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Abstract

Background: Continuous photoplethysmography (PPG) monitoring with a wearable device may aid the early detection of atrial
fibrillation (AF).

Objective: We aimed to evaluate the diagnostic performance of a ring-type wearable device (CardioTracker, CART), which
can detect AF using deep learning analysis of PPG signals.

Methods: Patients with persistent AF who underwent cardioversion were recruited prospectively. We recorded PPG signals at
the finger with CART and a conventional pulse oximeter before and after cardioversion over a period of 15 min (each instrument).
Cardiologists validated the PPG rhythms with simultaneous single-lead electrocardiography. The PPG data were transmitted to
a smartphone wirelessly and analyzed with a deep learning algorithm. We also validated the deep learning algorithm in 20 healthy
subjects with sinus rhythm (SR).

Results: In 100 study participants, CART generated a total of 13,038 30-s PPG samples (5850 for SR and 7188 for AF). Using
the deep learning algorithm, the diagnostic accuracy, sensitivity, specificity, positive-predictive value, and negative-predictive
value were 96.9%, 99.0%, 94.3%, 95.6%, and 98.7%, respectively. Although the diagnostic accuracy decreased with shorter
sample lengths, the accuracy was maintained at 94.7% with 10-s measurements. For SR, the specificity decreased with higher
variability of peak-to-peak intervals. However, for AF, CART maintained consistent sensitivity regardless of variability. Pulse
rates had a lower impact on sensitivity than on specificity. The performance of CART was comparable to that of the conventional
device when using a proper threshold. External validation showed that 94.99% (16,529/17,400) of the PPG samples from the
control group were correctly identified with SR.

Conclusions: A ring-type wearable device with deep learning analysis of PPG signals could accurately diagnose AF without
relying on electrocardiography. With this device, continuous monitoring for AF may be promising in high-risk populations.

Trial Registration: ClinicalTrials.gov NCT04023188; https://clinicaltrials.gov/ct2/show/NCT04023188

(J Med Internet Res 2020;22(5):e16443) doi: 10.2196/16443
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Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia,
and its prevalence has rapidly increased, especially in the elderly
population [1]. In view of this trend, 17.9 million adults are
expected to develop AF in Europe by the year 2060 [2]. The
socioeconomic burdens of AF are also increasing rapidly in line
with its prevalence such that annual medical expenses associated
with AF have risen at least five fold in the last decade [3].
Considering the serious complications of AF, early diagnosis
and proper management are important.

However, the early detection of AF is challenging owing to its
paroxysmal nature [4]. This characteristic makes single
electrocardiography (ECG) screening no better than pulse
palpation to detect silent AF [5]. Besides, the diagnosis of early
AF tends to be delayed because the condition is often
asymptomatic [6]. This unmet need for early AF detection may
be relieved by continuously monitoring the cardiac rhythm in
high-risk populations [7]. However, the cost and invasiveness
of an implantable loop recorder limit its use as a continuous
monitoring device.

Recently, photoplethysmography (PPG) has been assessed to
generate a novel biosignal to monitor AF [8-11]. Compared
with ECG, PPG has advantages in terms of accessibility and
applicability to wearable or mobile devices [12]. In contrast to
an inconvenient traditional strategy to confirm cardiac
arrhythmia whereby the patient needs to visit the hospital and
undergo ECG, PPG can be easily performed at home using a
smartphone or a wearable device. Recently, the Apple Heart
Study showed that this strategy has the potential to detect
underlying AF in the general population [13]. Moreover, AF
detection with PPG can be accurate with deep learning analysis,
without relying on ECG [14]. However, the accuracy of PPG
depends on the site of measurement [15]. The finger has the
highest amplitude and the smallest pulse peak time and reflection
index for PPG compared with other body parts; thus, it provides
maximum information that can be analyzed [16]. The finger
also receives a more abundant supply of arterial blood than the
wrist and is easier to affix sensors, hence improving signal
quality. As a result, collection of PPG signals from the finger
is likely to yield better signal quality than that from the wrist.
Therefore, a ring-type wearable device may be a more suitable
candidate for the acquisition of PPG signals than a wrist-type
wearable device, such as the Apple Watch. Thus, we
hypothesized that a ring-type wearable device monitoring PPG
data would have high diagnostic performance in the detection
of AF. This study aimed to develop a ring-type wearable device
(CardioTracker, CART) to detect AF with deep learning analysis
of PPG signals and to evaluate its diagnostic performance in
patients with AF.

Methods

Study Design and Population
This was a prospective, single-center, observational cohort study
conducted from 2018 to 2019. The flowchart of this study is
illustrated in Multimedia Appendix 1. Adult patients (aged ≥20
years) with persistent AF who were admitted for elective
direct-current cardioversion were eligible for the study. The
patients were excluded from the study if their cardiac rhythm
just before the cardioversion was not AF. The participants who
met the eligibility criteria were introduced to the study and
enrolled after obtaining informed consent. The recruitment
process was consecutive, and measurements were performed
in the order of consent to participate in the study.

For direct-current cardioversion, electric shocks of 100-200 J
with a biphasic defibrillator were delivered by paddles under
light sedation. The cardiac rhythms before and after the
cardioversion were validated with 12-lead ECG read by three
cardiologists. If there was a discrepancy, a senior
electrophysiologist (EKC or EL) assessed the final cardiac
rhythm. Both before and after the cardioversion, each participant
was at rest in the supine position and PPG and simultaneous
single-lead ECG were recorded over 15 min. We did not
measure PPG signals after the shock delivery for those in whom
cardioversion was unsuccessful. The study protocol was
approved by the Institutional Review Board of Seoul National
University Hospital and adhered to the Declaration of Helsinki
(approval no: 1801-081-916). The study has been registered at
ClinicalTrials.gov (NCT04023188).

Measurements
This study used PPG measurements by CART (Sky Labs Inc,
Seongnam, Republic of Korea) and a conventional
medical-grade pulse oximeter (iDAQ-400 with PPG-AMP and
P400, PhysioLab Inc, Busan, Republic of Korea) as the two
index tests and synchronized single-lead ECG (lead I) as the
reference standard. The two devices recorded PPG signals
simultaneously (CART at the proximal phalanx and the
conventional device at the fingertip). The participant chose a
finger that was the most comfortable for PPG measurements
and wore CART. Wearing CART was not very different from
wearing a conventional ring. However, to ensure proper signal
quality, other fingers were selected if there were scars, thick
skin, or tremors. Moreover, three different sized CART devices
were prepared for proper contact between the skin and PPG
sensors. The measurements of both PPG signals and the
single-lead ECG were synchronized. The PPG signals from the
conventional device and the single-lead ECG were tracked and
recorded by monitoring equipment kept at the bedside, whereas
the PPG signals from CART were wirelessly transmitted to a
research-purpose smartphone in real time (Figure 1). The
rhythms of PPG data were confirmed and labeled by reading
synchronized single-lead ECG strips. The cardiac rhythms were
classified into sinus rhythm (SR) or AF. Here, SR included a
case where there existed premature atrial or ventricular beats.

J Med Internet Res 2020 | vol. 22 | iss. 5 | e16443 | p. 2http://www.jmir.org/2020/5/e16443/
(page number not for citation purposes)

Kwon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


During the measurement, the participant was required to lie still
in bed to minimize motion artifacts.

We applied a bandpass filter (0.2-18 Hz) to the PPG signals,
recorded them at a sampling frequency of 50 Hz, and exported
them in XML format for preprocessing. Examples of PPG data

from CART and the conventional pulse oximeter are illustrated
in Multimedia Appendix 2.

For data augmentation [14,17], each 15-min PPG datum was
divided into 30-s samples with 20-s overlaps. For the deep
learning process, every sample was labelled as AF or SR
according to the rhythm of its synchronized single-lead ECG.

Figure 1. Demonstration of photoplethysmography (PPG) monitoring by CardioTracker (CART). CART measures PPG signals at the proximal phalanx
and wirelessly transmits the data to the linked smartphone, which can monitor the PPG signals in real-time, and the deep learning algorithm suggests a
possible diagnosis.

Ring-Type Wearable Device
CART has been developed to collect and analyze PPG signals
from the proximal phalanx. The measurement is based on the
reflective method [18], using high-intensity green light-emitting
diodes (LEDs) and photodiodes (PDs) embedded inside. It
analyzes the PPG signals using a deep learning algorithm with
a convolutional neural network (CNN) [17,19], which involves
nine neural layers, where the top two are fully connected. The
neural network was trained by the Adam optimizer [20]. Dropout
and L2 regularization were performed to prevent overfitting
[21]. The softmax outputs of the neural network were gently
calibrated with temperature scaling to exhibit the diagnostic
confidence of SR and AF for every testing PPG sample [22].

To compare the CNN to nondeep learning algorithms, CART
also uses a linear-kernel support vector machine (SVM) [23],
as it has been shown to have the best diagnostic performance
among nondeep learning algorithms [24]. For the features of

SVM, we used root mean square of the successive differences
of RR intervals with Shannon entropy (RMSSD+ShE) [25],
autocorrelation [9], and the ensemble of the previous two
(RMSSD+ShE and autocorrelation).

Multimedia Appendix 3 illustrates CART and its wireless
charging station. The LEDs and PDs of CART were designed
to be located under the finger. CART is made of surgical steel
and is waterproof and dustproof (IP58 grade). It collects PPG
signals at the proximal phalanx by measuring the reflected lights
under the finger. It can monitor PPG signals over 60 hours
continuously and can store data for up to 10 hours. It can upload
the data via Bluetooth to a mobile or cloud server and can be
charged wirelessly with its cradle.

Diagnostic Performance Analysis
We evaluated the baseline characteristics of the study
population, including demographics, comorbidities, use of
antiarrhythmic agents and anticoagulants, CHA2DS2-VASc
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scores, and history of AF. Multiple five-fold cross-validation
processes were used to perform the training and testing processes
of the deep learning algorithm. Each validation process
randomly assigned 80% of the total participants for training and
the other 20% for testing. The validation process was repeated
10 times for each combination of training and testing datasets,
resulting in a total of 50 validation processes for evaluating
overall diagnostic performance. For the deep learning process,
entire 30-s PPG samples were used without pre-extracted
features in training or testing. For a given PPG sample, the deep
learning algorithm identified SR or AF, whichever had higher
diagnostic confidence. There were no indeterminate or missing
data in the two index tests and the reference standard.

To evaluate the diagnostic performance of CART according to
the length of the PPG samples, we generated 25-, 20-, 15-, 10-,
and 5-s PPG samples from the raw data and repeated the
analysis. To investigate whether its performance is affected by
the variability of peak-to-peak intervals or the pulse rate of PPG
signals, we calculated both the coefficient of variation of the
peak-to-peak intervals and the pulse rate for every sample. The
diagnostic performance according to the variability and pulse
rate was evaluated. As the use of a ring-type device for PPG
measurement is not fully understood yet, we compared the two
index tests (CART and conventional device) by performing the
same analysis but with different PPG measurements. We also
assessed the accuracy of the diagnostic performance by trying
different subsets of PPG samples; a PPG sample was allowed
to be tested by the deep learning algorithm only if its diagnostic
confidence was higher than a certain threshold level. For
external validation of CART with the deep learning algorithm,
20 healthy subjects with SR were additionally recruited. The
PPG signals were measured by CART and processed according
to the same protocol in each subject. Considering the random
characteristics of deep learning, we repeated the testing 10 times.

Statistical Analysis
The Kolmogorov-Smirnov test was used to check for normal
distribution of clinical variables. The data are presented as mean
(SD) for age, median with IQR for body mass index and
CHA2DS2-VASc score, or n (%) for other variables. We
obtained cross-tabulation from the validation process and
calculated the sensitivity, specificity, positive-predictive value
(PPV), negative-predictive value (NPV), and diagnostic
accuracy (the ratio between the number of correct cases and the
total number of tests). A receiver operating characteristic curve
was constructed, and the area under the curve (AUC) with 95%
CI was calculated using the diagnostic confidence (CNN) or
features (SVM). The mean pulse rate was compared between
SR and AF samples using the Student t test. All statistical
analyses were two-sided, and P<.05 was considered statistically
significant. The data were analyzed using SPSS version 22.0
(IBM Corp, Armonk, New York, USA).

Results

Baseline Characteristics
The baseline characteristics of the study population are
illustrated in Table 1. A total of 100 participants (81 male
participants, 81%; mean age 63.8 years, SD 8.5; median
CHA2DS2-VASc score 2) were enrolled in this study. We
collected a total of 13,038 30-s PPG samples (5850 for SR and
7188 for AF) from this population, using CART. Among the
100 participants, 81 had persistent AF and the other 19 had
long-standing persistent AF. In 15 participants, cardioversion
was unsuccessful. The mean pulse rate was higher in AF samples
than in SR samples (63.5, SD 9.9 vs 59.6, SD 9.9; P<.001).
There were no adverse events or safety issues during the study.
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Table 1. Baseline characteristics of the study population (N=100).

ValueaCharacteristic

Demographics

63.8 (8.5)Age (years)

81 (81.0)Male

25.3 (23.5-27.1)Median body mass index (kg/m2)

2 (1-3)Median CHA2DS2-VASc score

7 (7.0)Atrial fibrillation ablation history

Types of AF

81 (81.0)Persistentb

19 (19.0)Long-standing persistentc

Comorbidity

15 (15.0)Congestive heart failure

57 (57.0)Hypertension

27 (27.0)Diabetes mellitus

4 (4.0)Stroke or transient ischemic attack

6 (6.0)Myocardial infarction or ischemic heart disease

3 (3.0)Valvular heart disease

35 (35.0)Dyslipidemia

3 (3.0)Chronic renal failure

1 (1.0)Chronic obstructive pulmonary disease

3 (3.0)Hyperthyroidism

Antiarrhythmic agents

17 (17.0)Propafenone

10 (10.0)Flecainide

3 (3.0)Pilsicainide

0 (0)Sotalol

64 (64.0)Amiodarone

24 (24.0)Beta-blocker

27 (27.0)Nondihydropyridine calcium channel blocker

2 (2.0)Digoxin

Anticoagulants

9 (9.0)Warfarin

91 (91.0)Nonvitamin K oral anticoagulant

Other medications

100 (100)Angiotensin-converting enzyme inhibitor

29 (29.0)Angiotensin II receptor blocker

15 (15.0)Diuretics

32 (32.0)Statin

aValues are mean (SD) for age, median (IQR) for body mass index and CHA2DS2-VASc score, or n (%) for other variables.
bAtrial fibrillation history for more than 1 month but less than 1 year.
cAtrial fibrillation history for more than 1 year.
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Diagnostic Performance According to the Algorithms
The performance of CART according to the algorithms is
presented in Table 2 and Figure 2. Combined with the CNN
algorithm, it showed the highest performance for all the
diagnostic parameters, with diagnostic accuracy of 96.89%,
sensitivity of 98.96%, specificity of 94.34%, PPV of 95.55%,
NPV of 98.67%, and AUC (95% CI) of 0.993 (0.992-0.993).

Among the nondeep learning algorithms, SVM with the
ensemble method had the highest results for all the parameters,
except sensitivity and NPV, with diagnostic accuracy of 91.49%,
sensitivity of 91.29%, specificity of 91.74%, PPV of 93.14%,
NPV of 89.55%, and AUC (95% CI) of 0.983 (0.982-0.983).
Adding RMSSD and ShE to autocorrelation as features did not
significantly improve the performance of SVM (Figure 2).

Table 2. Diagnostic performance of the ring according to algorithms.

AUCa (95% CI)Negative-predic-
tive value, mean
percentage

Positive-predictive
value, mean per-
centage

Specificity,
mean percent-
age

Sensitivity,
mean percent-
age

Accuracy, mean
percentage

Algorithm

0.993 (0.992-0.993)98.6795.5594.3498.9696.89Convolutional neural network

0.983 (0.982-0.983)89.5593.1491.7491.2991.49SVMb, ensemblec

0.982 (0.981-0.982)90.3692.1890.492.1591.37SVM, autocorrelationd

0.887 (0.885-0.889)86.8882.3176.0790.6584.11SVM, RMSSDe+ShEf g

aAUC: area under the receiver operating characteristic curve.
bSVM: support vector machine.
cSVM with autocorrelation, RMSSD, and ShE as features.
dSVM with autocorrelation as a feature.
eRMSSD: root mean square of the successive differences of RR intervals.
fShE: Shannon entropy.
gSVM with RMSSD and ShE as features.

Figure 2. Diagnostic performance of CardioTracker (CART) according to the algorithms. CART with the deep learning algorithm achieved the highest
results for all diagnostic parameters. (A) ROC curves, (B) Diagnostic parameters, and (C) AUCs according to the algorithms. AUC: area under the
curve, CNN: convolutional neural network, NPV: negative-predictive value, PPV: positive-predictive value, ROC: receiver operating characteristic,
SN: sensitivity, SP: specificity, SVM, autocorrelation: support vector machine with autocorrelation as a feature, SVM, RMSSD+ShE: support vector
machine with root mean square of the successive differences of RR intervals and Shannon entropy as features, SVM, ensemble: support vector machine
with all three features.

Impact of Sample Length
The association between sample length and the diagnostic
performance of CART is presented in Figure 3 and Table 3.
The figure only presents the results of CART with CNN. As

expected, all diagnostic parameters decreased as sample length
shortened. Using 10-s PPG segments, CART achieved diagnostic
accuracy of 94.72%, sensitivity of 97.46%, specificity of
91.35%, PPV of 93.26%, NPV of 96.69%, and AUC (95% CI)
of 0.985 (0.985-0.986).
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Figure 3. The diagnostic performance of CardioTracker according to sample length. In general, longer lengths of photoplethysmography samples had
higher diagnostic performances. AUC: area under the curve, NPV: negative-predictive value, PPV: positive-predictive value, SN: sensitivity, SP:
specificity.

Table 3. Diagnostic performance according to sample length.

AUCa (95% CI)Negative-predictive
value, mean percentage

Positive-predictive value,
mean percentage

Specificity, mean
percentage

Sensitivity, mean
percentage

Accuracy, mean
percentage

Duration
(s)

0.993 (0.992-0.993)98.6795.5594.3498.9696.8930

0.991 (0.990-0.991)98.8094.8593.4099.0896.5325

0.992 (0.992-0.992)98.5694.8793.4398.8996.4420

0.990 (0.990-0.990)98.0294.5292.9998.4796.0115

0.985 (0.985-0.986)96.6993.2691.3597.4694.7210

0.966 (0.965-0.966)92.9088.9185.4994.6890.555

aAUC: area under the receiver operating characteristic curve.

Impact of Premature Beats
Each SR-labelled PPG sample may have a record of atrial or
ventricular premature beats, which can be confirmed by
evaluating synchronized ECG. We evaluated the specificity of
our device by assessing the burden of premature beats (Figure
4). The total number of samples was 10 times the number of
SR samples (58,500), as the validation processes were repeated
10 times. When participants were randomized for the five-fold
cross-validation processes such that the algorithm always
encountered new participants in the testing, higher burdens of
premature beats deteriorated the specificity of CART, regardless

of the algorithm. Among the algorithms, CNN maintained the
highest results for most cases of premature beat burdens. When
samples were randomized such that the algorithm might
encounter the same participants in testing, there was an
improvement in CNN performance, especially for higher
burdens of premature beats, and CNN maintained overall
consistent results, regardless of the burden. As this validation
process simulates a situation with a sufficiently large number
of participants in the training dataset, this finding implies that
the performance would improve with an increasing population,
regardless of the burden of premature beats.
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Figure 4. The specificity of CardioTracker according to the burden of premature beats. (A) The five-fold cross-validation process with randomization
of participants. There was a decreasing trend of specificity according to increasing burden of premature beats. However, the convolutional neural network
(CNN) maintained the highest results for most cases. (B) The five-fold cross-validation process with randomization of samples. The CNN improved
specificity in especially high burden of premature beats. SVM, autocorrelation: support vector machine with autocorrelation as a feature, SVM,
RMSSD+ShE: support vector machine with root mean square of the successive differences of RR intervals and Shannon entropy as features, SVM,
ensemble: support vector machine with all three features.

Impact of the Variability of Peak-to-Peak Intervals
and the Pulse Rate
The performance of CART can be affected by the characteristics
of the PPG samples. We evaluated whether the variability of
peak-to-peak intervals and the pulse rate affected the
performance (Figure 5). For sensitivity, higher peak-to-peak
interval variability and faster pulse rates were associated with
higher sensitivity for SVM. However, for CNN, neither
peak-to-peak interval variability nor pulse rate had such a
relevant association with sensitivity. This finding suggests that
CART with a deep learning algorithm is less affected by
peak-to-peak interval variability or the pulse rate of AF.

For specificity, the performance of CART decreased with higher
peak-to-peak interval variability regardless of the algorithm.
However, for CNN, only the extremes of the variability (the
ninth and the tenth deciles) had decreased specificity less than
90%. This finding was expected, as SR with higher peak-to-peak
interval variability mimics AF to a great extent. There was a
nonlinear association between specificity and pulse rate, and in
general, the results were the highest with CNN. The complicated
association between specificity and pulse rate can be mostly
explained by evaluating the association between the burden of
premature beats and the pulse rate (Multimedia Appendix 4).
For example, lower specificity for the sixth decile of the pulse
rate can be due to the higher burden of premature beats.
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Figure 5. The sensitivity and specificity of CardioTracker according to the characteristics of samples. (A) and (B) With the deep learning algorithm,
there were no definite associations between the sensitivity and peak-to-peak interval variability or the pulse rate. (C) The specificity generally decreased
with higher peak-to-peak interval variability. (D) There was generally a U-shape association between specificity and the pulse rate. CNN: convolutional
neural network, SVM, autocorrelation: support vector machine with autocorrelation as a feature, SVM, RMSSD+ShE: support vector machine with
root mean square of the successive differences of RR intervals and Shannon entropy as features, SVM, ensemble: support vector machine with all three
features.

Visualization of Deep Learning Analyses
The deep learning analyses for CART are illustrated in Figure
6 by mapping extracted features from the deep learning
algorithm into two-dimensional space. According to the
t-distributed stochastic neighbor embedding plot, the cluster of
AF was well differentiated from the counterpart of SR. In the
region where the two clusters overlapped, lower diagnostic
confidences were observed, which suggests that the deep
learning algorithm mostly failed when the PPG samples

belonged to this region. When we applied heatmaps with the
pulse rate and peak-to-peak interval variability, this region had
characteristics with lower pulse rates and modest variabilities.
When we inspected the actual PPG data, this region also
exhibited noisy signals. Therefore, PPG samples with lower
pulse rates, modest variabilities, and noise would likely have
low diagnostic performance. The cluster of AF was
homogeneous in terms of the pulse rate, whereas the cluster of
SR had distinctive subportions according to the actual pulse
rate.
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Figure 6. Visualization of deep learning analyses. The deep learning analyses of CardioTracker are plotted with the t-SNE method. The upper panel:
(A) The two clusters of AF and SR were well differentiated from each other, leaving a small overlapped potion. (B), (C), and (D) The overlapped region
showed low diagnostic confidence, low pulse rates, and modest peak-to-peak interval variability. The lower panel: typical examples of
photoplethysmography samples. AF: atrial fibrillation, SR: sinus rhythm, t-SNE: t-distributed stochastic neighbor embedding.

CardioTracker and the Conventional Pulse Oximeter
We evaluated the two index tests in parallel and observed the
changes in diagnostic performances according to the threshold
level of diagnostic confidence. Compared with the conventional
pulse oximeter, CART showed comparable diagnostic
performance (Table 4). In both devices, all the diagnostic
parameters improved with increasing threshold levels
(Multimedia Appendix 5). This finding is expected, as the

diagnosis would become more accurate for samples with higher
diagnostic confidence. However, this improvement was
counter-balanced by increasing the proportion of filtered samples
(not tested by the deep learning algorithm). From these findings,
CART appears to be comparable to the conventional pulse
oximeter when used as a PPG measurement device. Moreover,
the performance of CART can be tuned by applying different
threshold levels.
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Table 4. Comparison of diagnostic performance between CardioTracker and the conventional pulse oximeter at the fingertip (control).

AUCa (95% CI)bNegative-predictive
value, mean percentage

Positive-predictive value,
mean percentage

Specificity, mean
percentage

Sensitivity, mean
percentage

Accuracy, mean
percentage

Device

0.993 (0.992-0.993)98.6795.5594.3498.9696.89CARTc

0.995 (0.995-0.995)99.5695.9594.8999.6697.50Control

aAUC: area under the receiver operating characteristic curve.
bThe standard error by the binomial exact test was less than 0.01.
cCART: CardioTracker.

External Validation of CardioTracker in Healthy
Subjects
A total of 1740 PPG samples were obtained from 20 healthy
subjects with SR. Among these samples with repeated testing
10 times, 94.99% (16,529/17,400) of the testing cases were
correctly identified with SR.

Discussion

Principal Findings
This prospective observational cohort study evaluated the
diagnostic performance of a ring-type wearable device (CART)
to detect AF. To the best of our knowledge, this is the first
clinical study to analyze the performance of a ring-type wearable
device designed for detecting AF with PPG. The study had
several findings. First, we found that the deep learning algorithm
can maximize the performance of CART solely based on PPG.
Second, a PPG measurement period of about 10 s may be
sufficient to detect AF. Third, the data from a sufficiently large
number of participants may further improve the performance
of CART by enhancing the deep learning process, especially
for difficult cases in which the high burden of premature beats
mimics AF. Fourth, among the diagnostic parameters, sensitivity
may be maintained at a consistently high level regardless of the
variability of peak-to-peak intervals or the pulse rate of PPG
signals. Fifth, although CART measures PPG at the middle of
the finger, which is not the location where a conventional pulse
oximeter measures the impulse, its performance is comparable
to that of a conventional device. Lastly, we performed external
validation of CART with the deep learning algorithm in healthy
subjects and observed that the CNN algorithm can diagnose SR
accurately.

Screening for Atrial Fibrillation in a High-Risk
Population
AF is known to cause about 10% of the total cases of stroke,
and it has been shown to increase the risk of stroke even when
discovered incidentally through screening [26]. AF screening
is beneficial in an appropriate setting for patients in all localities.
Therefore, early diagnosis of AF with appropriate anticoagulant
therapy is expected to reduce the risk of ischemic stroke.
However, early diagnosis is challenging because paroxysmal
or asymptomatic episodes are common. Therefore, further
research is needed to find more convenient and effective
screening methods. Based on this aspect, PPG has recently
attracted attention as a method of AF screening because it can

be continuously monitored with appropriate equipment and its
measurement is convenient.

Utility of Photoplethysmography to Detect Atrial
Fibrillation
This study used PPG signals measured from CART to detect
AF. As there is a good correlation between each pulse of PPG
and the corresponding QRS complex on ECG, it is feasible to
diagnose AF with PPG. Considering that PPG has limited
capability to detect atrial electrical activity, many PPG
algorithms have been studied to detect AF using the randomness
of peak-to-peak intervals [27,28]. Two issues should be
addressed. First, there is uncertainty as to the choice of algorithm
used to detect AF. For detecting AF with PPG, deep learning
algorithms have been known to achieve the highest diagnostic
results so far [14]. The possible reason is that nondeep learning
algorithms use only specific data features, which are invented
by humans, whereas deep learning algorithms analyze the entire
dataset without human guidance. Second, the optimal anatomical
location for PPG measurement is debatable. Multiple studies
have evaluated the diagnostic value of PPG measured at various
sites, including the wrist and face [8,10,12]. However, a recent
study showed that the finger has the highest quality of PPG
signals [16]. Therefore, to diagnose AF more effectively, it is
probably best to analyze PPG signals from the finger. In
summary, the most effective AF diagnosis is possible when
analyzing PPG signals from the finger and using deep learning
algorithms.

Wearable Devices to Detect Atrial Fibrillation With
Photoplethysmography
The method for screening AF should be not only supported by
sufficient diagnostic precision but also convenient for patients.
The strategy of carrying a portable device involving
point-of-care testing is not only inconvenient but also ineffective
in that it can miss the diagnosis when AF is asymptomatic. In
this context, a wearable device that continuously monitors PPG
signals in the background without user intervention would be
easy to use and efficient for diagnosis. If CART is worn all day,
PPG signals can be continuously monitored; therefore, more
AF episodes could be detected. However, continuous monitoring
might increase the chance of collecting other signals, such as
noise caused by movements in daily life, leading to a decrease
in the accuracy of diagnosis. To resolve this problem, we need
engineering technology for estimating and correcting motion
artifacts through the use of accelerometer sensors in addition
to PPG signal analysis. Second, various atrial tachyarrhythmia
episodes other than AF could be detected more frequently, which
might lower the diagnostic performance for AF detection by
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CART. Sufficient data should be collected for various atrial
tachyarrhythmias in addition to AF to improve machine learning
analyses.

Besides, when PPG signals are continuously monitored, various
atrial tachyarrhythmia episodes can occur in addition to AF,
which may lower the diagnostic performance of CART. If atrial
tachyarrhythmia episodes occur frequently, the irregularity of
the PPG signal is expected to be similar to that for AF, and in
this case, the diagnostic performance of CART may deteriorate.
To solve this issue, sufficient data should be collected for
various arrhythmias in addition to AF to improve machine
learning analyses.

Although wearable devices may not have become popular due
to their availability and cost-effectiveness, the usefulness of
such devices in the detection of AF has been studied [29]. The
wrist-type device is one of the most widely studied wearable
devices [13,30,31]. However, the WATCH AF Trial also
reported that a high proportion (22%) of PPG signals from
smartwatches had an insufficient signal quality for evaluation
[31]. Therefore, measuring PPG signals on the wrist may lead
to poor signal quality. In order to resolve this issue, other types
of wearable devices are necessary, and the ring-type device,
which measures PPG signals from the finger, might be ideal.
Therefore, a ring-type wearable device could be useful as a new
diagnostic tool for high-risk populations in the future.

Limitations
There are some limitations in this study. First, noise in PPG
signals, such as motion artifacts, might affect the analysis.
However, motion artifacts were minimized as every participant
was required to lie still on the bed during the PPG measurement.
The diagnostic performance of CART in an ambulatory setting
will be tested, but a sophisticated deep learning algorithm should
be developed beforehand to deal with motion artifacts. Second,
the performance of CART was not assessed for other
arrhythmias. Future studies should analyze the diagnosis of
other arrhythmias using PPG signals. Third, the duration of

monitoring was relatively short. Longer monitoring times would
allow further deep learning training and subsequently yield
better results than our results. Fourth, we did not compare
performance between CART and other commercially available
wrist-type wearable devices. Further studies will provide insights
into this issue. Fifth, economic assessment of CART cannot be
performed yet. However, in the case of AliveCor, it was shown
that a wearable device could be cost-effective for AF screening
[29]. Likewise, CART is also expected to reduce the economic
burden of diagnosing AF if its market price is reasonable. This
economic evaluation requires further research. Sixth, since a
20-s overlap existed between consecutive samples obtained
from a subject during data augmentation, it is possible that even
if different samples existed in the training and testing datasets,
some sections were the same, and thus, the diagnostic
performance was improved. Seventh, AF diagnosis by PPG
only has limitations. Adding the on-demand recording function
of single-lead ECG, similar to an Apple Watch, to CART may
compensate for the limitations that arise in diagnoses based on
PPG signals. In this case, if AF is suspected during PPG
monitoring, a notification can be sent to the user to check the
electrocardiogram, so that the user can more clearly check for
AF. The validation of such a function would be performed in
future research. Lastly, even though there were no adverse
events of CART, potential safety issues in long-term use should
be addressed in a subsequent study.

Conclusions
In this study, we validated the performance of a ring-type
wearable device (CART) to diagnose AF using PPG signals.
The deep learning algorithm aimed to analyze PPG rhythms
and suggested a dichotomous diagnosis of either AF or SR.
CART with deep learning analysis of PPG signals had good
diagnostic performance without relying on ECG. Moreover, as
a PPG measurement device, CART generated results comparable
to those of a conventional medical-grade pulse oximeter. This
new device may be promising for the detection of AF in
high-risk or asymptomatic populations.
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Multimedia Appendix 1
Study flowchart. AF: atrial fibrillation, CNN: convolutional neural network, CV: cardioversion, ECG: electrocardiography, PPG:
photoplethysmography, SVM: support vector machine.
[PNG File , 233 KB-Multimedia Appendix 1]
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Multimedia Appendix 2
The first row of the figure shows the 15-min measurements from a subject with the single-lead ECG, the PPG from the conventional
pulse oximeter, and the PPG from CardioTracker. The second row of the figure shows one of the 30-s fractions of the raw data.
The third row of the figure shows the preprocessed 30-s sample of the PPG signals obtained from the two devices. ECG:
electrocardiography, PPG: photoplethysmography.
[PNG File , 4835 KB-Multimedia Appendix 2]

Multimedia Appendix 3
The left figure illustrates CardioTracker (CART) and its wireless charging station. The right figure shows the position of the
light-emitting diode (LED) and photodiode (PD) of CART.
[PNG File , 824 KB-Multimedia Appendix 3]

Multimedia Appendix 4
The burden of premature beats according to the deciles of the pulse rate. Each error bar represents the 95% CI of the corresponding
burden of premature beats.
[PNG File , 179 KB-Multimedia Appendix 4]

Multimedia Appendix 5
The performances of CardioTracker and a conventional pulse oximeter according to threshold levels of diagnostic probability.
Both devices showed improved performance with increasing threshold levels. NPV: negative-predictive value, PPV:
positive-predictive value.
[PNG File , 231 KB-Multimedia Appendix 5]
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ECG: electrocardiography
NPV: negative-predictive value
PPG: photoplethysmography
PPV: positive-predictive value
RMSSD: root mean square of the successive differences of RR intervals
ShE: Shannon entropy
SR: sinus rhythm
SVM: support vector machine
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