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Abstract

Background: Electronic medical record (EMR) systems capture large amounts of data per patient and present that data to
physicians with little prioritization. Without prioritization, physicians must mentally identify and collate relevant data, an activity
that can lead to cognitive overload. To mitigate cognitive overload, a Learning EMR (LEMR) system prioritizes the display of
relevant medical record data. Relevant data are those that are pertinent to a context—defined as the combination of the user,
clinical task, and patient case. To determine which data are relevant in a specific context, a LEMR system uses supervised machine
learning models of physician information-seeking behavior. Since obtaining information-seeking behavior data via manual
annotation is slow and expensive, automatic methods for capturing such data are needed.

Objective: The goal of the research was to propose and evaluate eye tracking as a high-throughput method to automatically
acquire physician information-seeking behavior useful for training models for a LEMR system.

Methods: Critical care medicine physicians reviewed intensive care unit patient cases in an EMR interface developed for the
study. Participants manually identified patient data that were relevant in the context of a clinical task: preparing a patient summary
to present at morning rounds. We used eye tracking to capture each physician’s gaze dwell time on each data item (eg, blood
glucose measurements). Manual annotations and gaze dwell times were used to define target variables for developing supervised
machine learning models of physician information-seeking behavior. We compared the performance of manual selection and
gaze-derived models on an independent set of patient cases.

Results: A total of 68 pairs of manual selection and gaze-derived machine learning models were developed from training data
and evaluated on an independent evaluation data set. A paired Wilcoxon signed-rank test showed similar performance of manual
selection and gaze-derived models on area under the receiver operating characteristic curve (P=.40).

Conclusions: We used eye tracking to automatically capture physician information-seeking behavior and used it to train models
for a LEMR system. The models that were trained using eye tracking performed like models that were trained using manual
annotations. These results support further development of eye tracking as a high-throughput method for training clinical decision
support systems that prioritize the display of relevant medical record data.
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Introduction

Background
Electronic medical record (EMR) systems capture considerable
amounts of patient data, especially in data-rich care settings
like intensive care units (ICUs) [1]. The large amount of data
per patient necessitates that the user interfaces of EMR systems
help users rapidly understand the medical state of each patient
[2]. However, patient data in EMR systems are typically
presented to physicians with little prioritization, leading to the
risk of cognitive overload, which in turn may lead to reductions
in physician ability to identify important patient data for clinical
assessment and management and increases in risks of medical
error [2]. One approach to overcoming this drawback envisions
an adaptive EMR system that draws the physician’s attention
to the right data, for the right patient, at the right time, and in
the right way [3]. As a step toward this goal, we developed a
Learning EMR (LEMR, pronounced lemur) system that uses
physician information-seeking behavior to prioritize the display
of relevant medical record data [4]. Our system relies on
supervised machine learning models that predict which patient
data are likely to be useful in a specific context, where the
context refers to a particular combination of clinical user,
clinical task, and patient case [5]. The models will be trained
on thousands of observations of patient data items that different
physicians have sought as relevant across a wide range of patient
cases and clinical tasks.

The acquisition of training data is a critical barrier to the
development of a LEMR system. Some observations of
physician information-seeking behavior are recorded in
commercial EMR systems through the capture of mouse clicks,
but such data on user behavior are often captured with
insufficient resolution for training a LEMR system. Another
method for collecting behavior data is through manual
annotation of relevant data by clinical users. In a prior study,
we collected manual annotations from physicians who reviewed
patient cases and identified which data were relevant for a
simulated clinical task [5]. With this data, we developed machine
learning models that enable the LEMR system to identify likely
relevant patient data in similar clinical contexts. However,
manual annotation is disruptive and time-consuming, and thus,
it limits the amount of training data that can be collected. To
have a broad coverage of clinical contexts, larger amounts of
training data are needed for model construction. Moreover,
while manual annotation is possible in a research setting, it is
infeasible in routine clinical practice where it would dramatically
increase the clinical workload. Eye tracking offers a method
that can potentially capture information-seeking behavior
unobtrusively as a byproduct of care delivery [6]. In this paper,
we investigated the use of eye tracking as an automated

high-throughput method to capture physician
information-seeking behavior.

Related Work
The use of eye tracking in studies of EMR systems has focused
on understanding users and their interactions with systems.
Investigators have used eye tracking to understand clinical
reasoning [7], discern information search patterns [8], measure
cognitive loads while performing tasks in the EMR system [9],
evaluate usability [10], and measure time use [11]. Moacdieh
et al [12] used eye tracking to demonstrate that display of
irrelevant data increases cognitive workload, and Gold et al [13]
showed that a commercial eye-tracking device can be used to
assess an EMR system’s usability.

We are not aware of any studies that have used eye tracking to
train machine learning models of information-seeking behavior
in an EMR system. In previous work, we established the
feasibility of using a low-cost eye tracker to identify items of
interest on an EMR display [14]. We conjectured that the
resulting eye-tracking data can be used to infer which medical
record data are viewed by physicians. Such data can then be
used to train machine learning models that the LEMR system
would use to identify medical record data in a future patient
case that are likely to be relevant to the user. Moreover, the
availability of inexpensive, portable eye-tracking devices could
make broad deployment of such systems feasible.

In this paper, we propose and evaluate a novel approach to using
eye tracking to capture information-seeking behavior that can
subsequently be used to build models that identify relevant
patient data in a LEMR system. We compare the performance
of supervised machine learning models trained on eye
tracking–derived annotations with that of models trained on
manually obtained annotations. We hypothesize that eye tracking
is an effective, high-throughput alternative to manually
annotating training data for the LEMR system.

Learning Electronic Medical Record System
A LEMR system prioritizes the display of medical record data
based on predicted relevance [4]. To learn relevance, our
prototype LEMR system enables the collection of physician
information-seeking behavior. We used two collection methods
in this study: (1) manual selection, where the user annotates
relevant medical record data by clicking checkboxes displayed
on the user interface, and (2) gaze-derived, where an
eye-tracking device captures eye gaze patterns while the user
is reviewing a patient’s medical record. Figure 1 shows the
LEMR system’s user interface on an eye tracking–equipped
computer monitor. The software for the LEMR user interface
is available on GitHub [15].
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Figure 1. A computer monitor displaying the Learning Electronic Medical Record user interface with an eye-tracking device mounted at the bottom
edge of the monitor. The interface temporally displays patient medical record data in four scrollable panels: (from left to right) panel 1 contains vital
signs, ventilator settings, and intake and output; panel 2 contains medication administrations; panel 3 contains laboratory test results; and panel 4 contains
free-text notes and reports. The remote eye-tracking device is magnetically attached to the bottom edge of the monitor and connected to the computer
via a universal serial bus cable (screenshot is of a deidentified patient case).

Methods

Eye Tracking
We used the Tobii EyeX (Tobii Gaming) eye-tracking device,
an inexpensive portable eye-tracking device and software
package marketed for computer gaming and virtual reality
applications [16] (as of publication, EyeX’s successor product
is called Tobii Eye Tracker 4C). The EyeX device samples eye
gaze coordinates on the monitor at approximately 60 Hz. To
operate the device and read the stream of gaze data, we used
open-source Python bindings for the Tobii Gaze Software
Development Kit [17].

A recent evaluation of the Tobii EyeX found that for many
research applications temporal and spatial resolutions are
modest, precision is moderate, and sampling frequency is low
[18]. Despite the EyeX’s limitations, the authors noted that it
is adequate for applications that do not require more than
monitoring of simple eye movements. For example, the EyeX
would not be suitable for measuring every saccade and fixation
of a person reading a paragraph of text but is suitable for
determining if a region of the monitor was gazed upon. In a
prior study, we found the EyeX to be comparable in performance
to a more expensive, research-grade eye-tracking device for

capturing information-seeking behavior while using the LEMR
user interface (the difference in errors of the two devices was
less than a predefined noninferior margin of 11 pixels at the
95% confidence interval) [14].

The eye-tracking device provides time-stamped gaze position
coordinates on the computer monitor but does not provide
concomitant information on data displayed on the monitor.
Therefore, to use eye tracking to automatically capture physician
information-seeking behavior, the stream of gaze position
coordinates must be mapped onto elements of the user interface.
Because the LEMR user interface is dynamic (it changes as
users scroll through the medical record data), we separately
record a stream of interface element locations on the monitor
that can be mapped to gaze position coordinates obtained from
eye tracking. Each interface element contains one medical record
data item (eg, the time series of blood glucose measurements).
Using time-stamps in the two data streams, gaze position
coordinates are translated to medical record data items. A data
item such as blood glucose measurements with a gaze dwell
time that is longer than a set threshold (eg, 250 milliseconds)
is designated as a positive training sample for that data item.
Positive and negative training samples with respect to a
particular data item denote that the data item was viewed and
was not viewed by a user, respectively. We developed and
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implemented an algorithm that rapidly processed concomitantly
acquired gaze position coordinates and interface element
locations. This algorithm is described in our prior work [14].
The scripts for eye tracking are available on GitHub [19].

Data Collection

Overview
For machine learning, we created two training data sets of
physician information-seeking behavior. One data set consisted
of targets obtained from manual user selection; the second
consisted of targets obtained from gaze position coordinates
captured by eye tracking. We created an independent evaluation
data set using manual annotation. Reviewers were presented
with both structured EMR data (eg, demographics, diagnosis,
vital sign measurements, ventilator settings, laboratory test
results, medication administrations, procedures, microbiology

culture results, and intake and output) and free text data (eg,
admission notes, radiology reports) when reviewing a case.
However, only structured EMR data were used for machine
learning.

Reviewers
We recruited critical care medicine physicians from the
University of Pittsburgh’s Department of Critical Care Medicine
to review and annotate patient cases: 11 physicians participated
in the training phase and 12 physicians participated in the
evaluation phase. Five reviewers who participated in the training
phase also participated in the evaluation phase. Details of
characteristics of the reviewers are shown in Table 1. Every
reviewer used the LEMR system (shown in Figure 1). All
reviewers were able to familiarize themselves with the interface
by reviewing several practice cases before data collection began.

Table 1. Characteristics of reviewers.

Weeks per year spent rounding in
the ICU, mean (SD)

Time in years spent in ICUa,
mean (SD)

Time in years since medical school
graduation, mean (SD)

Number of re-
viewers

Phase of study

34 (26-42)1.8 (0.3-7.0)5.3 (3.0-10.0)11Training

36 (28-44)1.7 (0.6-4.0)5.4 (3.0-11.0)12Evaluation

aICU: intensive care unit.

Simulated Clinical Task
Reviewers were asked to use the LEMR interface to conduct
prerounding, which involves the review of a patient’s medical
record and identification of relevant data for a summary
presentation at morning rounds. Each patient case was loaded
into the LEMR system and shown to a physician reviewer (an
example patient case is shown in Figure 1). The physician
reviewed the case and completed three tasks: familiarization,
preparation, and selection.

In the familiarization task, the physician was shown the patient’s
medical record data from hospital admission until 8:00 am on
a random ICU day during the ICU stay between day 2 and the
day before discharge from the ICU. The physician was instructed
to review the data and become familiar with the case as if it
were one of their patients.

In the preparation task, the physician was shown an additional
24 hours of the patient’s medical record data and instructed to
review the data and prepare to present the case during morning
rounds. During this task, we used eye tracking to record the
physician’s gaze position coordinates from which we inferred
the physician’s information-seeking behavior.

In the selection task, a checkbox was added to each user
interface element containing a medical record data item (such
as blood glucose measurements). The physician manually
annotated (by clicking on checkboxes) data items they
considered to be relevant for the task of prerounding.

Patient Cases
For the creation of training data sets, 178 patient cases were
randomly selected from patients who were admitted to an ICU
between June 1, 2010, and April 30, 2012, at the University of

Pittsburgh Medical Center (PA). For the creation of the
evaluation data set, 18 patient cases were randomly selected
from patients admitted to an ICU between June 1, 2012, and
December 31, 2012. Each selected patient had a diagnosis of
either acute kidney failure (AKF; ICD-9 584.9 or 584.5) or
acute respiratory failure (ARF; ICD-9 518.81). The number of
patients with each diagnosis was roughly equal in the training
and evaluation data sets. EMR data for the patients were
extracted from a research database and deidentified to remove
all unique identifiers except for dates and times related to events.

Annotations
We created two training data sets that contained the same patient
cases but differed in the construction of the targets. In the
manual selection training data set, targets were derived from
the checkbox clicks recorded during the selection task; in the
gaze-derived training data set, targets were derived from eye
tracking during the preparation task. From the 178 patient cases
reviewed, 44 cases were discarded either because the
eye-tracking data were incomplete (which occurred when a
reviewer’s head was not within the trackable range of the
eye-tracking device) or the selection task was skipped
inadvertently. Thus, the two training data sets consisted of the
same 134 patient cases. Note that each patient case was reviewed
by a single reviewer to maximize the number of patient cases
that could be reviewed with a limited number of physicians.
For the evaluation data set, 18 patient cases were each reviewed
by 4 physicians for a total of 72 patient cases. Four cases were
discarded because a reviewer inadvertently skipped the
annotation task, and thus the evaluation data set contained 68
patient cases with manually annotated targets.
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Machine Learning

Problem Description
The LEMR system prioritizes the display of relevant medical
record data. To determine which data are relevant in a specific
context (a combination of user, task, and patient), the LEMR
system uses supervised machine learning models. For this study,
we focused on the information-seeking differences among
patient cases when the user and task were constant (all users
were critical care physicians who performed the same task of
prerounding). The training data sets consisted of a large number
of predictor and target variables.

Predictor Variables and Feature Construction
The patient data we used as predictor variables included simple
atemporal variables such as demographics (6) and diagnosis (1)
and complex variables representing time series, including vital
sign measurements (14), ventilator settings (9), laboratory test
results (814), medication administrations (1207), procedures
(394), microbiology culture results (10), and fluid intake and
output (7). We derived a fixed set of features from each complex
variable so that standard machine learning methods could be
applied readily. For example, for a time-stamped sequence of
serum glucose levels, we generated 35 features that include the
first glucose value during the ICU stay, most recent value,
highest and lowest values until the current time, difference
between the most recent two values, and 30 other features [20].
Thus, we generated 35 features for each laboratory test and each
vital sign, 31 features for each ventilator setting, 9 for each
medication administration, 4 for each culture and each
procedure, and 2 for each intake and output variable. In
summary, a patient case was represented by a fixed-size vector
of 13,596 features that summarized the clinical evolution of the
patient’s condition from the time of admission to the ICU to
the current time.

Target Variables
We represent physician information-seeking behavior with a
set of binary target variables. A target variable is created for
any medical record data item that a physician could seek as
relevant. For a specific patient case, a data item’s corresponding
target variable indicates if the item was sought as relevant or
not (eg, the glucose target variable is positive if the physician
sought the serum glucose levels). We derived two sets of targets;
one set of targets was derived from manual selections and
another from gaze position coordinates. In the manual selection
training data set, a target variable, such as glucose target, was
assigned the value positive if the physician selected the
checkbox that was displayed with the data item; and a target
was assigned the value negative if the associated checkbox was
not selected. In the gaze-derived training data set, a target was
assigned the value positive if the physician gazed at that item
for at least 250 milliseconds and was assigned the value negative
if the physician gazed at it for less than 250 milliseconds. (This
threshold corresponds to the average fixation time while a person
is reading [21]). In a patient case where a data item was not
available (eg, serum glucose levels were not measured), the

corresponding target was deemed to be absent, and the case was
excluded from the training data used to train a model to predict
the relevance of that data item.

Preprocessing of Training Data
We applied several preprocessing steps to the training data sets.
A feature was removed if it had the same value in all cases. If
two or more features had identical values for every case, only
one of those features was retained. For example, the binary
feature “ever measured” often had the same values across all
cases for one or more laboratory tests that are part of a single
panel; this occurred because such tests are ordered together.
Missing predictor values were imputed using two different
methods. In the first method, features were imputed with the
median (nominal features were imputed with the mode). In the
second method, continuous features were imputed with linear
regression, and discrete features were imputed with logistic
regression. The two imputation methods resulted in two distinct
data sets for the manual selection and gaze-derived targets,
respectively (a median-imputed data set and a regression-
imputed data set).

To reduce feature dimensionality, we applied a feature selection
algorithm that independently considered each predictor
variable’s set of constructed features. If a predictor variable’s
constructed feature set was predictive of a target (ie,
cross-validated area under the receiver operating characteristic
curve [AUROC] was greater than 0.55), the feature set was kept
in the training set for the model corresponding to that target
variable. Otherwise, the feature set was discarded from the
training set for the model corresponding to that target variable.

Model Training
We applied three classification methods (scikit-learn
implementations of L2-penalized logistic regression, support
vector classifier, and random forest classifier [22]) to the manual
selection and gaze-derived training data sets to develop two
categories of models. Within each category, we used
cross-validation to select the best performing combination of
imputation method and classification method for each target.
The best performing combination was then used to train a model
from the full training data set. The scripts for feature
construction [23], imputation of missing values [24], feature
selection [25], and for training and evaluating models [26] are
available on GitHub.

Results

Table 2 provides a summary of the data sets, models trained,
and models evaluated. The gaze-derived data set had more
positive targets on average, resulting in more targets (ie, data
items) having enough training data (>3 positive samples) for
model construction. In total, 87 manual selection and 115
gaze-derived models were trained. For 68 targets, models were
derived from both data sets. These 68 pairs of models were used
in the evaluation, and by coincidence the evaluation data set
consisted of 68 patient cases.
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Table 2. Summary of data sets, models trained, and models evaluated. Each model predicts if a single electronic medical record data item is relevant.

CountsData set

Number of models evaluated (using the manual-
selection evaluation data set)

Number of models trainedNumber of patient cases

6887134Manual selection training

68115134Gaze-derived training

——68Manual selection evaluation

Table 3 provides a summary of the models selected for
evaluation. Based on the distribution of models (ie, the number
of models columns), random forests and median imputation
tended to have higher cross-fold AUROC values on the training
set than the other machine learning and imputation methods,
respectively.

The AUROCs of the 68 pairs of models applied to the evaluation
data set are plotted in Figure 2 and shown in Table 4. In Figure
2, points below the diagonal line indicate that manual selection
models perform better, and points above the diagonal line
indicate that gaze-derived models perform better. The best
performing pair of models was for the target alanine
aminotransferase (AUROCs of 0.97 for manual selection and
0.90 for gaze-derived), and the worst performing pair was for
the target mean corpuscular volume (AUROCs of 0.27 for

manual selection and 0.14 for gaze-derived). Statistical
differences between each pair of models were calculated from
the 95% confidence interval of the average difference in
AUROC values using bootstrapping. In 14 instances, the manual
selection models performed statistically significantly better,
and in 8 instances, the gaze-derived model performed
statistically significantly better (see the red triangles in Figure
2 and footnote in Table 4). In the remaining 46 instances, there
was no statistically significant difference in AUROCs between
the two models (α=.05).

On the Wilcoxon signed-rank test (R software, wilcox.test
function), the AUROC values of the manual selection models
were similar to the values of the gaze-derived models (P=.40).
The Wilcoxon signed-rank test is a nonparametric statistical
test for comparing two groups of continuous measures.

Table 3. Summary of machine learning methods, imputation methods, number of models of each combination of machine learning and imputation
methods, and number of features per model.

Gaze-derivedManual selectionMachine learning and imputation method

Features per model meanNumber of modelsFeatures per model meanNumber of models

Logistic regression

176.324207.418Median

304.915659.210Regression

Support vector classifier

2108.992366.318Median

—0—0Regression

Random forests

341.937336.027Median

613.830806.114Regression
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Figure 2. Performance of models used to predict the relevance of targets. The x-axis value and y-axis value of each point indicate the area under the
receiver operating characteristic curve (AUROC) values of a pair of manual selection and gaze-derived models, respectively. The vertical and horizontal
lines indicate 95% confidence intervals of the AUROC values. The diagonal line indicates equal performance between manual selection and gaze-derived
models. Red triangles indicate model pairs where the AUROC value of one model is significantly different than that of the other model (α=.05).
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Table 4. Area under the receiver operating characteristic curve values (with 95% confidence intervals) on the evaluation data set of manual selection
and gaze-derived models for predicting relevance of targets. Rows are sorted by manual selection performance.

Gaze-derived modelsManual selection modelsNumber of positive samples in
evaluation data set

Target

0.90 (0.96, 0.83)0.97a (1.00, 0.96)10Alanine aminotransferase

0.70 (0.80, 0.59)0.96a (1.00, 0.93)10Aspartate aminotransferase

0.82 (0.90, 0.73)0.85 (0.93, 0.77)13Norepinephrine

0.99a (1.00, 0.97)0.81 (0.85, 0.75)1Levothyroxine

0.71 (0.80, 0.59)0.77 (0.86, 0.66)27Fraction of inspired oxygen

0.61 (0.73, 0.50)0.76a (0.87, 0.65)17Vancomycin

0.38 (0.54, 0.21)0.75a (0.85, 0.60)12Total bilirubin

0.85 (0.91, 0.78)0.75 (0.83, 0.66)1Bicarbonate, arterial

0.12 (0.19, 0.06)0.72a (0.80, 0.62)3Aspirin

0.53 (0.70, 0.38)0.71a (0.85, 0.56)6pH

1.00a (1.00, 1.00)0.71 (0.79, 0.61)3Troponin

0.62 (0.76, 0.49)0.70 (0.83, 0.57)11Lactate

0.48 (0.61, 0.37)0.70a (0.81, 0.58)42Temperature

0.65 (0.74, 0.56)0.70 (0.80, 0.62)3Lorazepam

0.64 (0.76, 0.52)0.70 (0.80, 0.58)20Ventilator mode

0.67 (0.98, 0.27)0.69 (0.92, 0.36)3Dextrose in water

0.36 (0.59, 0.15)0.67a (0.89, 0.45)6Partial pressure of oxygen

0.52 (0.63, 0.35)0.67 (0.81, 0.55)9Bilirubin direct

0.62 (0.76, 0.46)0.65 (0.77, 0.52)16Heparin

0.58 (0.68, 0.49)0.65 (0.75, 0.56)1Ionized calcium

0.55 (0.85, 0.25)0.64 (0.87, 0.40)6Propofol

0.48 (0.63, 0.31)0.64 (0.81, 0.45)15Piperacillin-tazobactam

0.41 (0.63, 0.21)0.64a (0.77, 0.50)6Famotidine

0.49 (0.63, 0.39)0.63 (0.73, 0.50)26Potassium

0.60 (0.71, 0.47)0.61 (0.74, 0.48)50White blood cells

0.34 (0.49, 0.21)0.60a (0.75, 0.47)15Bands

0.59 (0.99, 0.19)0.59 (0.87, 0.31)4Vancomycin trough

0.58 (0.69, 0.46)0.59 (0.70, 0.47)30Blood urea nitrogen

0.48 (0.61, 0.35)0.58 (0.72, 0.45)19Intravenous base solution

0.50 (0.63, 0.40)0.57 (0.69, 0.46)29Oxygen saturation

0.58 (0.71, 0.46)0.57 (0.69, 0.44)43Intake and output

0.59 (0.71, 0.46)0.55 (0.66, 0.41)42Heart rate

0.73 (0.94, 0.48)0.53 (0.81, 0.27)4Prothrombin time

0.64 (0.77, 0.48)0.53 (0.71, 0.40)9Pantoprazole

0.55 (0.69, 0.43)0.53 (0.68, 0.40)15Bicarbonate, venous

0.40 (0.50, 0.31)0.53a (0.63, 0.44)1Glomerular filtration rate

0.31 (0.58, 0.10)0.52a (0.77, 0.27)5Hydrocortisone

0.30 (0.45, 0.16)0.52a (0.70, 0.34)7Metoprolol
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Gaze-derived modelsManual selection modelsNumber of positive samples in
evaluation data set

Target

0.51 (0.63, 0.38)0.51 (0.64, 0.39)21Glucose

0.51 (0.67, 0.36)0.50 (0.65, 0.37)13Insulin

0.42 (0.54, 0.31)0.50 (0.63, 0.39)30Platelets

0.59 (0.71, 0.45)0.49 (0.61, 0.36)17Respiratory rate

0.64 (0.99, 0.26)0.47 (0.68, 0.27)2Central venous pressure

0.40 (0.58, 0.23)0.47 (0.67, 0.28)59Creatinine

0.56 (0.72, 0.39)0.47 (0.60, 0.36)9Magnesium

0.72a (0.80, 0.63)0.46 (0.55, 0.35)1Albumin

0.54 (0.72, 0.37)0.45 (0.59, 0.33)12Phosphate

0.48 (0.61, 0.36)0.45 (0.56, 0.31)41Sodium

0.39 (0.56, 0.23)0.44 (0.59, 0.29)12Chloride

0.53 (0.75, 0.33)0.43 (0.64, 0.22)61Blood pressure

0.48 (0.71, 0.26)0.43 (0.60, 0.25)6Chlorhexidine topical

0.30 (0.40, 0.22)0.43a (0.54, 0.34)1Partial thromboplastin time

0.49 (0.61, 0.38)0.41 (0.53, 0.30)31Hemoglobin

0.45 (0.77, 0.16)0.39 (0.64, 0.21)4Neutrophils

0.64a (0.78, 0.50)0.39 (0.53, 0.26)14Fentanyl

0.44 (0.59, 0.29)0.39 (0.51, 0.22)13Metronidazole

0.40 (0.92, 0.09)0.39 (0.50, 0.27)3Furosemide

0.24 (0.43, 0.06)0.37 (0.54, 0.19)2Calcium

0.44 (0.54, 0.30)0.37 (0.50, 0.25)28Sodium chloride

0.68a (0.81, 0.55)0.35 (0.52, 0.19)11International normalized ratio

0.65a (0.79, 0.51)0.35 (0.51, 0.21)2Midazolam

0.78a (0.93, 0.64)0.33 (0.58, 0.08)5Alkaline phosphatase

0.80a (0.87, 0.71)0.31 (0.40, 0.22)1Acetaminophen

0.48 (0.65, 0.31)0.30 (0.45, 0.16)9Ventilator tube status

0.69 (0.97, 0.41)0.29 (0.49, 0.09)5Albuterol-ipratropium

0.14 (0.19, 0.09)0.27 (0.58, 0.02)2Mean corpuscular volume

0.45 (0.61, 0.29)0.27 (0.36, 0.18)4Partial pressure of carbon dioxide

0.43 (0.61, 0.24)0.16 (0.34, 0.02)2Ventilator status

aIndicates statistically significant difference at α=.05.

Discussion

Principal Findings
Current EMR systems capture large amounts of patient data;
however, they generally do not capitalize on the opportunity to
prioritize display of data in a relevant and context-sensitive
fashion. We proposed an intelligent method to identify, display,
and focus user attention on relevant medical record data. The
rate-limiting step while developing a prototype LEMR system
has been the collection of training data. Instead of relying on
manual annotations, we proposed using eye tracking as an
automated, high-throughput method for capturing physician

information-seeking behavior. LEMR models trained on
gaze-derived target data performed similarly to models trained
on manual selection target data.

Eye Tracking in Health Care: Pros and Cons
Eye tracking is an alluring method for collecting LEMR training
data. First, the availability of inexpensive eye tracking devices
makes broad implementation of the devices feasible. With
devices installed on many of a hospital’s computer monitors,
vast amounts of training data could be recorded. Locally and
continuously recorded data could be used to train a LEMR
system that is specific to that location’s standards of practice
and adaptive to any changes in practice patterns that occur over
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time. Second, eye tracking is less disruptive to workflow than
requesting that physicians rate or annotate the EMR data they
are viewing. Finally, eye tracking is more advantageous than
manual annotation because it measures what physicians view
rather than relying on what they perceive to be relevant, which,
if collected retrospectively, could be more affected by recall
and attention biases.

Despite its advantages, eye tracking has some drawbacks when
used to capture information-seeking behavior. First, to record
behavior, the user’s eyes must be within the trackable range (ie,
tracking box) of the eye-tracking device. Incorrect positioning
led to some data loss during this study and could be exaggerated
in a clinical setting where users are often standing or talking
with colleagues. Second, to map physician gaze coordinates
onto the EMR data shown on the monitor, a stream of the
information layout is also needed. We instrumented the EMR
interface used in this study to store a stream of the information
layout. Adding the same instrumentation to a vendor-based
EMR system may be technically feasible but administratively
challenging. We are exploring this possibility and other
alternatives, such as continuously recording what is on the
monitor and parsing the recording using optical character
recognition. Finally, we are assuming that a physician views
the information they perceive to be relevant, which may not
always be the case. More work is needed to determine in which
situations gaze patterns are a reasonable approximation for the
information physicians seek.

Models of Information-Seeking Behavior
Performance of the models was mixed and ranged from those
with AUROCs above 0.90 to others with AUROCs below 0.50.
The mediocre performance of some of the models was likely
due to the relatively small sizes of the training data sets and the
small number of positive targets. In previous work, we
demonstrated that model performance improved as the number
of training cases increased, and it is likely that larger training
data sets will improve model performance [5]. Moreover, larger
training data sets will increase target coverage (ie, the number
of targets modeled).

The context of this study was limited to a single clinical task
(ICU physicians preparing to present at morning rounds) and
two clinical conditions (AKF and ARF). Even in this limited
context and in a laboratory setting, there were variations in the
information-seeking behaviors of the reviewers leading to
differences in annotations for the same patient cases (eg, cases
in the evaluation data set were each evaluated by four
physicians). These differences partly stem from length of
experience and depth of clinical knowledge, with some
reviewers in fellowship training with less than two years of
experience in critical care and others who are attendings with
extensive experience. In active clinical environments, other
factors such as urgency, workload, and interruptions will

potentially influence the information-seeking behavior, leading
to even more variation. In this study, the models were trained
using annotations from all reviewers who were weighted equally.
However, it may be desirable to either use data from only
experienced physicians or weight their data more heavily for
training models. Further research is needed to better characterize
variability among the information-seeking behavior of
physicians.

While prioritizing data can reduce cognitive load, with imperfect
model performance, any reduction in cognitive load could be
offset by the need to check unprioritized data to ensure that
important information is not missed. With improved model
performance, a LEMR system could reach high levels of
accuracy, leading to a net reduction in cognitive load.

Limitations and Future Work
We used manual selection as the gold standard in the evaluation
data set. This choice provides an advantage to models trained
on manual selection training data. Despite the advantage, our
results show eye tracking to be a promising, higher-throughput
alternative.

The patients included in this study were chosen because they
had either AKF or ARF. Future studies are needed to evaluate
the effectiveness of machine learning methods when applied to
patients with a wider range of clinical problems, comorbidities,
and clinical tasks.

The eye-tracking device we used has several limitations,
including reduced accuracy at the edges of the monitor and a
limited tracking box (the three-dimensional space where a user’s
head can be positioned while still capturing coordinates of the
user’s eye gaze). To address the device’s limitations, we
designed the LEMR user interface to have adequate separation
between data items. Further research is needed to determine the
performance and limitations of inexpensive eye-tracking devices
in an active clinical setting where users are likely to be more
active and frequently distracted compared to a laboratory setting.
Using LEMR models in conjunction with a commercial EMR
poses additional challenges, such as obtaining patient data in
real time. One promising approach to explore in the future is to
deploy LEMR as a SMART (Substitutable Medical
Applications, Reusable Technologies) on FHIR (Fast Healthcare
Interoperability Resource) application [27].

Conclusions
We proposed and evaluated using eye tracking as a novel
method to train a LEMR system that prioritizes the display of
relevant medical record data. Our results support eye tracking
as being a viable method for automatically capturing physician
information-seeking behavior. Further studies are needed to
evaluate the effectiveness of eye tracking in the clinical
environment and to advance it as a practical approach for
acquiring large amounts of training data for a LEMR system.
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