVMs).

Logistic Regression
Logistic regression ML algorithms classify a given sample based
on computing its probability of belonging to one of the binary
classes defined by the pass/fail outcome label. Given the
predicted probability that a sample has either passed or failed,
a decision rule is used to classify the sample:

In this example, the outcome label is based on actual ORE
pass/fail, and the probability threshold used in the decision rule
is derived from 0.0 to 1.0, with a step size of 0.01, to explore
the threshold parameter’s effect on performance metrics.

Support Vector Machines
SVMs attempt to compute the optimal decision surface for
partitioning datasets along with binary class values (in our case,
pass and fail) by maximizing the margin of separation between
samples known to be members of different classes [24]. The
core assumption of an SVM model is that there exists a
transformed space in which the dataset may be linearly
partitioned via a hyperplane. As it is computationally costly to
transform every sample, a kernel function was used to relate
pairs of samples in the transformed space.

For all results using SVM classification, we elected to use the
radial basis function (RBF) as our kernel because our initial
experimentation suggested that our feature values resemble
Gaussian distributions. A coarse grid search was used to narrow
the ranges of parameters considered for building an effective
classifier [25]. SVMs for binary classification are primarily
configured using 2 different values: a cost parameter (which
determines the degree of influence of data points far from the
decision surface in the algorithm) and a gamma parameter
(which controls the variance of the Gaussian functions that make

up the RBF kernel). We dyadically iterated the cost from 2−5 to

2−15 by doubling. To perform a grid search in a 2-dimensional
parameter space, we also dyadically iterated the gamma

parameter from 2−10 to 26 by doubling.

Evaluation Metrics
As previously described, the primary goal of the VDT pilot was
to reliably assess applicant preparedness before taking the ORE,
thereby maximizing the safety of driving examiners and
providing an opportunity for prepared applicants to take the
ORE. The evaluation metrics described in the following sections
were used to evaluate a given model’s predictive ability while
addressing the goals of the VDT pilot.
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Confusion Matrix and Evaluation Metrics
To predict a binary outcome of the ORE with confidence, a
confusion matrix (see Table 1) for each classification model
was generated to evaluate the predictive ability of our classifiers.

Our evaluation metrics included accuracy, algorithm fail rate,
false alarm rate, ratio of false alarm, and risk ratio.

Accuracy was defined as the ratio of the total number of
correctly classified cases to the total sample population:

Algorithm fail rate was defined as the percentage of total cases
the classifier predicted as fail:

False alarm rate was defined as the percentage of total cases the
classifier misclassified as fail:

The ratio of false alarms was defined as the ratio of cases of
misclassified fail to the total cases where the classifier predicted
fail:

The risk ratio was defined as the relative risk (RR) of failing
the ORE when the classifier predicted fail versus predicting
pass. The 95% CIs were also calculated for risk ratios:

SMEs within the licensing agency recommended that a
satisfactory classifier would consist of a model that maximized
both accuracy and risk ratio while minimizing the false alarm
rate (applicants who failed the VDT but went on to pass their
ORE).

Table 1. A confusion matrix, showing the 4 quadrants: FF (fail-fail), FP (fail-pass), PF (pass-fail), and PP (pass-pass).

Pass OREFail OREaConfusion matrix

FPFFFail VDTb

PPPFPass VDT

aORE: on-road examination.
bVDT: virtual driving test.

Fitness of Models
In addition to the evaluation metrics previously described, we
also evaluated model fitness using receiver operator
characteristic (ROC) curves to compare our predictions against
a random binary classification. An ROC curve illustrates a
model’s performance using different parameterizations.
Specifically, it plots the model’s true positive rate (TPR) to its
false positive rate (FPR). For our data, TPR (also known as
sensitivity) is the ratio of driver applicants who are correctly
predicted to fail the ORE to the overall population of applicants
who went on to fail the ORE:

FPR is the ratio of driver applicants incorrectly predicted to fail
the ORE to the overall population of applicants who went on
to pass the ORE:

J Med Internet Res 2020 | vol. 22 | iss. 6 | e13995 | p. 8https://www.jmir.org/2020/6/e13995
(page number not for citation purposes)

Grethlein et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Classifiers that have equal TPR and FPR do not perform well,
as there is less certainty that the classification of any particular
sample is reliable. ROC curves that deviate significantly from
the line TPR=FPR represent classifiers that perform better at
distinguishing the 2 classes. A perfect classifier would have a
TPR of 1.0 and an FPR of 0.0, where a random binary classifier
would have these 2 values be the same. A common metric used
to summarize the relationship between TPR and FPR over a
range of model parameterizations is the area under the curve
(AUC). AUC is the numerical integral of the ROC curve (FPR
is the independent variable and TPR is the dependent variable),
where a higher percentage of the total area coverable (TPR of

1.0 for all values of FPR) should indicate models that are more
fit to reliably predict a class value (eg, ORE outcome) [26].

Results

Classifier Results
We summarize the classifier results with the evaluation metrics
previously described in Table 2. In this table, results from 4
classifiers were reported: feature sets generated from 2 methods
(variables and the novel approach) and time series clustering,
used in 2 ML methods (logistic regression and SVM). Overall,
the results from the time series clustering approach provided
similar results to the variables approach. More specifically,
logistic regression using the time series clustering approach to
generate features produced the best classifier based on our
evaluation metrics (highest accuracy: 76.2%; highest risk ratio:
3.07; 95% CI 2.75-3.43). In addition, this classifier minimizes
the ratio of false alarms compared with the others (27.2%).

Table 2. Summary results of the evaluation metrics obtained from 4 classifiers: variables+logistic regression, variables+support vector machine, time
series clustering+logistic regression, and series time clustering+support vector machine.

Novel method (time series clustering)Standard method (variables)Classifier results

SVMLogistic regressionSVMaLogistic regression

74.976.275.476.1Accuracy, %

3.63.53.46.6Fail rate, %

1.71.01.32.6False alarm rate, %

45.927.237.738.5Ratio of false alarms, %

2.223 (1.906-2.592)3.071 (2.747-3.434)2.581 (2.250-2.961)2.684 (2.409-2.991)Relative risk (95% CI)

7.810.08.315.9True positive rate, %

2.21.31.73.4False positive rate, %

aSVM: support vector machine.

Logistic Regression
Figure 5 highlights the results for logistic regression with the
highest observed classification accuracies for both
representations (variables and times series clustering). The most
promising parameterization of logistic regression using the
variables representation as input for the VDT has an FPR of
3.4% and a TPR of 15.9%, whereas the most promising
parameterization of logistic regression using the time series
clustering representation as input for the VDT has an FPR of
1.3% and a TPR of 10.0%. Moreover, we observed that the time
series clustering representation yielded a VDT classifier with
a smaller ratio of false alarms (27.2%) than the most accurate
VDT classifier using the variables representation (38.5%).

The threshold value yielding the model with the highest
classification accuracy is highlighted in Figure 5. The
highlighted parameterizations (yielding the highest classification
accuracy, marked by the vertical dotted lines in the figure)
demonstrate VDTs that show predictive promise, although there
is room for improvement. Using logistic regression with
different threshold values, the AUC for the variables feature

set’s ROC curve is 0.682, whereas the AUC for the time series
clustering feature set’s ROC curve is 0.656.

As seen in Figure 6 of Multimedia Appendix 4, logistic
regression using the variables representation of the dataset
produces a classifier that fails 6.9% of those taking the VDT,
where 39% of those predicted to fail the ORE actually went on
to pass (ratio of false alarms). The false alarms represent only
3% of all drivers, with 37% of the false alarms having an ORE
score between 20 and 25, meaning these drivers nearly failed
the ORE. Within the group of drivers misclassified (24% of all
driver applicants), 30% of samples have an ORE score in the
gray zone (20-35, with a score of ≤25 resulting in a pass). With
this model, drivers failed by the VDT are 2.7 times more likely
to fail the ORE (RR=2.68; 95% CI 2.41-2.97).

Using logistic regression, the time series clustering
representation of the dataset produces a classifier that fails 4%
of those taking the VDT, with a ratio of false alarms of 27%.
Only 1% of all drivers are false alarms, where 25% of false
alarms nearly fail the ORE with scores between 20 and 25. For
all misclassified drivers (24% of all driver applicants), 25% of
the samples had an ORE score in the gray zone. Using this
model, drivers failed by the VDT are more than 3 times more
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likely to fail the ORE (RR=3.07; 95% CI 2.75-3.43). Overall,
the time series clustering representation used as input for the
logistic regression algorithm produces a more lax classifier that
fails approximately half as many drivers as using the variables

representation as input. However, when predicting failure on
the ORE, logistic regression using the time series clustering
representation is more often correct than with the variables
representation (72% correct predictions of fail versus 62%).

Figure 5. Receiver operator characteristic curves for logistic regression using the variables and time series clustering feature sets for iterated logistic
cutoff threshold values. Points in the bottom left represent models with the lowest thresholds (more people pass the virtual driving test), whereas points
in the top right represent models with the highest thresholds (fewer people pass the virtual driving test).

Support Vector Machines
As Figure 7 in Multimedia Appendix 5 shows, the most accurate
parameterization of SVM using the variables representation as
input for the VDT has an FPR of 1.7% and a TPR of 8.2%,
whereas the most promising parameterization of SVM using
the time series clustering representation as input for the VDT
has an FPR of 2.2% and a TPR of 7.8%. Moreover, we observed
that the time series clustering representation yielded a VDT
with a larger ratio of false alarms (45%) than the most accurate
VDT using the variables representation (38%).

Loose grid search of SVM’s 2 parameters reinforces the notion
that the 2 classes of ORE pass/fail are highly comingled within
both feature spaces. Figure 8 in Multimedia Appendix 6 contains
surface plots for both feature sets showing the interpolated
landscapes of risk ratio and accuracy (vertical axis) over the
SVM gamma and C (horizontal/lateral axes) parameters sampled
in bivariate grid search.

The SVM parameterization with the highest observed
classification accuracy using the variables representation of the
dataset produces a classifier that fails 3.5% of those taking the
VDT, with 38% of those predicted to fail the ORE being false
alarms. The false alarms comprise 1.4% of all drivers, with 33%
of the false alarms having nearly failed the ORE, where scores
between 20 and 25 indicate nearly failing the ORE. Of the driver

applicants misclassified (24% of all driver applicants), 26% of
samples had an ORE score in the gray zone (20-35, with a score
of ≤25 resulting in a pass). With this model, drivers failed by
the VDT are 2.6 times more likely to fail the ORE,
corresponding to the plateau of risk ratios illustrated in Figure
8 of Multimedia Appendix 6.

Using the time series clustering feature set, the SVM
parameterization yielding the highest classification accuracy
failed 3.6% of people taking the VDT, where 45% of those
predicted to fail the ORE are false alarms. With 1.6% of all
driver applicants being a false alarm, 13% of the false alarms
nearly failed the ORE with scores between 20 and 25. This VDT
misclassifies 25% of all driver applicants, where 26% of these
drivers have an ORE score in the gray zone. With this model,
drivers failed by the VDT are 2.3 times more likely to fail the
ORE.

Discussion

Principal Findings
This study specifically aimed to evaluate a novel method for
automatically classifying user-generated time series data versus
a traditional and resource-intensive approach (classification by
manually creating features [variables] using domain knowledge
and SME). When compared with the standard method of feature
selection (using manually created variables), the clustering
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method demonstrated a similar to higher accuracy in predicting
ORE results. More specifically, it outperformed the standard
method by accurately identifying the most underprepared
applicants (those applicants who failed the ORE).

Although time series clustering is not a completely new idea,
our particular application using a two-stage analysis of critical
subintervals (our event zones) is novel. Moreover, our
application does not suffer from the known problem of
sliding-window partitioningthen cluster methods, which have
been shown to be inconsistent in producing meaningful
predictions [27]. In this study, we leveraged contextual
similarities in scripted scenarios written to elicit specialized
driving behavior in response to changes in the environment
along the route, including ambient traffic [28]. Clustering the
behaviors exhibited in these event zones leads to highly
correlated clusters [29] that are quantifiably useful for the task
of predicting ORE pass/fail.

The clustering is useful beyond simple binary prediction:
Knowing how the data break down into groups allowed us to
formulate a profile made of prototypical behavior, which
represents the traits exhibited by the cluster members [30]. Only
a small portion of the sample (433 of the 4308 drivers) had an
ORE score greater than 45 (scores <26 result in passing). As
we dealt with a heavily weighted distribution of ORE pass/fail
(roughly 3 to 1), we carefully scrutinized the composition of
the clusters formed; we also focused on identifying dangerous
drivers (higher accumulation of critical driving errors) instead
of optimizing overall predictive accuracy for ORE pass/fail.

Although the clusters did not cleanly separate all those who
failed from those who passed, the features generated and then
classified were able to identify outliers in the data rather easily.
In many cases, these outliers presented aberrant driving
behaviors, such as collisions with vehicles, collisions with
pedestrians, and driving off the road. As it is meant to be a
prescreening test, the purpose of VDT was never to identify all
those who would go on to fail the ORE but rather to isolate the
driver applicants who present a danger to themselves and others
on the road. Operationally, the VDT should not restrict eligible
driver applicants from taking the ORE; with that in mind, our
novel approach shows promise in confidently classifying truly
unprepared driver applicants. As a result, we considered
evaluation metrics such as risk ratio instead of accuracy to keep
state ORE examiners out of harm’s way.

Limitations
This study had some limitations. First, the variables approach
that we used did not represent the entire domain set of VDT
performance metrics that could be derived and used. Many of
the initial variables focused heavily on global measures (eg,
measures across the entire simulated drive) rather than focusing
on event-specific measures (eg, performance on curves and
intersections). Owing to this, our analyses may not have taken
into account the full variation in differential VDT performance
(as we would expect that event-specific measures would be able
to further explain this variability).

Second, the sample size available precluded model formulation
specific to the simulated environment (eg, 10 separate models).
Although assignment to clusters was performed for each of the
10 unique environments, only 1 dataset determined model
formulation: each driver applicant record included a series of
cluster assignments and their corresponding ORE score. Future
research with larger samples will account for the different
simulated environments and evaluate them individually.

Finally, because of restrictions placed on implementing the
VDT in a busy licensing workflow, our limited dataset did not
include demographic information and confounding variables
collected for this sample. Age and sex are known risk factors
for crashes among novice drivers [31] and may explain some
variability in performances among new drivers seeking a driver’s
license.

Conclusions and Future Directions
This study provided initial evidence that the time series
clustering feature set when used as input produced classifiers
that performed just as well and, in some cases, better than those
using the traditional variables approach. Future work will
evaluate this method with larger sample sizes and potentially
integrate it with other known methods to develop an optimized
classifier. We also plan to explore more sophisticated variants
of this approach, specifically expanding on a predefined number
of clusters and using approaches such as the silhouette method
[32] to determine an appropriate number of clusters for grouping
behaviors exhibited by driver applicants in each event zone.
Alternatively, we may attempt to maximize feature variance
between clusters using a secondary analysis of variance
clustering refinement procedure [33]. For the purpose of
improved differential diagnostic capabilities in time series
classification tasks, we intend to pursue several avenues of
research that demonstrate potential for producing distinct
prototypical user behaviors.
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Multimedia Appendix 1
Workstation Setup: 1) Standard Dell Monitor, 2) Standard Dell PC, 3) Logitech G29 USB Steering Wheel and Pedals.
[DOCX File , 111 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Virtual driving test workstation.
[DOCX File , 965 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Time Series Clustering for highlighted event zone with cluster centers representing prototypical driving behaviors in that zone.
In the eight sub-plots, “prototypical behaviors” represent the derived cluster medoids for a specific event zone. Plots with more
densely congregated and colorized pixels indicate the driver was moving more slowly through the given event zone than a plot
with sparser, colorized pixels. The white dashes indicate the road median; time series subintervals begin at the white circle and
the position of the driver applicant in each frame is a colorized pixel. Red corresponds to usage of the brakes, green corresponds
to the throttle, light blue represents steering, and the spacing of these pixels are determined by the vehicle’s speed in the given
zone. Collisions with other vehicle or pedestrians are indicated by red circles, collisions with static environmental objects are
indicated by yellow circles. Displayed underneath are the means and standard deviations of actual ORE scores of samples in each
cluster. In addition, displayed is the number of samples in each cluster and the average number of collisions with vehicles and
pedestrians in a given cluster.
[DOCX File , 728 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Performance Metrics and Confidence Intervals for Logistic Regression using “Variables” and “Time Series Clustering”
representations as feature sets for iterated logistic cut-off threshold values.
[DOCX File , 180 KB-Multimedia Appendix 4]

Multimedia Appendix 5
The most successful SVM parameterizations for both feature sets learn to distinguish data which is largely homogeneous with
high “Cost” penalties for misclassification errors. The optimal trade-off observed between TPR and FPR occurs with a fail rate
of approximately 3.5%, about 40% of samples failed are false alarms.
[DOCX File , 221 KB-Multimedia Appendix 5]

Multimedia Appendix 6
We consistently observed more SVM parameterizations that better predicted ORE pass/fail using the “Variables” feature set as
input than for “Time Series Clustering”. Zero is imputed for undefined Risk Ratios in these plots, such results originate from
VDTs with parameterizations that fail no one.
[DOCX File , 342 KB-Multimedia Appendix 6]
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