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Abstract

Background: Machine-learning or deep-learning algorithms for clinical diagnosis are inherently dependent on the availability
of large-scale clinical datasets. Lack of such datasets and inherent problems such as overfitting often necessitate the development
of innovative solutions. Probabilistic modeling closely mimics the rationale behind clinical diagnosis and represents a unique
solution.

Objective: The aim of this study was to develop and validate a probabilistic model for differential diagnosis in different medical
domains.

Methods: Numerical values of symptom-disease associations were utilized to mathematically represent medical domain
knowledge. These values served as the core engine for the probabilistic model. For the given set of symptoms, the model was
utilized to produce a ranked list of differential diagnoses, which was compared to the differential diagnosis constructed by a
physician in a consult. Practicing medical specialists were integral in the development and validation of this model. Clinical
vignettes (patient case studies) were utilized to compare the accuracy of doctors and the model against the assumed gold standard.
The accuracy analysis was carried out over the following metrics: top 3 accuracy, precision, and recall.

Results: The model demonstrated a statistically significant improvement (P=.002) in diagnostic accuracy (85%) as compared
to the doctors’ performance (67%). This advantage was retained across all three categories of clinical vignettes: 100% vs 82%
(P<.001) for highly specific disease presentation, 83% vs 65% for moderately specific disease presentation (P=.005), and 72%
vs 49% (P<.001) for nonspecific disease presentation. The model performed slightly better than the doctors’ average in precision
(62% vs 60%, P=.43) but there was no improvement with respect to recall (53% vs 56%, P=.27). However, neither difference
was statistically significant.

Conclusions: The present study demonstrates a drastic improvement over previously reported results that can be attributed to
the development of a stable probabilistic framework utilizing symptom-disease associations to mathematically represent medical
domain knowledge. The current iteration relies on static, manually curated values for calculating the degree of association. Shifting
to real-world data–derived values represents the next step in model development.

(J Med Internet Res 2020;22(4):e17550) doi: 10.2196/17550
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Introduction

The World Health Organization (WHO) advocates a minimum
doctor:population ratio of 1:1000; although this prescribed ratio
has been attained in most of the Western world, 44% of the
WHO member states report less than 1 physician per 1000
patients [1]. The situation is particularly grim in South Asia and
Africa, with a ratio as low as 0.01 physicians per 1000
individuals in Malawi [2]. The WHO estimates a global shortage
of 12.9 million health care workers by 2035 [3]. Such acute
shortages in the health care system necessitate the development
of low-cost, deployable, and scalable tools that can be integrated
into multiple health care delivery models.

Several machine-learning and deep-learning algorithms have
been applied to facilitate clinical diagnosis, but such tools often
require large clinical datasets for training. Lack of availability
of such datasets and inherent problems such as overfitting often
necessitate the development of innovative solutions. We here
introduce a probabilistic model for medical diagnosis that has
been developed from the ground up. This method utilizes a
stable probabilistic framework that was subsequently adapted
to local disease patterns in India. The model was developed and
validated against differential diagnoses made by six doctors
with respect to various symptom presentation scenarios.

Methods

Model Development
For model development, we focused on infectious diseases as
a major contributor to patient morbidity and mortality in
developing countries, with most patients presenting with fever
as their primary symptom [4]. The 15 most common causes of
fever in India (Multimedia Appendix 1) were identified through
national epidemiological data and were independently verified
by internal medicine and infectious disease specialists. These
15 diseases represent a bulk of the patient load and were used
for developing the framework of the probabilistic model and
subsequent accuracy testing. This approach allows for the
construction of diagnostic tools that provide high levels of

diagnostic accuracy while retaining the inherent scalability
provided by mathematical constructs.

In a medical consultation, the objective of the doctor-patient
interaction is to gather evidence to formulate a provisional
diagnosis based on the presenting symptoms. The addition of
every new symptom results in the probability of disease being
modified; that is, the prior probabilities are updated with the
addition of new evidence. Thus, the science behind reaching a
clinical diagnosis mimics a probabilistic framework.

We developed a probabilistic model of diagnostic assessment,
which was simplified to a multiclass classification problem.
This required diseases to be distributed over a probabilistic
distribution based on the presented evidence. The mathematical
(Bayesian) interpretation of this distribution is a set of numbers
corresponding to each possible disease. These numbers are
representative of the probability of occurrence of a disease given
the set of symptoms [5]. In this way, a list of differential
diagnosis is generated.

To define the model, the following assumptions were
considered: (1) medical history can be scientifically objectified,
leading to definite universal symptom characteristics; (2) all
possible diseases are included, which ensures a definite class
of disease/condition; and (3) a single disease/condition is
responsible for the set of presented symptoms. The mathematical
framework for the model is described in detail in Multimedia
Appendix 2.

Validation
An overview of the validation process is presented in Figure 1.
Validation of the developed model was performed through a
set of clinical vignettes (patient case summaries). To create the
clinical vignettes, each of the 15 chosen diseases was stratified
into three real-world clinical scenarios: highly specific disease
presentation, moderately specific disease presentation, and
nonspecific disease presentation. Two independent internal
medicine specialists with a minimum clinical experience of 15
years each were entrusted with the creation of said vignettes,
resulting in a total of 90 (15×3×2) clinical vignettes. The
vignettes developed were subsequently verified by a third senior
specialist to reduce any potential effects of selection bias.
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Figure 1. Study design.

Each clinical vignette was modeled on the standard medical
history format containing patient demographic details (age, sex,
and date of presentation), presenting complaints, present illness,
and medical history, including family history and personal
history. A primary diagnosis and two differential diagnoses
with percentage surety values were provided in each vignette
and were used for accuracy analysis. A sample clinical vignette
is shown in Multimedia Appendix 3.

The clinical vignettes were randomized, assigned a code, and
subsequently provided to 6 independent doctors of varying
clinical experience (0-10 years). All participating doctors were
provided with a brief detailing the clinical context prior to
initiation of the study. For each vignette, the participating
doctors were asked to provide one primary diagnosis and two
differential diagnoses along with percentage surety values.

To calculate the performance of the probabilistic model, the
clinical vignettes were fed into the model and were used to
generate a ranked list of diagnoses with percentage surety
values. Percentage surety values were utilized as an arbitrary
representation of the level of confidence for each of the
differential diagnoses, with the sum being 100% for each
vignette. The top diagnosis from this list was assumed as the
primary diagnosis for accuracy analysis.

Accuracy Analysis
The performances of the model and the 6 doctors were compared
against the assumed gold-standard diagnosis of the clinical
vignettes under each of the three previously defined clinical
scenarios: highly specific, moderately specific, and nonspecific
disease presentation. Each of the chosen metrics provided a
different perspective about the diagnostic accuracy.

The simplest method for accuracy analysis involves
determination of the percentage of cases where the primary
diagnosis (model or doctor) matches with the primary diagnosis
of the clinical vignettes. Although this approach is useful in
accuracy analysis for patients presenting with classical
symptoms, it is not as suitable for patients with nonspecific
presentations of the disease. Additionally, as all probabilistic
models utilize only patient history for evaluation and do not
take into account physical examination and relevant
investigations, arriving at a single diagnosis is often medically
unsound. Alternatively, top-3 accuracy, as an extension of the
primary diagnostic accuracy, and standardized performance
metrics such as precision and recall are useful in such scenarios,
and were thus chosen as the main metrics for the current study.

The top-3 accuracy is an extension of the primary diagnostic
accuracy and is defined as the percentage of cases where the
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list of three differential diagnoses developed contains the
primary diagnosis of the clinical vignettes [6]. Thus, the top-3
accuracy denotes not only the diagnostic accuracy but also the
safety of the model in situations faced by the patient. Precision,
measured as the positive predictive value, is defined as the
percentage of correct predictions (true positives/true
positives+false positives). Precision is a measure of exactness
and can be understood as the percentage of times a disease was
correctly predicted among the total number of times its
prediction was made. Precision was determined for each of the
15 individual diseases and an aggregate precision value was
calculated by averaging over the frequency of each of the
diseases. Recall, measured by sensitivity, is defined as the
percentage of correct identification (true positives/true
positives+false negatives). It is the percentage of times a disease
was correctly predicted among the total number of times the
disease was present. Recall was determined for each individual
disease and an aggregate recall value was calculated. An
upper-tailed t test was used for calculation of statistical
significance.

Results

For each of the defined metrics, an overall analysis of the
performance of the model and doctors in comparison to the gold
standard was performed. Additionally, comparative analysis
was performed following stratification of the clinical vignettes
based on the degree of specificity. Moving from highly specific
to nonspecific vignettes denotes a progressive decrease in
conclusive medical evidence available for diagnosis. In
accordance, the performance of both the model and the
participating doctors declined when moving down the spectrum
of disease specificity.

The top-3 accuracy of the model (Figure 2) was 85% in
comparison to the doctor average of 67% (P=.002). The
statistical significance of this advantage was retained across all
three categories of clinical vignettes, 100% vs 82% (P<.001)
for highly specific disease presentation, 83% vs 65% for
moderately specific disease presentation (P=.005), and 72% vs
49% (P<.001) for nonspecific disease presentation.

Figure 2. Top 3 accuracy. Comparison of model with doctors’ average and individual doctor's performances over three scenarios: highly specific,
moderately specific and nonspecific disease presentations.

The precision for the model (Figure 3) was 62% in comparison
to the doctor average of 60%. However, this difference was not
statistically significant (P=.43). Stratification of the results
revealed that the model performed better than doctors in highly
specific vignettes (78% vs 75%, P=.04) and moderately specific
vignettes (61% vs 50%, P=.09) but not for clinical vignettes
with low specificity (20% vs 39%, P<.001). The overall recall

for the model (Figure 4) was 53% in comparison to the doctor
average of 56% (P=.27). Results obtained following
segmentation of the clinical vignettes followed similar patterns,
with the model faring better than doctors in highly specific (81%
vs 75%, P=.008) and moderately specific (60% vs 52%, P=.13)
vignettes, but not for nonspecific vignettes (17% vs 36%,
P<.001).
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Figure 3. Precision. Comparison of model with doctors’ average and individual doctor's performances over three scenarios: highly specific, moderately
specific and nonspecific disease presentations.

Figure 4. Recall. Comparison of model with doctors’ average and individual doctor's performances over three scenarios: highly specific, moderately
specific and nonspecific disease presentations.

As discussed above, the top-3 accuracy, precision, and recall
take only the primary diagnosis into account, and thus additional
metrics such as the Jaccard similarity index and cosine similarity
are of greater clinical relevance. Additional details about the
chosen metrics are provided in Multimedia Appendix 4.
Performance analysis on the basis of these metrics revealed that
the model consistently outperformed doctors for both the
complete set of clinical vignettes as well as in each of the three
subcategories of vignettes. The overall performance of the model
on the basis of the Jaccard similarity index was higher than that
of the average doctor (56% vs 47%, P=.02). The performance
differential between the model and the doctors was relatively

narrow in the highly specific vignettes (62% vs 56%, P=.02)
but widened considerably in the moderate (62% vs 48%, P=.008)
and low (43% vs 31%, P=.01) specificity vignettes. An overview
of the same is demonstrated in Figure 5.

The cosine similarity of the model (Figure 6) was 72% in
comparison to the doctors’ average of 64% (P=.002).
Performance following stratification of the vignettes revealed
similar patterns to those found for the Jaccard similarity index,
with a relatively narrow differential in the highly specific
vignettes (79% vs 73%, P=.004) that widened in the moderate
(72% vs 63%, P=.04) and low (65% vs 53%, P=.002) specificity
of vignettes.
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Figure 5. Jaccard Similarity. Comparison of model with doctors’ average and individual doctor's performances over three scenarios: highly specific,
moderately specific and nonspecific disease presentations.

Figure 6. Cosine Similarity. Comparison of model with doctors’ average and individual doctor's performances over three scenarios: highly specific,
moderately specific and nonspecific disease presentations.

Discussion

Principal Findings
Historically, the art of medical diagnosis has relied upon the
three pillars of patient history, physical examination, and
investigative reports. Hampton et al [7] reported that a detailed
and thorough patient history was sufficient to reach a clinical
diagnosis in 83% of patients presenting to the medical outpatient
department. This statistic is particularly relevant in settings
where a patient’s physical examination and investigative tests
cannot be performed. Advances in statistical analysis tools have
allowed for the creation of probabilistic models serving as both
diagnostic and prognostic tools for a myriad of clinical scenarios
[8]. These models have been predominantly deployed in patients
faced with the need for self-diagnosis, leading to the
development of the common moniker “symptom checker” [9].

For the purpose of accuracy analysis, most authors advocate
performance testing of both the model and doctors against an

assumed gold standard. Evans et al [10] analyzed vignette
methodology and concluded that vignettes are a powerful tool
to study physicians’ clinical judgement, and can be strongly
reflective of clinicians’ real-world behavior. This approach
ensures that the accuracy analysis of the model is not unfairly
hampered by errors in diagnosis by individual doctors.
Additionally, as both the model and the doctors are fed the same
information, over a statistically significant number, the quality
of the clinical vignettes in question ceases to affect the accuracy
analysis as the performance of both the model and doctors
increases or decreases according to the level of information
contained in the vignette. Razzouk et al [11] compared the
performance of a decision support system for the diagnosis of
schizophrenia disorders against an expert using 38 clinical
vignettes prepared from outpatient charts. In a retrospective
study, Ronicke et al [12] prepared clinical vignettes by
extracting information from medical records, which were fed
into the model (Ada DX) after anonymization. The second
method of accuracy analysis involves a direct comparison of
the model performance against diagnosis by the doctors, thereby
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assuming the doctors’ response as the gold standard. However,
this approach does not take into account errors in judgement of
the doctors themselves, which is currently estimated to vary
between 10% and 15% [13]. This method also heavily relies on
the assumption that the doctors participating in the study have
sufficient clinical expertise, thus negating the effects of error
over a statistically significant sample size. A recent study
conducted by Berry et al [14] compared the diagnostic accuracy
of the three most commonly used symptom checkers (WebMD,
iTriage, FreeMD) in comparison to that of the doctors for
patients presenting with abdominal pain, and found the accuracy
of the top diagnosis to be 14.3%, with the top-3 accuracy being
36.7%. However, it is notable that only 49 patients (statistically
insignificant) were included in the study and the level of
experience of the practitioners was not taken into consideration
[14].

Interestingly, once the sample size increases, the effects of
diagnostic errors by individual doctors decreases, thereby
presenting a fairer representation of the performance of the
model. Bisson et al [15] compared the diagnostic accuracy of
a web-based symptom checker for 328 patients (163 men and
165 women) presenting with knee pain, which revealed an
accuracy of 58% for the model.

In the current study, the performance of both the model and
doctors was compared to the assumed gold standard. In our
opinion, this approach is statistically sound and should be
considered for the primary performance evaluation of developed
models, with a one-to-one analysis reserved for specific
indications once the prerequisites of a statistically significant
sample size and demonstrated clinical experience of the
participating doctors have been met. The chosen metrics reflect
not only the diagnostic accuracy but also the capability of the
model to adapt to varying clinical scenarios and disease
presentations [16].

The performance of the present model was superior to that of
the panel of doctors across the entire gamut of chosen primary
and secondary metrics. Several studies have failed to
demonstrate such levels of clinical performance, with all trained
models trailing in diagnostic accuracy achieved by clinicians.
Semigran et al [9] used 45 clinical vignettes and reported 51.2%
accuracy for the top-3 accuracy of an online symptom checker
in comparison to 84.3% for doctors. A similar study conducted
by Shen et al [6] for ophthalmologic diagnosis found the top-3
accuracy of the model to be a mere 38%. Davies et al [17] found
that web-based symptom checkers listed degenerative cervical
myelopathy as a differential diagnosis in only 45% of symptom
composites tailored from 31 recognized symptoms in the
literature. In addition, Ronicke et al [12] showed that their model
(Ada DX) suggested a correct diagnosis in the top 5 suggestions
in 53.8% of cases and as the top diagnosis in 37.6% of cases.

Although Razzouk et al [11] reported the model’s accuracy to
be 66%-82% for diagnosing schizophrenia, it is important to
mention that their model was constructed to diagnose only one
disease and was evaluated for diagnosis of that particular
disease.

Strengths and Limitations
The current study represents the first probabilistic model that
consistently outperformed trained medical professionals. This
jump in diagnostic accuracy can by and large be attributed to
building a model from the ground up. Various authors have
utilized preconstructed or preconfigured models either directly
or after small modifications. Shen et al [6] and Davies et al [17]
used readily available web-based symptom checker tools such
as WebMD, Healthtools, AARP, Healthline, or Netdoctor to
study the accuracy of such models against the diagnostic
performance of practicing physicians. However, in the present
study, the probabilistic model was constructed from scratch.
The mathematical framework was closely modeled to mimic
the science behind arriving at a clinical diagnosis. Development
of symptom-disease associations offers a novel approach to
mathematically represent medical domain knowledge.
Additionally, utilizing local epidemiological trends and disease
profiles to develop these associations resulted in a high degree
of accuracy. These symptom-disease relevance associations
were manually curated by a team of doctors. This exercise was
carried out over several iterations with extensive feedback from
various medical experts. The model in the study represents the
6th iteration.

Delving deeper into the model performance after stratification
of the clinical vignettes revealed some features that merit special
mention. In cases where the clinical vignettes contain a large
amount of specific clinical data (ie, highly specific and
moderately specific disease presentation), the probabilistic
model performed at par or better than the doctors across the
gamut of chosen metrics (see Multimedia Appendix 5).
However, this advantage was lost in the case of nonspecific
disease presentation, with the model significantly trailing the
panel of doctors in precision and recall values. These values
serve as a reminder that even high-performing models fail in
rare instances such as for patients with nonspecific disease
presentations. Various studies have demonstrated similar results.
In a review article, Mishra et al [18] lists unusual/atypical/silent
disease presentation (nonspecific disease presentation) under
the category “no fault errors.” They conclude that such errors
are due to limitations of present medical knowledge and can
only be reduced by furtherance of medical research and
technological advancements. These findings are particularly
relevant from a clinical context as they reinforce the fact that
all such diagnostic tools should not be developed as a
replacement for doctors but only to serve as clinical decision
support systems. In a systematic review, Garg et al [19] reported
that among 97 randomized and nonrandomized controlled trials
studying the role of computerized clinical decision support
systems in clinical practice, 64% of studies demonstrated
improved practitioner performance. This approach will ensure
standardization of care while retaining the inherent safety
provided by a thorough clinical evaluation by a trained medical
professional.

The present study suffers from a few limitations. First, the major
limitation lies in the small sample size. Accuracy analysis was
performed by comparing the performance of the model and the
doctors over 90 clinical vignettes. Second, the present study
was based on a small dataset (ie, patients presenting with fever
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in a developing country). This problem statement has been used
to develop and subsequently test a probabilistic model. Further
large-scale studies are required to prove the clinical relevance
of this model across different clinical scenarios. The authors
have attached the relevant study data in the appendices and
encourage researchers to independently replicate the results on
a statistically significant sample size. Lastly, a claim can be
made that clinical vignettes might not represent a true
visualization of the disease presentation, and accuracy analysis
on actual patient data might prove to be beneficial [20].

Future Scope
The current study represents a proof of concept of a probabilistic
clinical decision support system. The present iteration of the
model relies on static, manually curated values for calculating
the degree of association. Shifting to real-world data–derived
values represents the next step in model development. This
migration would not only enhance diagnostic accuracy but also
provide the ability to adapt to sudden changes in the disease
environment in real time, an invaluable asset in disease epidemic
prediction. Incorporation of investigative reports in the current
framework—although challenging—is the key to a major jump
in diagnostic accuracy. Accuracy testing for the current model

has been performed through clinical vignettes that represent
artificial textbook cases of disease presentations. Testing on
real patient data would offer additional insights into the
performance of the model.

Conclusions
The present research demonstrates a drastic improvement over
previously reported results that can be attributed to the
development of the current model while keeping the local patient
presentation and disease profile in mind instead of utilizing an
off-the-shelf approach. This approach provides a greater degree
of diagnostic accuracy than previous models. In addition,
extensive involvement of practicing clinicians during the
development phase is essential for the creation of a solution
with demonstrable accuracy and clinical relevance. Importantly,
these results are based on a relatively narrow dataset with the
aim of developing a proof of concept. Therefore, additional
large-scale clinical trials need to be conducted before these
models can be deployed universally. In the interest of patient
safety, the authors suggest positioning of all such tools as
clinical decision support systems rather than as a substitute for
trained medical doctors.
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