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Abstract

Background: In the past 20 years, various methods have been introduced to construct disease networks. However, established
disease networks have not been clinically useful to date because of differences among demographic factors, as well as the temporal
order and intensity among disease-disease associations.

Objective: This study sought to investigate the overall patterns of the associations among diseases; network properties, such
as clustering, degree, and strength; and the relationship between the structure of disease networks and demographic factors.

Methods: We used National Health Insurance Service-National Sample Cohort (NHIS-NSC) data from the Republic of Korea,
which included the time series insurance information of 1 million out of 50 million Korean (approximately 2%) patients obtained
between 2002 and 2013. After setting the observation and outcome periods, we selected only 520 common Korean Classification
of Disease, sixth revision codes that were the most prevalent diagnoses, making up approximately 80% of the cases, for statistical
validity. Using these data, we constructed a directional and weighted temporal network that considered both demographic factors
and network properties.

Results: Our disease network contained 294 nodes and 3085 edges, a relative risk value of more than 4, and a false discovery
rate-adjusted P value of <.001. Interestingly, our network presented four large clusters. Analysis of the network topology revealed
a stronger correlation between in-strength and out-strength than between in-degree and out-degree. Further, the mean age of each
disease population was related to the position along the regression line of the out/in-strength plot. Conversely, clustering analysis
suggested that our network boasted four large clusters with different sex, age, and disease categories.

Conclusions: We constructed a directional and weighted disease network visualizing demographic factors. Our proposed disease
network model is expected to be a valuable tool for use by early clinical researchers seeking to explore the relationships among
diseases in the future.
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Introduction

Traditionally, clinical researchers have pushed forward to
explore a number of risk factors that affect a single disease
[1-3], and any diseases previously diagnosed are considered
important clinical indicators to predict the disorder under
investigation [4,5]. Among various methods for unearthing
disease relationships, the concept of network medicine could
be better suited to understand health and disease [6-8]. Likewise,
a disease network was introduced a decade ago as a useful
method to study the complex relationships among diseases
[9-17].

Under the assumption that diseases are caused by genetic
defects, many disease networks were constructed using genomic
data [9,11,14]. For example, Li et al constructed a network to
investigate disease relationships according to the genes of their
shared pathways [14]. Nonetheless, according to the disease
lists of the International Statistical Classification of Diseases,
10th revision (ICD-10), many diseases, such as traumatic bone
fracture attributed to a traffic accident, are not related to genetic
mutations. As such, genome-based disease networks alone are
inevitably limited for accurately representing the complex
pathogenesis of the relationships among diseases [18].

Thus, disease networks were later constructed using shared
clinical information, such as symptoms and comorbidities
[12,17]. Zhou et al generated a symptom-based network of
human diseases that was based on the similarity of symptoms
[17], whereas Hidalgo et al and Barabási et al constructed a
comorbidity network using the Medicare database [7,12].
Because these efforts were focused on demonstrating the
relationships among shared diseases or symptoms occurring or
present at a single point in time, the networks did not take into
account investigations of the temporal order of disease
manifestations [19].

Recently, researchers have suggested that disease networks
should consider temporal directionality when exploring the
connections among diseases [13]. For instance, Jensen et al
analyzed temporal disease progression patterns according to
disease trajectory using the Danish National Patient Registry.
In this study, we constructed a directional and weighted disease
network visualizing the effects of demographic factors, such as
sex, age, and disease outbreak size, according to the relative
risk (RR) among diseases using the National Health Insurance
Service-National Sample Cohort (NHIS-NSC) of South Korea,
which includes epidemiological time series data of 12 years for
approximately 1 million patients.

Finally, we investigated the overall patterns of the associations
among diseases; network properties, such as clustering, degree,
and strength; and the relationship between the structure of the
disease network and demographic factors.

Methods

Construction and Visualization of the Disease Network
South Korea is a representative country implementing national
health insurance services. The NHIS-NSC contains time
insurance information of 1 million out of 50 million Korean
(approximately 2%) patients, which was collected between 2002
and 2013. Thus, clinical information can be tracked for 12 years
for every patient.

To examine the risk factors for diseases that a patient already
had at the beginning of the cohort study, we needed to set an
initial period before the main study period to serve as the
medical history period. For most chronic diseases, the
recommended follow-up interval rarely exceeds 2 years.
Therefore, we set the observation period as 2002 through 2003
and the outcome period as 2004 through 2013.

From the sample of 1,016,580 patients who were eligible for
National Health Insurance in 2004, we selected 885,125 patients
who had at least one record of a medical visit during the
aforementioned observation period. We defined this group of
patients as the sample cohort. In South Korea, diagnoses are
coded in the Korean Classification of Diseases sixth revision
(KCD-6), an extension of the ICD-10. The only difference
between the KCD-6 and ICD-10 is that the diagnosis codes for
Korean medicine are included in the KCD-6 using U20-U99
codes.

To simplify the study, we truncated the KCD-6 codes beyond
their third digit, in effect, grouping subcategories of conditions
together. In total, the KCD-6, when used between 2002 and
2013, consisted of 2,097 unique diagnoses at the third digit
level, and of these, 1,971 diagnoses were included in our data.

Ultimately, we chose only 520 common KCD-6 codes that were
the most prevalent diagnoses, covering approximately 80% of
the cases for statistical validity.

Support Offered by the Clinical Evidence From
Relationships Among Diseases
All statistical analyses and visualizations were performed using
the R package “igraph” (version 3.4.4) and Cytoscape. For
calculation of the RR, we sought to obtain P values against the
null hypothesis, which states that any two diseases present occur
independently of one another in the sample cohort.
False-discovery rate (FDR) corrections were performed using
the Bonferroni method.

Clusters of associated diseases were identified using the random
walktrap community detection algorithm [20,21]. This method
detects clusters purely according to connectivity (unless
specified to use weights) using random walks along edges. The
demographic profiling of disease clusters was carried out by
pooling the patients identified with at least one of the diagnoses
in the cluster.
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As a result, patient pools for each cluster are not exclusive but
instead overlap somewhat with other clusters. The age
distribution of the patient pools was calculated at the beginning
of the observation period. An enrichment analysis of the clusters
for the KCD categories was performed using the Fisher exact
test for adjusted P values <.05.

Topological Characteristics of the Disease Network
In graph theory, the degree of a node is the total number of
connections with other nodes. In a directed network, the
out-degree of a node is the number of connections with that
node as the source, whereas the in-degree of a node is the
number of connections with that node as the target. Hence, the
degree can be thought of as a measure of the level of disease
risk in our network.

In contrast, the strength of a node is the sum of the RRs to
achieve connections with other nodes. For example, the
out-strength and in-strength of node i are defined, respectively,
as follows:

sout (i)=∑j RRij (1)

sin (i)=∑j RRji (2)

where RRij is the weight of the edge from node i to node j, and
RRji is the weight of the edge from node j to node i. The
out-strength is a measure of the magnitude of disease morbidity,
whereas the in-strength is a measure of the magnitude of a
disease’s tendency to follow from other diseases.

Characterization of Large Clusters Throughout
Computational Clustering
To calculate the risk ratio from a risk disease D1 to an outcome
disease D2 (D1→D2), we need to first identify the group of
patients at risk of acquiring D2. We regarded a patient as being
at risk of disease D2 if that patient had no record of being

diagnosed with D2 during the observation period. Patients were
considered to be exposed if they had been diagnosed at least
once with disease D1 during the observation period. The RR of
D1→ D2 was defined using the following formula:

RR=(a / [a + b]) / (c / [c + d]) (3)

where a is the number of patients exposed to D1 in the initial
period and D2 in the outcome period; b is the number of patients
exposed to D1 in the initial period but not exposed to D2 in the
outcome period; c is the number of patients not exposed to D1

in the initial period but exposed to D2 in the outcome period;
and d is the number of patients not exposed to either D1 in the
initial period or D2 in the outcome period (Table 1).

Since a single misdiagnosis can cause a very large error in the
RR value if the numbers in the contingency table are small, we
established a minimum size of 947 patients for each group. For
example, the diagnosis with the highest prevalence in the initial
period was “J20: acute bronchitis,” with 355,045 patients
diagnosed at least once in the observation period.

The lowest diagnosis was “R80: isolated proteinuria,” with 947
patients diagnosed during the observation period. Consequently,
the at-risk group sizes ranged from 530,080 (885,125 − 355,045)
for acute bronchitis to 884,178 (885,125 − 947) for isolated
proteinuria.

To select the cuto  value for the RR, we chose the closest integer
to the top percentile (ie, the closest integer to x where P [RR >
x] = .01], which was 4. Therefore, we selected disease
relationships with an RR of more than 4 and an FDR-corrected
P value of <.001 to construct our final network.

Accordingly, the prevalence and at-risk group sizes were large
enough to accurately determine the RR. Since the self-interaction
in this study was not the subject, the total number of theoretical
interactions of a total of 520 nodes was found to be 269,880.

Table 1. Contingency table for disease-disease risk ratio calculation.

Outcome disease in 2004-2013Risk disease in 2002-2003

Not exposedExposed

ValuebValueaExposed

ValuedValuecNot exposed

aNumber of patients exposed to the risk disease (D1) and outcome disease (D2).
bNumber of patients exposed to D1 but not exposed to D2.
cNumber of patients not exposed to D1 but exposed to D2.
dNumber of patients not exposed to either D1 or D2.

Results

Construction and Visualization of the Disease Network
Initially, for the construction and visualization of our final
disease network, we selected an RR of more than 4 and an
FDR-adjusted P value of <.001. As a result, we were able to
obtain a disease network with four clusters, 294 nodes, and 3085
edges (Figure 1).

For better clinically intuitive visualization, we designed a
visualization scheme such that the color of the disease node
would reflect the age of the patient affected with the disease
and that the outbreak size would reflect the relative number of
patients. The shape of the node was indicated by a rectangle.
Node widths represented the number of female patients, whereas
the heights represented the number of male patients. For node
colors, the intensity of the red channel was proportional to the
ratio of patients younger than 30 years, the intensity of the green
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channel was proportional to the ratio of patients aged between
30 and 59 years, and the intensity of the blue channel was
proportional to the ratio of patients aged 60 years or older.

Meanwhile, to indicate the directionality and weight of the node,
the edges were represented by arrows and the relative thickness

was represented in gray. The number of patients in each sex
and age group for each disease was calculated at the beginning
of the outcome period based on the included patients’ histories
during the observation period.

Figure 1. Visualization of the disease network. The network is constructed using the prefuse force-directed layout.

Support Offered by the Clinical Evidence From
Relationships Among Diseases
To determine whether the correlations among inferred diseases
in our disease network model were clinically meaningful, we
investigated the available literature concerning the top six
disease-disease associations with the highest RR values from
the established disease network.

Most results appeared in agreement with previously known
associations among diseases (Table 2). A substantial nosologic
and biologic overlap exists between bipolar disorder and
schizophrenia [22,23]. Further, long-standing hypertension is
known to be an important cause and consequence of chronic

kidney disease [24]. It is also well-known that anemia develops
into chronic kidney disease and portends an unfavorable
prognosis [25].

Interestingly, the association between diabetes mellitus in
pregnancy and neonatal jaundice was also very high, despite
the fact that neonates are never pregnant. This outcome is
possible because diagnoses for infants who are not yet in the
national registry are filled out under the mother’s account for
insurance [26-28]. Another interesting aspect of our results was
the fact that neonatal jaundice and diaper dermatitis were
strongly associated with one another, which was not observed
in previous epidemiological studies.
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Table 2. Top relative risk values.

ReferencesRRaOutcome diseaseRisk factor disease

[22,23]34.4SchizophreniaBipolar affective disorder

[24]31.9Hypertensive renal diseaseChronic kidney disease

[26-28]29.1Neonatal jaundiceDiabetes mellitus in pregnancy

N/Ab28.1Diaper dermatitisNeonatal jaundice

[25]27.4Anemia in chronic diseaseChronic kidney disease

[27]26.1Neonatal jaundiceHemorrhage in early pregnancy

aRR: relative risk.
bN/A: not applicable.

Topological Characteristics of the Disease Network
We investigated the in- and out-degree distributions of our
constructed network. Like many other networks, the in- and

out-degrees of our network followed a power-law distribution
with a long tail [29] (Figure 2). However, in contrast with the
degrees, neither in- nor out-strength followed the power-law
distribution (Figure 3).

Figure 2. Distribution of the network for in- and out-degrees.

Figure 3. Distribution of the network for in- and out-strength.
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Table 3 shows the top six diseases with the highest out-degree,
in-degree, out-strength, and in-strength results. The top
out-degree diseases included diseases that are known to affect
many other conditions such as chronic kidney disease and
essential hypertension.

The top in-degree diseases are known to be associated with
long-term hospitalization or immunocompromise, which are
statuses that can arise from various diseases. The top out-degree
and top out-strength diseases had considerable overlap, with
polyneuropathy, senile cataract, and retinal disorders all being
both high out-degree and high out-strength diseases. Patients
with these diseases may be at greater risk for developing
multiple comorbidities.

The top in-degree and top in-strength diseases included
Parkinson disease, chronic kidney disease, anemia in chronic

disease, and osteoporosis with pathological fracture. This
suggests that many different diseases can have a strong tendency
for coverage onto these diseases. Subsequently, we explored
the relationships between out-degree and in-degree and between
out-strength and in-strength results.

The correlation between the out-strength and in-strength findings
(Pearson correlation coefficient: 0.72) was stronger than that
between the out-degree and in-degree findings (Pearson
correlation coefficient: 0.57) (Figure 4). This means that diseases
show strong tendencies to develop from other diseases. For
better characterization, we color-coded the diseases in the
out-/in-strength plot according to the age composition of the
patients (Figure 5). This revealed that mean age was related
with positioning along the regression line of the out-/in-strength
plot.

Table 3. Top out-/in-degree diseases and top out-/in-strength diagnoses.

DegreeKCDa code and disease

Top out-degree diseases

43G63: polyneuropathy

43C61: malignant neoplasm of the prostate

43H25: senile cataract

42H36: retinal disorders

42N18: chronic kidney disease

39I10: essential hypertension

Top in-degree diseases

82G20: Parkinson disease

64M80: osteoporosis with pathological fracture

62N18: chronic kidney disease

61D63: anemia in chronic diseases

59A41: sepsis

Top out-strength diseases

1057G63: polyneuropathy

998H36: retinal disorders

992M48: spondylopathies

992H25: senile cataract

981M81: osteoporosis without pathological fracture

979M17: arthrosis of the knee

Top in-strength diseases

1197G20: Parkinson disease

1135N18: chronic kidney disease

1123D63: anemia in chronic diseases

1120M80: osteoporosis with pathological fracture

1100I12: hypertensive renal disease

1089H27: disorder of the lens

aKCD: Korean Classification of Diseases.
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Figure 4. Correlations between in- and out-degrees and in- and out-strengths.

Figure 5. Out- and in-strengths plotted according to the age composition of the patients.

Characterization of Large Clusters Throughout
Computational Clustering
To confirm whether the visually observed clustering in Figure
1 was an artifact of the layout algorithm, we employed a random
walktrap algorithm for network clustering [20,21].

A total of 19 clusters were detected, including four large clusters
of a size greater than 38 and 15 small clusters of a size less than
13. When we color-coded the network using these four major
clusters, we could see that the top right and top left clusters
were almost exactly as visualized, but the largest cluster was
detected as two large subclusters (Figure 6).

This confirmed that disease associations grouped diseases into
a few distinct clusters and that this occurred independently of
the prefuse force-directed layout. Interestingly, the modularity
score for the random walktrap algorithm (0.53) was more than
twice the score for the KCD categories (0.24). To see whether
the four major clusters actually had the characteristics that we
noticed in the visualization, we profiled the clusters with respect
to the age distribution and sex ratio of the affected patients
(Figure 7).

Patients diagnosed with diseases in clusters 1 and 3 were
relatively older (mean age of 47.4 [SD 18.22] years and 48.19
[SD 18.66] years, respectively). The diseases in cluster 2 were
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dominated by women of reproductive age (the ratio of males to
females was 1:18.67; mean age: 39.38 [SD 13.08] years). Cluster
4 included patients who were relatively young, with slightly
more females (the ratio of males to females was 1:1.22; mean
age: 31.7 [SD 21.56] years).

We profiled the KCD classes of each cluster and performed an
enrichment analysis to investigate the types of diseases that
were enriched in each cluster (P=.05). Although every cluster

contained its own disease groups (Multimedia Appendix 1), the
enrichment analysis revealed that each of the four major clusters
was enriched with nonoverlapping sets of KCD categories
(Multimedia Appendix 2). Since each cluster had distinct
characteristics, we labeled the major clusters from 1 to 4,
according to their most prominent features, as “chronic
debilitation,” “women’s disease,” “hemato-oncology,” and
“infectious disease” clusters, respectively.

Figure 6. Four major clusters of the network.

Figure 7. Age distribution and sex ratio for the four major clusters.

Discussion

Principal Findings
In this study, we proposed a comprehensive method for
modeling a disease network with directionality and weight of
edges using medical claims data. We selected only the most
common diagnoses to avoid an overestimation of RR among
rare diseases. The ϕ correlation is also useful to avoid

overestimation of associations among rare diseases [12], but it
is clinically less intuitive and unnecessary for the purpose of
studying the overall pattern of common disease associations.
Epidemiological factors, such as age and sex, are important
inducers of disease development [30-33]; they are, in effect, the
most critical clinical factors affecting the prevalence and
classification of diseases.

Another purpose of this study was to dissolve these various
factors in the disease network and to see how various factors
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affect the structure and dynamics of the disease network. In
addition, these factors were reflected in the visualization of the
disease network. In our disease network model, we proposed
an intuitive visualization method that maximizes clinical
usability.

Nodes indicate the patient outbreak size, and at the same time,
represent the relative proportion of width (women) and height
(men) in a rectangle. In addition, each node is divided into red
for young patients, green for middle-aged patients, and blue for
old patients. Conversely, the RR and direction among diseases
can be intuitively grasped through the arrow and the thickness
of the edge.

As a result, our visualization method of a disease network can
help to intuitively identify the direction and RR among diseases
and can help to effectively understand the age distribution, sex
ratio, and disease outbreak size. The directionality of the disease
relationship is a consequence of the study design being
longitudinal with a chronological order. Strong RR values
support disease association in a chronological order, which is
a prerequisite for causality among diseases in clinical research
[34]. Because of this, our network can be a starting point to
investigate causality among diseases. Here, we examined the
literature on disease relationships with high RRs.

Limitations
The NHIS-NSC includes the proportional stratified sampling
data of 1,025,340 patients from among 47,851,928 patients.
These patients were randomly extracted by age group, sex,
eligibility status, and income level using a proportional stratified
sampling method [35]. In general, NHIS-NSC data are
representative, but some rare diseases may lose their
representativeness owing to the difficulty in obtaining statistical
significance. Owing to these limitations, this study excluded
disease groups with a small sample size, and rare diseases that
have not been assessed in this study are expected to be evaluated
in future studies.

As a result, we have shown that our network can provide clues
to reveal the causal relationships among diseases. In our
network, neonatal jaundice and diaper dermatitis presented a
statistically meaningful association (RR=28.1, P<.001), but we
did not find other supporting evidence of such an association
during the literature search. Nonetheless, this does not mean
that our network had an incorrect result. Rather, it suggests the
possibility of associations that researchers have not yet
discovered. In a strict sense, it can be difficult to say that this

is a causal relationship because directionality can only be
thought of as the natural progression of a disease, the outcome
of a treatment, or the process of making a diagnosis.

Conclusions
During our research, we investigated network topologies, such
as degree and strength. Both in- and out-degrees followed
power-law distribution like other biological networks; however,
strength distributions did not. Since the RR values did not
indicate causality, we cannot say that a certain disease is the
cause of many other diseases by only looking at out-degrees
and out-strengths. Despite this, patients with high out-degree
and high out-strength diseases (eg, polyneuropathy, retinal
disorders, and senile cataract) are worthy of special attention
for secondary prevention purposes. Similarly, diseases with
high in-degree and high in-strength findings, such as Parkinson
disease, osteoporosis with pathological fracture, and chronic
kidney disease, can be seen as common comorbidities of many
different diseases.

We found stronger correlations between in- and out-strengths
than between in- and out-degrees. Moreover, a stronger risk
associated with a disease tended to be related to older affected
patients. The association between age and strength suggested
that the previously discovered correlation between disease
connectivity and mortality could be explained by the
phenomenon of increased risk strength.

Through clustering of the network, we found four major disease
clusters with distinct demographic characteristics. Interestingly,
each cluster was exclusively enriched in KCD categories and
had a different mean age and sex ratio. The clustering patterns
analyzed using our network suggest that KCD categories, age,
and sex have strong influences on disease associations and
highlight the importance of demographic factors. Since patients
with diseases within a cluster tend to acquire other diseases
within the same cluster, we may be able to minimize the onset
of comorbidities through patient care by configuring specialty
clinics to cater to clusters or subclusters of associated diseases,
as is the case with obstetrics and gynecology.

In this regard, our proposed disease network model will likely
serve as a valuable tool for early clinical researchers seeking to
further explore the relationships of diseases in the future.

For future study attempts, we will take into account the
dynamicity of network-considered time order and assess the
network collapse point that can affect the overall network
structure.
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