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Abstract

Background: Sickle cell disease (SCD) is a genetic disorder of the red blood cells, resulting in multiple acute and chronic
complications, including pain episodes, stroke, and kidney disease. Patients with SCD develop chronic organ dysfunction, which
may progress to organ failure during disease exacerbations. Early detection of acute physiological deterioration leading to organ
failure is not always attainable. Machine learning techniques that allow for prediction of organ failure may enable early identification
and treatment and potentially reduce mortality.

Objective: The aim of this study was to test the hypothesis that machine learning physiomarkers can predict the development
of organ dysfunction in a sample of adult patients with SCD admitted to intensive care units (ICUs).

Methods: We applied diverse machine learning methods, statistical methods, and data visualization techniques to develop
classification models to distinguish SCD from controls.

Results: We studied 63 sequential SCD patients admitted to ICUs with 163 patient encounters (mean age 30.7 years, SD 9.8
years). A subset of these patient encounters, 22.7% (37/163), met the sequential organ failure assessment criteria. The other 126
SCD patient encounters served as controls. A set of signal processing features (such as fast Fourier transform, energy, and
continuous wavelet transform) derived from heart rate, blood pressure, and respiratory rate was identified to distinguish patients
with SCD who developed acute physiological deterioration leading to organ failure from patients with SCD who did not meet
the criteria. A multilayer perceptron model accurately predicted organ failure up to 6 hours before onset, with an average sensitivity
and specificity of 96% and 98%, respectively.

Conclusions: This retrospective study demonstrated the viability of using machine learning to predict acute organ failure among
hospitalized adults with SCD. The discovery of salient physiomarkers through machine learning techniques has the potential to
further accelerate the development and implementation of innovative care delivery protocols and strategies for medically vulnerable
patients.

(J Med Internet Res 2020;22(5):e14693) doi: 10.2196/14693
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Introduction

Background
Sickle cell disease (SCD), one of the most common genetic
disorders, affects millions across the globe [1]. It was the first
monogenic disorder to be characterized at the molecular level.
It is characterized by the presence of abnormal hemoglobin S,
which, under hypoxic conditions, causes sickling of red blood
cells, resulting in tissue and organ damage. Among an array of
complications afflicting patients with SCD, the most devastating
is major organ failure, including pulmonary failure, end-stage
renal disease, stroke, and heart failure [1]. A 4-decade
observational study reported that, by the fifth decade of life, up
to half of all patients with SCD had documented irreversible
organ damage [2]. Organ dysfunction may manifest or worsen
during hospitalizations, when disease complications arise. Thus,
therapy supplemented by predictive analytics can potentially
improve the outcomes of patients with SCD [3]. Early diagnosis
of acute organ dysfunction may allow for early intervention,
thereby preventing or reducing the severity of organ failure,
particularly during hospitalization for acute complications.

Early recognition of organ failure may [4,5] thereby enable
clinicians to provide targeted therapies to improve outcomes.
Various scoring methods have been developed for qualifying
organ dysfunction, including Acute Physiology and Chronic
Health Evaluation [6], Multi-Organ Dysfunction Score [7],
quick Sequential Organ Failure Assessment [8] and Sequential
Organ Failure Assessment (SOFA) [9]. The SOFA is a mortality
prediction score that is based on the degree of dysfunction of
six organ systems. The score is calculated at admission and
every 24 hours until discharge, using the worst parameters
measured during the previous 24 hours. Compared with other
scoring methods, the use of SOFA allowed us to retrospectively
quantify both the number and severity of individual organ
dysfunction.

Objectives
In this retrospective study, we used serial calculations of SOFA
to identify the onset of organ failure and then used
physiomarkers in machine learning models to predict organ
failure for patients with SCD presenting with a severe, acute
painful crisis. Our hypothesis was that physiomarkers [10]
identified by machine learning methods can be used to predict
organ failure.

Methods

Cohort
Continuous physiologic data were collected on 134 adult
subjects with SCD admitted to intensive care units (ICUs) at

Methodist Le Bonheur Healthcare hospitals, Memphis,
Tennessee, United States, between June 2017 and March 2018.
Patients were retrospectively identified using a discharge
International Classification of Diseases, Tenth Revision
(ICD-10) code of D57.*. Of the 134 unique patients, 71 patients
who did not have at least 24 hours of continuous physiologic
data were excluded from the analysis. We studied patients who
had at least 24 hours of continuous high-frequency physiologic
data available before the time of organ failure onset (identified
using SOFA criteria). A total of 63 unique adult subjects who
had SCD (discharge ICD-10 code of D57.*) and were admitted
to the medical, surgical, neurological, and cardiac ICUs and
had continuous physiologic data available were retrospectively
identified and included in the study. These 63 patients had 163
encounters (Figure 1). Of the 163 encounters, 37 patient
encounters corresponding to 29 unique patients met organ failure
criteria. The inclusion and exclusion criteria are summarized in
Figure 1. Demographic and clinical data on cases and controls
were collected from the electronic medical record (EMR) using
Cerner’s Web Intelligence reporting module (Cerner Health
Facts). Each patient admission was considered as a separate
patient encounter if the interval between admissions was at least
for 1 month. The principal or admit diagnosis was identified
using the ICD-10 codes. Patients with organ failure at admission
were excluded from the analysis.

High-frequency physiologic data were collected at the frequency
of once per minute from the time of admission until discharge.
A total of 5 physiologic characteristics were used in the analysis,
including heart rate (HR), respiratory rate (RR), systolic blood
pressure (SBP), diastolic blood pressure (DBP), and mean blood
pressure (MBP). These vital signs were selected because they
were always obtained in all patients admitted to ICUs, and these
can be used in identifying organ failure using a minimal set of
physiologic data. The main outcome of organ failure was the
failure of at least one organ or system (cardiovascular, liver,
respiratory, coagulation, central nervous system, or renal), and
cases were defined as patients meeting an increase in a serially
calculated SOFA criteria by at least one score within a 24-hour
rolling window, from admission till discharge. Event time (tonset)
was recorded as the earliest time stamp of every occurrence of
organ failure, as defined independently by SOFA for each
patient. Patients without 24 hours of physiological data before
the tonset (for cases and controls) were excluded. To normalize
our prediction time horizon, we created relative alignments of
time windows, pivoted to tonset. This study was approved by
The University of Tennessee Health Science Center and
Methodist Le Bonheur Hospital Institutional Review Boards,
and it was performed in compliance with the ethical principles
for medical research involving human subjects from the
Declaration of Helsinki.
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Figure 1. Consolidated Standards for Reporting of Trials diagram describing the study cohort.

Feature Extraction and Feature Selection
We utilized Python libraries for extracting features from each
of the physiological data streams, including a combination of
temporal, frequency, and statistical features (Multimedia
Appendix 1) [11]. Features were derived from six overlapping
3-hour time intervals, with a stride of 1 hour, from 1 to 4 hours
to 6 to 9 hours before organ failure, so that we could build
predictive models at different times before organ failure. For
controls (patients with SCD not developing organ failure), we
extracted these same features from 3-hour intervals before a
random time period (identified by time stamp) during their ICU
stay. The detailed feature extraction for organ failure cases and
controls is shown in Multimedia Appendix 2. We performed
feature selection using multiple null hypothesis testing, using
the Benjamini-Yekutieli procedure and Mann-Whitney U test.
Finally, we ranked the features using random forest (RF) [12]
feature importance algorithm and applied various feature
thresholds to select subsets of features that were most
discriminatory among cases and controls.

Machine Learning Algorithms
Multilayer perceptron (MLP), support vector machine (SVM),
RF, and logistic regression (LR) methods were used for building
classification models. These methods were adopted because of
their successful applications to medical datasets for disease
classification [13-18].

An MLP is a deep, feed-forward neural network comprising an
input layer, an output layer, and at least two or more hidden
layers [19]. MLP has been used in a variety of applications,
including electroencephalogram signal classification [15], heart
disease diagnosis [20], ovarian tumor classification [21], and
continuous speech recognition [22]. The MLP architecture used
in this study comprised five hidden layers of 512, 256, 128, 64,
and 16 neurons. We applied batch normalization [23] before
activation, using the rectified linear unit. To avoid overfitting,

we further imposed a dropout [24] ratio of 0.3. The output layer
performed binary classification using the sigmoid activation,
and our loss function used the Adam optimizer.

The SVM is a multivariate machine learning approach for
classifying samples through a pattern recognition analysis [25].
SVM aims to find the best hyperplane that separates all data
points of one class compared with those of another class. We
used a radial basis function as the kernel parameter for model
building.

The RF classifier is well suited to the classification of medical
data because of the following advantages: (1) it performs
embedded feature selection, (2) it incorporates interactions
between predictors, (3) it allows the algorithm to learn both
simple and complex classification functions accurately, and (4)
it is applicable to both binary and multicategory classification
tasks [12]. On the basis of the out-of-bag error [26], we
identified 500 trees in the RF models as the optimal number of
trees.

LR can be used as a machine learning method used to predict
the value of a binary variable based on its relationship with
predictor variables [27]. The P value for statistical testing of
variable significance for inclusion-in and exclusion-from the
model was set to P=.05 and P=.10, respectively, and
LIBLINEAR solver was used for the optimization function.

Statistical Analysis and Machine Learning Framework
Python scikit-learn machine learning library [28] was used for
calculating descriptive statistical measures, for feature selection,
and for building machine learning classifiers. Bivariate LR,
bootstrap, and Bayesian bootstrap (adjusted for weights) were
used to assess the predictability of the features generated for
predicting organ failure [29]. We used nonparametric
Kruskal-Wallis statistical tests to analyze the difference among
the five physiological signals (DBP, SBP, MBP, HR, and RR).
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Each of these five signals had six feature measurements, namely,
mean, energy ratio, fast Fourier transform, linear trend, quantile,
and continuous wavelet transform.

Cross Validation
Models were developed from the distinct time intervals and
tested on patients who were not included in the training of the
model. For model selection and accuracy estimation, we used
5-fold cross validation [30]. This technique divides data into
five equal and discrete folds and uses four folds for model
generation, whereas predictions are generated and evaluated
using the remaining single fold. This step is subsequently
repeated five times, so each fold is tested against the other four

folds. We further ran each of these 5-fold cross-validation
models 10 times by shuffling the data in each iteration and
averaged the performance metrics from all iterations to reduce
bias.

Results

Patient Characteristics
Tables 1 and 2 outline the descriptive-level characteristics of
demographics and clinical characteristics of 163 encounters.
Four patients with organ failure at admission were omitted from
further analysis and their data are not shown in Table 1.

Table 1. Encounter-level demographics and principal diagnosis of patients in the overall cohort (n=163).

P valueOrgan failure (no)Organ failure (yes)Total cohortVariablea

N/Ab126 (77.3)37 (22.7)163 (100.0)Total sample, n (%)

.01c29.3 (8.3)35.2 (12.9)30.7 (9.8)Age (years), mean (SD)

.1163 (50.0)24 (64.9)87 (53.4)Female, n (%)

N/A126 (100.0)37 (100.0)163 (100.0)African American, n (%)

Admit diagnosis, n (%)d

.003c107 (84.9)23 (62.2)130 (79.8)Vaso-occlusive event (pain or acute chest syndrome)

.05c3 (2.4)4 (10.8)7 (4.3)Nonvaso-occlusive crises pain

.665 (4.0)2 (5.4)7 (4.3)Infection/sepsis

.03c11 (8.7)8 (21.6)19 (11.6)Othere

aFor continuous variables, independent t test was used; for categorical variables, Chi-square test of independence was used. Fisher exact test was used
for variables with cell counts of less than 5.
bN/A: Not applicable.
cStatistically significant at P=.05.
dThe admit diagnoses are based on the International Classification of Diseases, Tenth Revision, Clinical Modification codes at the admission time.
eOther category includes respiratory distress, sickle cell disease without crisis, diabetes complications (diabetic ketoacidosis/hyperglycemia), pneumonia,
myocardial infarction, hematemesis, cough, and deep venous thrombosis.

The mean age of the patient encounters in the cohort was 30.7
years (9.8 years); all patients were African American, and there
were more females, 53.4% (87/163), than males, 46.6%
(76/163). Admit diagnoses of vaso-occlusive event (pain or
acute chest syndrome; 130/163, 79.8%), nonvaso-occlusive
crises pain (7/163, 4.3%), and infection/sepsis (7/163, 4.3%)

were common (Table 1). Both vaso-occlusive and
nonvaso-occlusive events significantly altered between the
patient with organ failure and no organ failure groups. Patients
with organ failure had longer hospital stays (3.2 additional
hospital days; P=.03) than controls, and they had higher severity
of illness (P<.001) and risk of mortality (P<.001; Table 2).
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Table 2. Encounter-level clinical characteristics of patients in the overall cohort (n=163).

P valueOrgan failure (no)Organ failure (yes)Total cohortVariablea

—b126 (77.3)37 (22.7)163 (100.0)Encounters, n (%)

.33101 (80.2)33 (89.2)134 (82.2)Encounter through emergency department, n (%)

.03c4.5 (2.5)7.7 (8.4)5.3 (4.7)Length of stay (days), mean (SD)

<.001APR-DRGd severity of illness, n (%)

45 (43.2)7 (19.4)52 (37.1)Minor

33 (31.7)7 (19.4)40 (28.6)Moderate

25 (24.0)15 (41.7)40 (28.6)Major

1 (1.0)7 (19.4)8 (5.7)Extreme

<.001APR-DRG risk of mortality, n (%)

79 (76.0)14 (38.9)93 (66.4)Minor

20 (19.2)6 (16.7)26 (18.6)Moderate

4 (3.9)8 (22.2)12 (8.6)Major

1 (1.0)8 (22.2)9 (6.4)Extreme

<.001Discharge disposition, n (%)

123 (97.6)24 (64.9)147 (90.2)Home

2 (1.6)5 (13.5)7 (4.3)Hospice or home health services

0 (0.0)5 (13.5)5 (3.1)Expired

1 (0.8)3 (8.1)4 (2.5)Other

aFor continuous variables, independent t test was used; for categorical variables, Chi-square test of independence was used. Fisher exact test was used
for variables with cell counts of less than 5.
bNot available.
cP<.05.
dAPR-DRG: all patient refined-diagnosis related group.

Feature Selection
Feature selection was performed to reduce the number of
features, and the reduced feature set was fed into each of the

classifiers. The sample distribution for each of the six datasets
for 3-hour observational periods is given in Table 3. The number
of patients varies with the availability of data during each time
window.

Table 3. Sample distribution and number of features for each dataset using organ failure.

Control events, nOrgan failure events, nInterval before organ failure onset (hours)

97276-9

90225-8

89224-7

83293-6

88292-5

79291-4

Model Performance
The average sensitivity and specificity from all models for each
of the six time periods are given in Figure 2. The MLP model
achieved an average sensitivity and specificity of 96% and 98%,

respectively, an hour before organ failure (Figure 2 and
Multimedia Appendix 3). Among the four classifiers, MLP
performed better than SVM, LR, and RF in predicting SCD
with organ failure.
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Figure 2. Average sensitivity, specificity for support vector machine, random forest, logistic regression, multilayer perceptron, and sickle cell disease
models using each of the six 3-hour datasets. LR: logistic regression; SVM: support vector machine; RF: random forest; MLP: multilayer perceptron.

RF classifier identified the continuous wavelet transform
generated from MBP time series physiologic variable as the
most important feature, followed by continuous wavelet
transform feature generated from respiratory rate of the time
series data. Figure 3 shows the frequency of the top 30 important
features generated from the five physiologic signals. Each box
in the heat map represents the frequency of a feature (y-axis)
generated from the physiological signal (x-axis). The dark purple

color in Figure 3 represents the absence of the feature, whereas
the dark yellow color represents the most frequently present
feature. The list of features ranked by their importance is given
in Multimedia Appendix 4. The description of each feature is
presented in Multimedia Appendix 1. The Kruskal-Wallis
statistical test found no difference among the features extracted
from physiological signals (H statistic=5.029; P=.28, possibly
reflecting the relatively small sample size.

Figure 3. Features derived from physiologic signals up to six hours before organ failure. DBP: diastolic blood pressure; SBP: systolic blood pressure;
MBP: mean blood pressure; HR: heart rate; RR: respiratory rate.
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Discussion

Principal Findings
Acute organ failure is a major challenge in people with SCD,
especially among adults experiencing an acute disease
complication. The ability of predictive algorithms to identify
patients at high risk for organ deterioration by using routinely
collected physiological data can provide important early
warnings of impending physiological deterioration. Such
information can aid clinical decision making and may even
eventually be useful in guiding early goal-directed therapy. In
this retrospective study, we demonstrated that the machine
learning–based prediction models could accurately distinguish
patients with SCD at risk for developing organ failure up to 6
hours before the onset. The classifiers and the selected
physiologic features may facilitate accurate, unbiased SCD
diagnosis and effective treatment, ultimately improving
prognosis.

The selection of relevant features involved in SCD with organ
failure remains a challenge [31,32]. Therefore, we wanted to
find a subset of physiologic features that are sufficiently
informative to distinguish between patients with SCD at risk of
developing organ failure and those who are not at risk. To
extract useful information from continuous physiologic data of
patients with SCD and to reduce dimensionality,
feature-selection algorithms were systematically investigated.
As we have demonstrated in the results, selecting smaller subsets
of features allowed for the high performance of our classification
models. Salient physiomarkers (such as fast Fourier transform,
energy, and continuous wavelet transform) derived from the
physiological signals, such as blood pressure, HR, and RR, may
precede acute organ failure in patients with SCD, as suggested
by the results in this study. A shortcoming of machine learning
is that these physiomarkers are neither observable by physicians
nor readily interpretable; instead, their benefit is primarily
toward the early prediction of impending physiologic
deterioration, as well as alerting health care providers of that
fact. Further research is needed to understand how to use these
alerts to guide the personalized care of patients with SCD.

The high-frequency data were captured at 1-min intervals, and
we only studied patients who had at least 24 hours of continuous
high-frequency physiologic data available before the time of
organ failure onset (identified using SOFA criteria). Patients
admitted to the ICU with organ failure were excluded, as were
patients without a full 24 hour of preceding data. It is also

possible that some patients who were too sick may not have
been connected to the monitors, which may have introduced
the selection bias. There is a need for future research to focus
on developing models that rely on less data before organ failure.

Other limitations are also important to mention. First, we
developed the machine learning model on a small subset of
patients, specific to the Mid-South of the United States,
potentially reducing generalizability. Moreover, the data were
highly imbalanced, with more non–organ failure cases compared
with organ failure cases, making data-driven approaches difficult
to implement. Missing data elements identified in the data were
a major hindrance for model validation; thus, these may have
contributed to poor validation in some of the cross-validation
folds. Although we included admission/encounter in the machine
learning model building if the intervals between admissions
were at least 1 month, a patient may be more likely to have
organ failure in the subsequent encounter. With larger patient
data, in the future, we can restrict events to a single event per
patient.

For the purposes of this particular study, the SOFA scores were
used only to classify cases and controls and to determine the
time of organ failure onset. The machine learning models to
distinguish cases and controls were built using a limited set of
continuously streaming physiological data. There is an inherent
difference in how SOFA data are collected and used versus how
data for machine learning were collected and used. Moreover,
the time of SOFA scores is inherently delayed, to some unknown
degree, and this leads to noise in any predictive model whose
goal is dependent on the timing of an event (such as organ
failure). As data to compute SOFA scores may be delayed in
being entered into the EMR, our proposed machine learning
model could be used as an alternative for timely diagnosis.
Therefore, additional data are required to develop a more robust
and generalizable model.

Conclusions
In conclusion, we showed, as a proof of principle, that machine
learning can accurately predict the development of organ failure
in ICU patients with SCD up to 6 hours before onset. This
finding is significant because it may optimize the early
recognition of serious disease complications and allow for the
implementation of early interventions. As future plans, we would
like to extend this study to develop a multiclass machine
learning classification model to predict the type of organ failure
from each of the six organ systems as we collect sufficient data
from each organ system.
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Multimedia Appendix 1
Temporal, frequency, and statistical features.
[XLSX File (Microsoft Excel File), 17 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Illustration of feature extraction for cases and controls. Each dashed box represent 3-hour physiological data. For cases, the green
and blue arrow represent data from one and two-hour prior to organ failure onset, respectively. For controls, gray arrows represent
a random 3-hour physiological data.
[PNG File , 79 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Average sensitivity, specificity for multi-layer perceptron (MLP), support vector machine (SVM), random forest (RF), and logistic
regression (LR).
[XLSX File (Microsoft Excel File), 11 KB-Multimedia Appendix 3]

Multimedia Appendix 4
The list of features ranked by their importance.
[XLSX File (Microsoft Excel File), 10 KB-Multimedia Appendix 4]
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SCD: sickle cell disease
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