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Abstract

Background: In chronic neurological diseases, especially in multiple sclerosis (MS), clinical assessment of motor dysfunction
is crucial to monitor the disease in patients. Traditional scales are not sensitive enough to detect slight changes. Video recordings
of patient performance are more accurate and increase the reliability of severity ratings. When these recordings are automated,
quantitative disability assessments by machine learning algorithms can be created. Creation of these algorithms involves non–health
care professionals, which is a challenge for maintaining data privacy. However, autoencoders can address this issue.

Objective: The aim of this proof-of-concept study was to test whether coded frame vectors of autoencoders contain relevant
information for analyzing videos of the motor performance of patients with MS.

Methods: In this study, 20 pre-rated videos of patients performing the finger-to-nose test were recorded. An autoencoder created
encoded frame vectors from the original videos and decoded the videos again. The original and decoded videos were shown to
10 neurologists at an academic MS center in Basel, Switzerland. The neurologists tested whether the 200 videos were
human-readable after decoding and rated the severity grade of each original and decoded video according to the
Neurostatus-Expanded Disability Status Scale definitions of limb ataxia. Furthermore, the neurologists tested whether ratings
were equivalent between the original and decoded videos.

Results: In total, 172 of 200 (86.0%) videos were of sufficient quality to be ratable. The intrarater agreement between the
original and decoded videos was 0.317 (Cohen weighted kappa). The average difference in the ratings between the original and
decoded videos was 0.26, in which the original videos were rated as more severe. The interrater agreement between the original
videos was 0.459 and that between the decoded videos was 0.302. The agreement was higher when no deficits or very severe
deficits were present.
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Conclusions: The vast majority of videos (172/200, 86.0%) decoded by the autoencoder contained clinically relevant information
and had fair intrarater agreement with the original videos. Autoencoders are a potential method for enabling the use of patient
videos while preserving data privacy, especially when non–health-care professionals are involved.

(J Med Internet Res 2020;22(5):e16669) doi: 10.2196/16669
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Introduction

In chronic neurological diseases, especially multiple sclerosis
(MS), clinical assessment of motor dysfunction is crucial to
monitor the disease in patients [1]. Traditional scales used to
assess MS, such as the Expanded Disability Status Scale
(EDSS), are not sensitive enough to detect slight changes in
motor performance [2]. Video recordings of patient performance
are more accurate and increase the reliability of severity ratings
[3,4]. Moreover, when these recordings are automated,
quantitative disability assessments by machine learning
algorithms (MLA) can be created [5]. Machine learning
algorithms are potentially more sensitive in detecting small
changes between images; however, they require high-resolution
images because of the high dimensionality of the data [6,7].
Creation of these algorithms usually involves non–health care
professionals, which is a potential challenge for maintaining
data privacy. Autoencoders can address this issue. They embed
visual information into a lower-dimensional latent space that
preserves information needed for algorithm development but
is not visually interpretable by humans. [6]. An autoencoder
consists of an encoder that creates encoded videos by creating
a sequence of coded frame vectors and a paired decoder that
transforms the coded frame vectors back into the original video.
Videos encoded in this way can be shared with non–health care
professionals, while the decoder can be used to verify if the
essential information from the video has been captured.
However, it is unknown whether the condensed data in the coded
frame vectors contain clinically relevant data. Therefore, the
aim of this proof-of-concept study was to test whether coded
frame vectors of autoencoders contain relevant information for
analyzing videos of the motor performance of patients with MS.

Methods

Study Design and Participants
This study was a subproject of the ASSESS MS study [5] and
was approved by the local ethics committees. All participants
gave their written informed consent prior to inclusion. In the
ASSESS MS study, 9 standardized movements were recorded
on video; these movements covered overall motor function,
including upper extremity function, truncal stability, and
mobility. A detailed description of the movements can be found
elsewhere [8]. For this study, we used recordings of the
finger-to-nose test. The execution of the finger-to-nose test was
standardized using a detailed protocol: Each participant was
instructed to close their eyes and abduct their arms to 90° at the

shoulder in full extension before touching their nose with the
tip of their index finger. Both sides were tested. Original and
decoded videos of 20 participants were shown to 10 neurologists
at an academic MS center in Basel, Switzerland. The
neurologists tested whether these 200 videos in total were
human-readable after decoding and rated the severity grade of
each original and decoded video according to the
Neurostatus-EDSS definitions of limb ataxia [9] (subscore grade
0=no ataxia; grade 1=signs only; grade 2=tremor or clumsy
movements easily seen, minor interference with function; grade
3=tremor or clumsy movements that interfere with function in
all spheres; and grade 4=most functions are very difficult). The
decoded videos were shown firstly, and after an interval of 2-3
weeks, the original videos were shown in the same order to
minimize recall bias. The neurologists tested whether these
videos were human-readable after decoding.

Autoencoder
A variational autoencoder was trained on 2230 videos
comprising the 9 standardized motor performances included in
the ASSESS MS study. The autoencoder was structured so that
the frames of each video were encoded into a lower-dimensional
space and then decoded into their original form.

Figure 1 depicts the structure of the autoencoder [10]. An
encoder network was presented with a single frame from the
video without further context. The frame passed through 5
encoding blocks. In each block, the input was processed in a
block inspired by a densely connected convolutional network
[11], wherein a skip connection was provided between the input
and output layers in addition to a convolutional layer/batch
normalization sequence. Each block halved the resolution of
the image and doubled the feature depth. This network predicted
the mean and variance of a normal distribution, which was then
sampled to produce a code. The code was presented to a second
network that consisted of 5 decoding blocks. Each decoding
block consisted of a skip connection (which performed a simple
upsampling process) and a transposed convolutional block like
that used in a deep convolutional generative adversarial network
[12]. Each block doubled the resolution and halved the feature
depth. The network was trained using a multi-scale structural
similarity–based perceptual loss function [13] with
Kullback-Leibler regularization as per Kingma and Welling
[10]. The input images were 256×256 RGB-D images with a
code length of 256. The training hyperparameters were as
follows: the learning rate was 0.001, the convolutional kernel
size was 5, and the number of initial filters was 8. The model
was trained for 400 epochs.
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Figure 1. Structure of the variational autoencoder.

The key property of interest to us was that when a frame is in
its coded form, it is computationally prohibited to decipher it
without access to the decoder [6]. An autoencoder as described
above reduces the dimensionality of the input data (in our case,
videos) by passing the data through an “information bottleneck”
[14]. The resulting coded, or latent, space sufficiently describes
the data in a way that allows an accurate partial reconstruction.
The shared latent embedding is optimized to represent the salient
information that is similar across frames of multiple videos (in
our case: the movement), whereas dissimilar aspects (eg,
background aspects, details of physical features) are less well
conserved. Neural networks are a machine learning approach
that is inspired by biological neuronal computation; these
networks have demonstrated exceptional performance in
complex image-related tasks in recent years [15-17]. Given this
success, in this study, we used a neural net approach called a
variational autoencoder [18]. A variational autoencoder has at
its center a coded vector of vastly reduced dimensionality. This
is because the decoder requires millions of floating point values
to be set precisely before the coded vector can be successfully
decoded into an image. At the same time, the coded vector
contains all the information necessary to reconstruct that frame;
interestingly, due to the variational constraints during training,
the frame has semantically meaningful cosine distances to other
visually similar frames. This property is very useful for machine
learning tasks that operate upon these coded vectors because
the coded frames can be used in place of the original video
frames without the possibility that a human could use it to
recognize the depicted participant.

Statistics
Intrarater agreement between the ratings of the original and the
decoded videos was assessed using the Cohen weighted kappa
with linear weights (ie, disagreements of 1, 2, and 3 were
weighted by factors of 1, 2, and 3, respectively). A Cohen kappa
of 0 corresponds to chance agreement; 0-0.2, to slight
agreement; 0.21-0.4, fair agreement; 0.41-0.6, to moderate
agreement; 0.61-0.8, to substantial agreement; and 0.81-1, to
almost perfect agreement [19]. All analyses were performed in
MATLAB (MathWorks, Inc).

Results

The characteristics of the study population and the participating
neurologists are summarized in Table 1.

In total, 172/200 (86.0%) videos were of sufficient quality to
be ratable. The Cohen weighted kappa indicating intra-rater
agreement between the original and decoded videos was 0.317.
The average difference in the ratings between the original and
decoded videos was 0.26, in which the original videos were
rated as more severe. The inter-rater agreements of the original
and decoded videos were 0.459 and 0.302, respectively. As
depicted in Figure 2, agreement was higher when no deficits
(grade 0) or very severe deficits (grade 4) were present. Note
that most videos that were not ratable were judged so by
neurologists 2 and 5.
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Table 1. Characteristics of the patients and neurologists who participated in the study.

ValueCharacteristic

Patient characteristics (n=20)

44.4 (27-74)Age (years), mean (95% CI)

12 (63%)/7 (37%)Gender (female/male), n (%)

13.2 (1-40)Disease duration (years), mean (95% CI)

3.5 (0-6.5)Median EDSSa (range)

19 (95%)/1 (5%)Type of MSb (RRMSc/SPMSd), n (%)

Neurologists (n=10)

5 (50%)/5 (50%)Gender (female/male), n (%)

8.8 (3 to >30)Years of experience in neurology, mean (range)

aEDSS: Expanded Disability Status Scale.
bMS: multiple sclerosis.
cRRMS: relapsing remitting multiple sclerosis.
dSPMS: secondary progressive multiple sclerosis.

Figure 2. Ratings by 10 neurologists of the original and decoded videos. The colored squares represent the different grades for limb ataxia of the
finger-to-nose-test according to the Neurostatus-Expanded Disability Status Scale subscores: black=0, dark grey=1, grey=2, bright grey=3, and white=4.
The blue squares represent videos that were judged as not ratable by the neurologists.
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Discussion

Principal Findings
In this proof-of-concept study, 172/200 (86.0%) of the decoded
videos were of sufficient quality to be ratable. We found fair
intrarater agreement between the original and decoded videos.
The agreement was better for minor and severe deficits in motor
function.

Data security and privacy are increasingly requested by health
care professionals for data capture, analysis, and storage [20].
At the same time, the use of machine learning algorithms and
deep neuronal network techniques as subdomains of artificial
intelligence is increasingly infiltrating all areas of health care
[21,22]. The use of new technologies and electronic tools for
capture and automated analysis of clinical data generally
requires the involvement of non–health care professionals, which
creates challenges regarding data privacy. To our knowledge,
this is the first study to use an autoencoder to allow the analysis
of patient videos while preserving data privacy.

Patients with MS may present with slight changes in motor
performances over their disease course. Clinical assessment of
these changes is notoriously difficult. Video analysis of motor
performances allows automated analyses and quantification of
disability by using machine learning algorithm–based analysis

systems such as those used in the ASSESS MS study; however,
it requires a huge data set [5]. Since the creation of machine
learning algorithms usually involves non-medical collaborators,
encoding of these videos is essential. The intra-rater agreement
of original and decoded videos in this study was fair. It is unclear
whether this is due to accordance of the video quality or the
test-retest reliability of the finger-to-nose test. To our
knowledge, no data are available regarding this psychometric
property of the finger-to-nose test.

Limitations
A limitation of this proof-of-concept study is the class imbalance
of the patient videos according to the four grades of limb ataxia
for the finger-to-nose test [9,21]. Further iterations of the deep
neural network are necessary to increase the intrarater reliability.

Conclusions
In this proof-of-concept study, we have shown that the vast
majority (172/200, 86.0%) of videos decoded by an autoencoder
contained clinically relevant information regarding upper
extremity motor performance represented by the finger-to-nose
test and had fair intrarater agreement. Autoencoders are a
potential method for enabling the use of patient videos while
preserving data privacy, especially when non–health care
professionals are involved.
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