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Abstract

Background: Although clinical decision support (CDS) alerts are effective reminders of best practices, their effectiveness is
blunted by clinicians who fail to respond to an overabundance of inappropriate alerts. An electronic health record (EHR)–integrated
machine learning (ML) algorithm is a potentially powerful tool to increase the signal-to-noise ratio of CDS alerts and positively
impact the clinician’s interaction with these alerts in general.

Objective: This study aimed to describe the development and implementation of an ML-based signal-to-noise optimization
system (SmartCDS) to increase the signal of alerts by decreasing the volume of low-value herpes zoster (shingles) vaccination
alerts.

Methods: We built and deployed SmartCDS, which builds personalized user activity profiles to suppress shingles vaccination
alerts unlikely to yield a clinician’s interaction. We extracted all records of shingles alerts from January 2017 to March 2019
from our EHR system, including 327,737 encounters, 780 providers, and 144,438 patients.

Results: During the 6 weeks of pilot deployment, the SmartCDS system suppressed an average of 43.67% (15,425/35,315)
potential shingles alerts (appointments) and maintained stable counts of weekly shingles vaccination orders (326.3 with system
active vs 331.3 in the control group; P=.38) and weekly user-alert interactions (1118.3 with system active vs 1166.3 in the control
group; P=.20).

Conclusions: All key statistics remained stable while the system was turned on. Although the results are promising, the
characteristics of the system can be subject to future data shifts, which require automated logging and monitoring. We demonstrated
that an automated, ML-based method and data architecture to suppress alerts are feasible without detriment to overall order rates.
This work is the first alert suppression ML-based model deployed in practice and serves as foundational work in encounter-level
customization of alert display to maximize effectiveness.
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Introduction

Background and Significance
The potential effectiveness of clinical decision support (CDS)
alerts as a scalable tool for promoting evidence-based care for
vaccine administration has led to their frequent use by most
health care systems seeking to maximize vaccination rates [1-4].
CDS alerts to prompt evidence-based practices have been
extensively studied and shown to work best when delivered at
an appropriate time and place in the clinical workflow, that is,
when the clinician is prepared to receive the information [5-8].
Successful CDS alerts have led to a reduction in prescribing
brand-name antibiotics [9], improved lipid management in renal
transplant patients [10], improved compliance with guidelines
for treating HIV [11-13], reduced ordering of tests when costs
were displayed [14], and age-specific alerts that reduce
inappropriate prescribing in the elderly [15-20].

Although CDS tools are effective reminders of best practices,
their effectiveness is blunted by the context in which they are
deployed; alert fatigue (clinician desensitization driven by
overwhelming number and quality of safety alerts) [21] is the
result of an ever-growing number of alerts in the electronic
health record (EHR), leading to clinicians commonly ignoring
or failing to respond appropriately to alerts. Alert fatigue
resulting from an excess of poor-quality alerts (eg, alerts firing
at inappropriate times or for inappropriate patients) contributes
to clinicians’ perceptions that the bulk of alerts are likely
clinically insignificant regardless of their clinical message. As
a result, clinicians now override most medication alerts [22-24]
and are becoming increasingly desensitized to alarms [25-27].
Although there is limited consensus on how to measure alert
fatigue and its unintended consequences, data show that alert
fatigue is significantly impacting the clinician experience and
patient care [28-31]. At our large academic health system, the
number of active interruptive alerts for providers grew from 13
in 2012 to 107 in 2018, an increase of more than 800%. In
December 2018, our providers ordered the shingles vaccine in
response to just 6.43% (2219/34,531) of the alerts, indicating
that our clinicians view a majority of these alerts as
inappropriate. Consequently, an improved EHR experience for
clinicians has become an institutional priority for many health
systems, including our own.

Individual-level factors, including clinicians’ bias toward
ignoring alerts and poor signal detection resulting from the
overwhelming number of alerts, and poor alert reliability add
to the degraded effectiveness of CDS and user experience
[32,33]. To optimize a CDS system means to optimize the
signal-to-noise ratio of alerts by increasing the signal, decreasing
the noise created by an abundance of inappropriate, poorly timed
alerts or both. To this end, prior work in medication alerts and
monitoring alarms have implemented advanced interventions
that use rules to surface or suppress alerts, intending to improve
CDS alert signal. A study using basic rules to deactivate
irrelevant alerts and manually alter other alert frequencies based
on severity decreased the override rates from 33.6 to 4.6 per
100 orders [34]. Similar severity ranking showed success in
increasing alert acceptance rate by 50%, despite a 60% increase

in alert events [35]. Other studies attempting to reduce noise,
however, achieved limited or mixed results [36-45].

Research indicates that delivering alerts at the appropriate time
and place in the clinical workflow is key to effective CDS [5-8].
Prior work to optimize CDS tools focuses on manual approaches
[4,46]; these have proven to be time consuming, difficult to
maintain, and static, limiting scalability. Optimization and
incorporation of more sophisticated rules to surface or suppress
alerts achieves limited reduction [36-41]. Machine learning
(ML) is a powerful tool for identifying patterns in complex data
by using past data to predict future performance. The use of ML
in health care has proliferated over the past 10 years in a variety
of use cases. ML applied to EHR data specifically shows signs
of promise as a tool for improving safety and quality of care;
its application to problems such as predicting readmission and
sepsis shows the ability of ML ability to better target alerts to
the appropriate user and use case [47-49]. An EHR-integrated
ML algorithm is a potentially powerful tool to improve the
quality of care by increasing the signal-to-noise ratio of alerts
to positively impact clinicians’ interactions with these alerts.
To date, the informatics literature lacks both prospective
evaluation of signal-to-noise optimization interventions as well
as detailed accounts of operational steps necessary to implement
ML models in clinical care. Using the shingles vaccination alert
as our initial use case, we leveraged historical EHR interaction
data (clicks), patient and provider sociodemographic data to (1)
build and train an ML model that can predict the likelihood of
provider interaction with the shingles vaccination alert and (2)
establish the data architecture necessary to deploy the model in
a live environment.

Objective
The objective of this case study was to describe the
development, implementation, and prospective evaluation of a
novel, ML-based, CDS signal-to-noise optimization (SmartCDS)
system that suppresses low-value vaccination alerts applied to
a shingles vaccination CDS alert.

Methods

Setting
This work was conducted within a large urban academic hospital
system with approximately 1300 beds over several satellite
locations. In the fiscal year 2016, 3584 doctors and 4899 nurses
treated approximately 38,000 inpatient admissions, 5.8 million
outpatient visits, and 150,000 emergency department visits.

Data
This study uses all data from January 1, 2017, to March 11,
2019, to maintain consistency with the shingles alert content
and its clinical setting. The dataset includes a total of 695,311
shingles alerts presented to 780 providers over 327,737
encounters, covering 144,438 unique patients. The overall alert
interaction rate (any action toward acknowledging the shingles
alert in an encounter) during this period was 16%, and the
overall order rate of the shingles vaccine in response to the alert
was 5%. The alert response options are illustrated in Figure
1—providers may choose from four different actions: open
SmartSet to sign vaccine orders for targeted patients, health
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maintenance override, postpone or customize health
maintenance modifier based on refusal, and deferral or other
decisions made by patients; the alert appears on a side tab

located at the right side of the EHR interface and may also be
ignored or closed when no action is taken.

Figure 1. Screenshot of the shingles vaccination electronic health record alert.

Alert Suppression Model Construction

Feature Construction
A retrospective data query was performed to extract data related
to the shingles vaccine alert. Key data elements to be extracted
from the EHR were determined using a combination of
descriptive analysis and clinical expertise. After data cleaning,
historical changes were analyzed in alert usage to determine the
optimal period from which data can be extracted for model
training (two years of data from January 1, 2017, to December
31, 2018). Using data from our alert system, the average
response rates for the alerts as well as the providers’ interaction
history with the alerts were examined for the purpose of
determining an appropriate protocol for assigning one unique
provider to each alert encounter. Initial analyses demonstrated
a large variation among clinicians with regard to the frequency
of interaction with the alerts (0%-92%), prompting our team to
construct variables for an individual clinician’s activity history,
which was expanded to several short-term and long-term activity
history variables capturing response rates, alert volume, and
demographic variables for both clinicians and patients. The
features that affect clinician’s response include (1)
clinician-level demographics, clinical roles, and specialties; (2)
response rate to previous shingles alert (both short-term and
long-term); and (3) the number of recent encounters. The
patient-level data included were patient demographics and
history of targeted shingles alert responses and shingles vaccine
orders by clinicians. In addition, a binary flag indicating walk-in
visits and scheduled office visits was included as the architecture
did not capture walk-in visits in our pilot implementation.

Machine Learning Model
The model was designed as a binary classification task. The
target labels were built based on whether an alert instance was

interacted with or whether a follow-up order for shingles
vaccination was placed in each primary care visit. The data were
split randomly based on individual clinicians into 80%, 10%,
and 10% sets for model training, validation, and testing,
respectively, as illustrated in Figure 2. XGBoost was employed
as our ML algorithm, with learning rate=0.3, maximum tree
depth=0.6, minimum child weight=1, no subsampling, negative
log loss, and early stopping (with a maximum of 50 rounds).
The validation set was used to monitor the model training
through early stopping to derive the operational score threshold
and evaluate the model performance; the test set was used to
evaluate the effectiveness of the score threshold and the
generalizability of the trained model retrospectively. To evaluate
the performance of the model, we obtained a sample of nearly
65,000 primary care visits. We reported a highly effective
model, adopting individual profiling of providers to reduce the
number of clinically insignificant alerts, with average area under
receiver operating characteristic of 0.919 and average area under
precision-recall curve of 0.562 using 5-fold cross-validation.
Our simulation found that of the 50.00% (6490/12,980) lowest
ranked vaccination alerts, 99.77% (6475/6490) have been
ignored by providers if not suppressed. Given that the
corresponding estimated order reduction via nested
cross-validation was deemed conservative at 1%, a 50%
suppression threshold was selected in collaboration with clinical
stakeholders [50]. As a result, the model that relies on personal
history for features is updated daily to incorporate the latest
data and update the 50% score threshold during prospective
implementation. Upcoming appointments are used for ongoing
training, making the training window ongoing. The patients’
appointments for initial primary care visits are excluded from
suppression.

J Med Internet Res 2020 | vol. 22 | iss. 4 | e16848 | p. 3http://www.jmir.org/2020/4/e16848/
(page number not for citation purposes)

Chen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Experimental design. All data from January 1, 2017, to March 11, 2019, are used to train the model. Data are divided based on clinicians
into 80%, 10%, 10% splits as train, validation, and test set, respectively. Each day, the data from the previous day are added to the dataset and the model
is retrained and evaluated on the updated validation set to derive the 50% suppression score threshold. Predictions are made on upcoming visits
(appointments) following the shingles best practice advisory (BPA) eligibility in the next day, and BPA instances are suppressed if the predicted score
is lower than the threshold. Upcoming visits, which are logged into the shingles BPA log in the electronic health record system, are used for training
in the future. In this design, the training window is always growing, with January 2017 as the start date. ST: score threshold.

Pilot Design and Evaluation
A pilot study was designed over 6 weeks (Figure 3) in biweekly
cycles (alternating turning the model on for one week and
turning the model off for another week) to verify that the data
distribution in the training/validation set was applicable to that
in production. In the pilot, key statistical measures were
examined with the model both turned on and turned off to
compare prospective model performance with estimates

generated in retrospective evaluation. The provider response
and follow-up orders associated with suppressed shingles alerts
cannot be measured; therefore, prospective model performance
was evaluated using the percentage of daily suppressed alerts,
daily alert response rate, weekly shingles vaccination order
count, and alerts per order rate. Weekly aggregated measures
were employed because of weekly patterns detected in the
clinical setting (eg, Wednesdays and weekend days featured
lower alert volume).
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Figure 3. SmartCDS system architecture. This illustrates the SmartCDS machine learning (ML) implementation flow. (1) A timer (Cron job) is
configured to run every day and invoke the SmartCDS service. (2) The data extraction module will query the reporting database (Epic Clarity) and feed
(3) encounter, provider, user demographic, and best practice advisory data to the ML model. (4) The model output is then both stored in a local database
for further analysis and pushed (5) to Epic through an Epic Interconnect Web Services endpoint. From here, information about what alert per encounter
should be suppressed is written (6) into the Epic event database (Chronicles) through a SmartData element. An alert rule will inspect (7) these data to
allow or suppress the alert being fired. BPA: best practice advisory; ML: machine learning.

Results

Architecture for Signal-to-Noise Optimization System
Deployment
After the construction of ML model for alert suppression (see
Methods), we built a new data architecture to operationalize the
model (Figure 3). The overall signal-to-noise optimization
(SmartCDS) system was broken into three components: (1) the
data extraction module, which identifies planned visits for the
next day, with the intent to identify upcoming vaccine alerts to

suppress, and queries the EHR to extract the variables required
to run the ML module; (2) the suppression ML model itself (the
ML module built as described above); and (3) the suppression
module, which leverages a series of application programming
interface calls to the EHR to communicate the alerts that should
to be suppressed. The data extraction module queries the EHR
and extracts features that should then be passed to the ML
module.

The steps, related tasks, and timeline for the development and
operationalization of the system are detailed in Table 1.
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Table 1. Signal-to-noise optimization (SmartCDS) system development.

TimelineTaskStep

3 monthsAlert suppression model
construction

• Retrospective data query: Manually retrieved historical data (best practice advisory alert log, shingles

vaccine order log, and patient/provider demographics) from our EHRa databases
• Data cleaning and initial analysis: Aggregated data and conducted analyses to determine the average

response rate for alerts
• Construction of predictive variables: Used long-term and short-term (1 month) personal interactive

history of providers and clinician/patient demographics
• Model training and performance evaluation: Used constructed variables to build model and evaluated

performance using a presplit (based on clinicians) training set (80%), validation set (10%), and test
set (10%) from historical data

• Predictive variables and refinement of retrained models: Iterated predictive variable construction,
model training, and performance evaluation on the validation set to determine the optimal predictive
variables to train the model

• Optimization of model parameters: Optimized model performance by fine-tuning built-in model pa-
rameters

2 weeksAggregation of production
data

• Virtual table creation: Retrieved live data from our EHR databases (alert log, shingles vaccine order
log, and patient/provider demographics)

• Storage of interim, preprocessed data on local database: Created repository to track results of each
run (eg, errors)

3 weeksWeb service endpoint config-
uration

• Web service isolation: Determined which Web service to call within our EHR’s interoperability Web
Application Programing Interface

• Endpoint rule creation (part 1): Built rule that reacts to data sent to endpoint
• Suppression rule creation (part 2): Built rule that can determine whether to suppress the alert or not

1 monthMachine learning script opti-
mization

• Data query: Incorporated live data into model
• Feature engineering and storage to local database: Updated daily additive dataset as model is retrained

with most recent log
• Model training: Trained model daily to incorporate live data
• Threshold setting: Used training and validation datasets to simulate the predicted relationship of

alerts suppressed and orders missed
• Storage of model prediction results in local database: Recorded predictions, model scores, dates, and

the corresponding score threshold for each upcoming vaccine alert

1 weekDocker image and container
formation

• Configuration of Web service setup: Installed required modules, packages, and drivers as well as
tested Web service endpoint

• Cron job setup: Defined frequency and timing of specific system functions
• Logging: Monitored and recorded system function, including errors

2 weeksReporting and dashboard
development

• Production of relevant data elements and storage in local database: Daily report of summary statistics
as tables and plots recorded

• Report delivery and cadence: Daily logging on status of the pipeline; email sent upon fatal errors

aEHR: electronic health record.

Aggregation of Production Data and Configuration of
a Web Service Endpoint
With the alert suppression model built and data aggregated to
support production, we worked with our institutional EHR team
to create predefined and operationally approved queries to build
easy-to-access views of our variables of interest in the EHR
database. This enabled and automated the data extraction needed
to operationalize the SmartCDS system. We then established a
local database to serve as a repository for monitoring and
tracking data runs, reports, and system errors per best practices.
To complete our work on creating the technical capacity
necessary to implement the SmartCDS system, we worked with
the enterprise information technology team to determine the
appropriate Web service to call; we then created the rules
necessary to appropriately respond to the data sent to that

endpoint and, if appropriate, suppress the target alert (in this
case, the shingles vaccination alert).

Optimization of Machine Learning Script and Docker
Image and Formation of Container
Once built, we validated the SmartCDS system with the shingles
alert. Predictions are made on upcoming appointments by
applying the model to our predefined views, modifying the ML
script, and generating model predictions (suppress yes or no),
which are saved in a local database and applied to suppress an
alert with a predicted score less than the threshold (additional
details in Methods). The system was designed to be modular
and orthogonal with regard to call frequency, instrumentation,
and configuration, allowing for easy adaptation to new
environments. Under these parameters, we formed Docker
containers (standard units of software that package code and all
its dependencies, so each application runs quickly and reliably
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from one computing environment to another) to appropriately
configure the Web service, define the frequency and timing of
functionality, and log the system’s normal and error events.

Reporting Dashboard Development
A dashboard was developed to ensure that the system was
running properly with a stable performance of the model from
a safety and operational perspective and to monitor process
outcomes of interest. The dashboard features process outcomes
of interest (eg, suppression percentage, daily order counts, and

daily alert volume) and factors in timing and frequency of report
delivery based on feedback from clinical and operational
stakeholders. Daily logging and weekly monitoring reports
(Figure 4 and Multimedia Appendix 1) were constructed to
enable detection of abnormal model behavior related to data
shifts or model failures. If, on any date, the alert-related volume
diverges from previous patterns, the alert log stream along with
the related EHR data can be examined to locate the source of
the anomaly.

Figure 4. Summary reports of the shingles model from January 19, 2019, to March 11, 2019. (A) Smoothed curves of daily aggregated acceptance
(response) rates to the shingles best practice advisory (BPA; alert), 95% CI shown in shaded areas, respectively (model turned on is shown in the purple
solid curve and model turned off is shown in the light green dotted curve). Weekends are not included because of the large variation resulting from low
BPA volumes on weekends. Vertical shaded areas annotate the 6-week trial time period. (B) Weekly averaged suppression percentage of the shingles
alert. (C) Weekly count of interacted shingles BPA. (D) Smoothed curve of weekly shingles vaccine order counts.

Pilot Results

Daily Alert–Related Volumes
We leveraged the 6 weeks of data (January 19-March 11, 2019)
to compare the volume difference in shingles alert count,
interacted alert count, and order count between weeks with the

model turned on and turned off. We observed 42.2% (3541.0
with the model turned on vs 6123.7 with the model turned off)
reduction in the alert count, no significant reduction in the
interacted alert count (one-sided two sample t test; P=.20) or
in the order count (one-sided two sample t test; P=.38) during
the 6-week biweekly cycle with the model turned on and model
turned off (Table 2).
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Table 2. Shingles alert–related volume in 2019. Each statistic is the weekly average of the corresponding group during the 6-week biweekly cycle
except that alerts per order rates were calculated as bulk averages within each 3-week group, respectively.

Accumulated inter-
acted alerts per order
rate

Accumulated alerts
per order rate

Order countb,
mean (SD)

Interacted alert counta,
mean (SD)

Alert count, mean
(SD)

Time range
(weeks)

Group

3.418.5331.3 (5.1)1162.3 (22.8)6123.7 (232.9)3Model turned
off

3.510.9326.3 (23.6)1118.3 (71.6)3541.0 (669.4)3Model turned
on

aP=.20.
bP=.38.

Alerts per Order Rate and Signal-to-Noise Ratio
Our 6-week pilot deployment of the system in the live
environment indicates an alert suppression rate of 43.7% out
of 35,315 appointments (Figure 4), with stable shingles vaccine
order volume (no statistically significant difference between
active and inactive suppression) slightly lower than the
predefined 50% threshold. Initial inspection showed that, on an
average, walk-in visits had a higher alert ignored rate (91%)
compared with scheduled office visits (87%) in 2017 and 2018.
As the model only operated on scheduled appointments in this
study and the activity history has the highest weight toward a
suppression decision, a slightly lower suppression rate than 50%
was expected.

The ratio of alerts fired to orders placed with the model turned
on was almost half of that of the ratio with the model turned
off, whereas the ratio of the interacted alerts per order placed
remained the same. By mapping the average orders placed as
the average power of signal and the average count of ignored
alert with no follow-up orders as the average power of noise,
the signal-to-noise ratio changed from 5.7% to 10.1%, a 78%
increase. Furthermore, by mapping the interacted alerts
(including follow-up orders) as signal and the ignored alerts
with no follow-up actions as noise, the signal-to-noise ratio
changed from 23.4% to 46.1%, a 97% increase.

Discussion

Principal Findings
This paper describes the steps and considerations involved in
the development and implementation of an ML model for
suppressing low-value alerts in the EHR for the shingles
vaccination. As predicted in our simulation, validation of this
signal-to-noise optimization (SmartCDS) system demonstrated
substantial reduction in the shingles vaccine alerts at a limited
vaccine ordering expense. The rate of daily alert interaction
among individual clinicians during the 6-week pilot was higher
with the model turned on vs the model turned off. This result
was expected because of the 42.2% lower volume of shingles
alerts observed with stable daily alert interactions. Interestingly,
the overall interaction rate gradually decreased over the 6-week
cycle (Figure 4). This finding is consistent with the findings
that responsiveness to alerts tends to decrease over time [29].
During the 6-week pilot, the profile of the providers who
accepted the alerts did not change, indicating that the profile of
patients who are offered the vaccination did not change either.

This will be confirmed in our follow-up studies. To date, our
literature review indicates that our SmartCDS system is the first
to develop an ML-based system to suppress clinically
insignificant alerts or alerts unlikely to be accepted and to
prospectively evaluate the system in a large-scale health care
system. Relevant literature to date has been limited to
retrospective studies focused on identifying false-positive or
clinically insignificant physiologic monitor alarms (false
alarms). In 2015, Physionet opened a challenge to reduce false
arrhythmia alarms using a subset of the Medical Information
Mart for Intensive Care II waveform database [51]. The best
models showed that by allowing 30 seconds of delay, false
alarms can be better distinguished from true alarms; the best
models were able to achieve 80% reduction in false alarms,
missing 1% of true alarms. Studies focusing on pulse oximetry
to reduce peripheral capillary oxygen saturation (SpO2) false
alarms, intracranial pressure alarms, and general vital sign
monitoring alarms found mixed results ranging from 25% to
47% in alarm reduction, with 0% to 5% false-negative rates
[42-45]. A more recent study showed that, by increasing delayed
time within 3 min for alarms with physiologic monitoring
waveforms, as well as including electrocardiography, SpO2,
and arterial blood pressure, an ML model can achieve slightly
better performance but fails to stably generalize to unseen data
[52].

The development of a robust reporting structure allows for the
logging and monitoring of the system and its impact on clinical
outcomes, which are necessary to ensure the stability and safety
of the system. Future work will involve gathering feedback
from front-line stakeholders to support the adaptation of the
signal-to-noise optimization system to other alerts, enabling the
system to ingest real-time data as well as further development
of a reporting dashboard with effective, user-centered data
displays, and a systematic process for establishing
organizationally acceptable thresholds for alert suppression.

Limitations
During the pilot implementation and evaluation, the model only
operated on scheduled office visits because of infrastructure
gaps restricting the ability to incorporate walk-in visits. We are
working to address this gap to be able to assess the effectiveness
and impact of this model on a global level. On the other hand,
it is possible that clinicians will start to adjust to the volume
change in the shingles alert delivery, leading to less
responsiveness and less ordering. As potential external or
systematic biases, such as seasonal effects, could lead to
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inaccurate observations and conclusions, we will implement a
more comprehensive statistical evaluation after updating the
infrastructure to systematically address these potential biases.

Conclusions
Our model presented high discriminatory power in the initial
prospective evaluation of shingles alert interactions. Our
approach was effective in suppressing unnecessary alerts, with

limited reduction in overall order volume. This work also
provides potential evidence of increase in interactions and orders
(eg, an increase in signal-to-noise ratio) by decreasing noise
(eg, suppression). In addition, the process built to operationalize
this new ML tool may prove to be a useful model for enabling
the deployment of this type of tool across many use cases. Future
efforts include applying this approach globally to other EHR
alerts and comprehensive randomized controlled trials.
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Multimedia Appendix 1
Daily count of the shingles best practice advisories (BPAs; alerts), interacted shingles BPAs, and shingles BPA follow-up vaccine
orders from January 19, 2019, to March 11, 2019. Each bar in all three plots represents one day - purple (dark) if the model was
turned on and light green with a black border if the model was turned off, the shaded areas annotate excluded dates from downstream
statistical analysis. BPAL best practice advisory.
[PNG File , 74 KB-Multimedia Appendix 1]
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