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Abstract

Background: Falls are a common health problem, which in the worst cases can lead to death. To develop reliable fall detection
algorithms as well as suitable prevention interventions, it is important to understand circumstances and characteristics of real-world
fall events. Although falls are common, they are seldom observed, and reports are often biased. Wearable inertial sensors provide
an objective approach to capture real-world fall signals. However, it is difficult to directly derive visualization and interpretation
of body movements from the fall signals, and corresponding video data is rarely available.

Objective: The re-enactment method uses available information from inertial sensors to simulate fall events, replicate the data,
validate the simulation, and thereby enable a more precise description of the fall event. The aim of this paper is to describe this
method and demonstrate the validity of the re-enactment approach.

Methods: Real-world fall data, measured by inertial sensors attached to the lower back, were selected from the Fall Repository
for the Design of Smart and Self-Adaptive Environments Prolonging Independent Living (FARSEEING) database. We focused
on well-described fall events such as stumbling to be re-enacted under safe conditions in a laboratory setting. For the purposes
of exemplification, we selected the acceleration signal of one fall event to establish a detailed simulation protocol based on
identified postures and trunk movement sequences. The subsequent re-enactment experiments were recorded with comparable
inertial sensor configurations as well as synchronized video cameras to analyze the movement behavior in detail. The re-enacted
sensor signals were then compared with the real-world signals to adapt the protocol and repeat the re-enactment method if
necessary. The similarity between the simulated and the real-world fall signals was analyzed with a dynamic time warping
algorithm, which enables the comparison of two temporal sequences varying in speed and timing.

Results: A fall example from the FARSEEING database was used to show the feasibility of producing a similar sensor signal
with the re-enactment method. Although fall events were heterogeneous concerning chronological sequence and curve progression,
it was possible to reproduce a good approximation of the motion of a person’s center of mass during fall events based on the
available sensor information.

Conclusions: Re-enactment is a promising method to understand and visualize the biomechanics of inertial sensor-recorded
real-world falls when performed in a suitable setup, especially if video data is not available.

(J Med Internet Res 2020;22(4):e13961) doi: 10.2196/13961
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Introduction

Falls are a common health problem that can lead to serious
physical consequences such as fractures, reduced quality of life,
loss of independence, and institutionalization. Furthermore,
fall-related injuries seriously increase mortality in older persons
[1]. One-third of community-dwelling people older than 65
years fall at least once a year, and half of them fall more than
once [2]. Besides the individuals’ health burden, falls also have
a major social and economic effect with annual costs accounting
for 0.85% to 1.5% of the total health care expenditures [3].

Meta-analyses identified about 30 fall risk factors in
community-dwelling older persons [4]. These risks include fall
history as well as balance and gait problems. Nevertheless, fall
risk prediction models show limited performance, which
suggests that we do not fully understand the complex interplay
of factors triggering fall events. This may be because
information about fall events are mainly derived from subjective
reports by fallers or proxies, which can be biased in many ways
[5]. Lack of reporting or false reporting can be related to
cognitive impairment of the subjects, shame of reporting and
fear of consequences, or simply due to difficulties in defining
a fall [6]. Objective information is rare and, therefore, many
aspects including fall-related activities, environmental factors
and movement patterns before, during, and after the falling
phase remain unclear. Body-worn sensor technology might
enhance our understanding of falls and thereby also lead to more
effective methods for fall prevention, fall risk assessment, and
fall detection. With the rapid development of eHealth, small
wearable devices such as body-worn sensor technology can
provide objective measures of physical activity and the
kinematics of human movement [7].

Although falls are common, it is challenging to capture
real-world fall signals due to the long observation period and
the limited recording duration of sensor devices. The Fall
Repository for the Design of Smart and Self-Adaptive
Environments Prolonging Independent Living (FARSEEING)
consortium, funded by the seventh European Union Framework
Program for Research, has been able to capture and validate
real-world falls of older people who have an increased risk of
falling, measured by body-worn sensor technology [8]. Analysis
of these fall signals showed, for example, that the characteristics
presented by inertial sensor measurements are relevant to
improve the understanding of the postimpact phase [9].
Movement patterns during the ground phase were different
between fall events with and without successful recovery to a
standing position. These findings are important for redesigning
emergency response processes after falls to better support
individuals in cases of an unrecovered fall.

Even though the signals provide precise measures for
acceleration, angular velocity, and magnetic north, it is not
possible to directly derive visualization and interpretation of
movements during a fall event. In contrast, video data facilitates
the possibility of estimating the kinematics of falls as well as
the fall-related movements before and after the fall event [10].
However, analyzing the complex movement patterns of fallers
from planar video data is challenging, due to motions of body

segments that are out of the plane or occluded [11]. Furthermore,
due to privacy issues, it is usually not possible to capture video
data during everyday life. In the absence of well-described
real-world fall recordings and due to the huge effort in recording
objective fall data, researchers have tried to bridge the
knowledge gaps by simulating fall events. However,
comparisons between acceleration signals of simulated and
real-world fall events has shown that there are considerable
differences [12]. This might be due to a lack of real-world data
for designing a more suitable and realistic simulation protocol.
For example, the preimpact phase was excluded from
simulations, but analysis of this phase could identify protective
movements or provide a better understanding of the
circumstances that lead to a fall. Furthermore, if the simulated
fall was self-initiated, the movement pattern differed a lot from
the movement pattern of the real-world fall, because the
volunteers did not know how to fall in a realistic way. It was
shown that the acceleration values were closer to those of
real-world fall events when the subjects were forced to fall by
releasing them suddenly from a backward lean with the
instruction to avoid a fall [12]. To perform more suitable
simulations, it is essential to find methods to create a realistic
experimental protocol that can be easily reproduced. The
obtained information could be of great value and give insight
into the causes of falls as well as what happened during the fall.
To the best of our knowledge there is no current method to
obtain this kind of information based on sensor signals without
having another information source such as video. However,
such information could help better predict falls and develop
new fall prevention interventions as well as fall detection
approaches.

Connell and Wolf [13] previously proposed a re-enactment
method to validate subjective fall reports. Participants were
interviewed and asked to re-enact in detail (if they felt
comfortable) all activities, body movements, body part
placements, and interactions with the environment at the location
of the incident to obtain more precise information. This method
of re-enactment is a promising approach to improve simulation
protocols and to produce more realistic fall simulations. We
adapted the re-enactment method to visualize and enhance the
interpretation of sensor signals. The aim of this study was to
describe this adapted method and to demonstrate the validity
of the re-enactment approach by means of a selected common
fall example.

Methods

Real-World Fall Data
Real-world fall data measured by inertial sensors during
everyday life were obtained from subjects in different settings
(eg, community-dwelling, geriatric rehabilitation) and different
populations with moderate to high risk of falling (eg, Parkinson
disease, cerebellar and sensory ataxia). All fall events were
stored in the FARSEEING database [8]. The process of data
collection by combining different sources was approved by the
Ethics Committee of the University of Tübingen (495/2012BO2)
and the data protection office of the Federal State of
Baden-Württemberg, Germany (T 1500/231). The large number
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of real-world fall events within the FARSEEING database
facilitated the comparisons of sensor signals that represented
similar curve progressions as well as the confirmation of the
feasibility to apply the re-enactment method for several diverse
fall paradigms. For the purposes of exemplification, we selected
one fall event of a female patient (42 years of age, height=154
cm, weight=60 kg, Montreal Cognitive Assessment=27 [14],
Timed Up-and-Go=17.72 seconds [15], Short Physical
Performance Battery=9 [16]) with ataxia that presented a reliable
fall report and sensor signal. The corresponding fall report
described the event as a forward fall initiated by stumbling over
the entrance door sill. Analysis and interpretation of the triaxial
sensor signal concerning movement patterns and curve
progression confirmed the fall description. Based on the
collected signals from the repository, the selected fall signal
represents a common fall paradigm that corresponds with
everyday life situations.

Data Processing
Data acquisition was performed during the patient monitoring
as well as during the re-enactment experiments using the
Samsung Galaxy (SG) S3 smartphone worn on the lower back
at the lumbar position (L5) with a belt, close to the center of
mass. The smartphone includes a triaxial accelerometer (2 g
SGS3) sampled at 100 Hz. Data were stored for off-line analysis
on the smartphone. Orientation was defined as follows:
z=vertical, y=mediolateral, and x=sagittal. Additionally, the
re-enactment experiments were captured with a video camera
(SGS8, 200-Hz sampling rate) to analyze the movements in
detail. For this purpose, the video data and the sensor signal
were synchronized to assign specific postures, as seen from the
video tape, to each frame of the acceleration signal.

Re-Enactment Protocol
Aiming to establish a simulation protocol, the selected fall signal
was analyzed with regard to the movement patterns during the
prefall phase (5-10 seconds before impact), falling phase, and
impact phase as well as the resting and recovery phase with the
faller achieving an upright standing position [17]. Based on the
signal interpretation, a simulation protocol including identified
postures and movement sequences was established. The protocol
was conducted by an expert (woman, 28 years of age,
height=168 cm, weight=61 kg, healthy, and physically active)

in analyzing sensor signals of real-world fall events. Simulations
started with the prefall activity and ended with the person
standing upright subsequent to the impact phase. The
re-enactment method was conducted under safe conditions in
a laboratory setting using protective layers of mattresses to
reduce the impact and avoid injuries. With the aim of producing
a simulated acceleration signal similar to the real-world fall
signal the protocol was performed several times. Subsequently,
the re-enacted signals were compared to the real-world fall
signal, and the protocol was adapted based on the findings after
the first re-enactment experiment. Special attention was paid
to the z component, as it indicated the motion in vertical
direction as well as bending movements of the trunk section.
The adapted protocol was conducted again and the newly
recorded signals were compared to the original signal. In cases
of new findings, the protocol was adapted again as a basis for
a further trial. This re-enactment process is visualized in Figure
1. The adaptation of the protocol was repeated until the
experiment led to satisfying results that showed a similar curve
shape compared to the original signal from the real-world fall
event.

Validation of Re-Enactment Method
The resemblance between the simulated and the real-world fall
signals was analyzed using a dynamic time warping (DTW)
algorithm, which enables the comparison of two temporal
sequences varying in speed and timing. The DTW algorithm
compensated the temporal differences between the sensor
signals. Both time series were aligned by stretching the two
vectors to minimize the sum of the Euclidean distances between
the corresponding points. DTW alignment was processed in
R-3.4.2 (R Foundation for Statistical Computing, Vienna,
Austria) with the slope-constrained step pattern “asymmetricP1”
published by Sakoe and Chiba [18] with open start and open
end to achieve time normalization by transforming the time axis
of the real-world fall signal pattern (query) onto that of the
re-enacted one (template). The slope constraining factor P=1
was chosen due to its best recognition performance, which was
also shown in the study of Sakoe and Chiba [18]. Similarity
between the curves was calculated by the normalized distance
as defined by the Euclidean distance divided by the number of
samples in the query.
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Figure 1. Flowchart of the re-enactment method.

Results

Figure 2 shows the triaxial acceleration signal of the real-world
fall event at the top, and the three acceleration signals recorded
during the re-enactment experiments below. The movement
sequence of the chosen real-world fall event was as follows:
standing unsteady, stumbling over doorsill, falling forward on
the knees, and standing up again. The first simulation followed
these rough instructions and the result was not satisfying,
demonstrated by the second plot from the top. The impact in
section 2 could not be simulated realistically due to the soft
mattress, and the frequency of the steps in section 1. Focusing
on the z component (vertical), the original fall signal showed a
steeper slope after the impact compared to the signal of the first
simulation. The acceleration values of the simulated signal in
section 3 were higher as well as the value of the local minimum
in section 6; whereas the values in section 5 were lower
compared to the signal of the real-world fall event. Furthermore,
the lifting of the upper body in section 4 was barely visible.
However, the curve shape in section 3, 5, and 6 was analogous
to those of the real-world fall signal. The normalized distance
was 2.53, which was the highest value in all experiments. The
x component of the first simulated sensor signal showed a
similar curve progression in sections 3, 5, and 6 but differed

regarding the acceleration values in comparison to the real-world
fall signal. For the y component, the curve shape was quite
similar compared with the real-world fall signal with slight
deviations in section 6. Subsequently, the protocol was adapted:
more pronounced steps (section 1), bending forward while
kneeling (section 3), and resting in this posture for a short time
period.

The second simulation produced more similar acceleration
values but was still too high for the z component in sections 3
and 6. The forward bending of the upper body while standing
up was not pronounced enough, which was illustrated by the
minimal value of the z component in section 6. Furthermore,
the z component in section 6 showed two local minima instead
of one as shown in the signal of the real-world fall. Section 5
especially showed a time period that was too short. Noticeable
was section 4, which was about 7 times longer and included a
lot more motion in all three axes compared to the real-world
fall event. The x component improved within section 3 and 6,
but section 4 and 5 remained different in acceleration values
and curve progression. For the y component the curve shape
had to be improved, especially in section 4. However, the
normalized Euclidean distance was lower for all three axes,
indicating a general improvement of the simulation.
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Figure 2. Triaxial acceleration signals of a real-world fall event and signals stepwise derived during the re-enactment experiments. Numbers 1 to 6
indicate the particular phases of the fall event (1: prefall phase with steps, 2: stumbling, falling, and impact, 3: resting, 4: raising upper body, 5: resting,
6: straighten up into standing position).

The findings were added to the protocol, and the experiment
was repeated with the following instructions: scuttling or less
pronounced steps (section 1), stumbling and falling forward on
the knees (section 2), bending the upper body forward and
touching the ground with the hands for 1 to 2 seconds (section
3), sudden raising (section 4), 4 seconds of resting on the knees
with upper body upright (section 5), placing the left foot on the

floor and standing up without the upper body swaying (section
6).

The resulting signal of the third simulation experiment is the
lowermost subplot in Figure 2. With exception of section 1 and
2, all three axes showed very similar curve shapes compared
with the real-world fall signal. The visual similarity was
confirmed by the decreased normalized Euclidean distance for

J Med Internet Res 2020 | vol. 22 | iss. 4 | e13961 | p. 5https://www.jmir.org/2020/4/e13961
(page number not for citation purposes)

Sczuka et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


all three axes. The lowest distance was at 1.46, calculated for
the x component. The x and z component showed a nearly 30%
reduction of the normalized Euclidean distance; although the
bending in section 6 could have been more pronounced for the
z and x component, and the whole simulated signal was about
6 seconds shorter.

Figure 3 illustrates the alignment of the vertical acceleration
(z) component of the real-world fall acceleration signal and the
signal obtained during the third simulation. The appropriate
movement sequences were linked, but there was a temporal
delay resulting from the shorter duration of the re-enacted fall
signal.

Figure 3. Time series alignment of the vertical acceleration signals for the real-world fall event as well as the best-fit re-enacted signal.

Figure 4 displays the warping path for the vertical (z) component
of the real-world fall signal and the re-enacted fall signal derived
from accelerometer data. Only one part of the real-world fall
signal located around frame 800 showed a dominant discrepancy
and led to a sharp bend in the line because of the shorter resting

phase (section 5, Figure 2) in the re-enacted signal. The DTW
algorithm compensated the resulting differences in length within
this section by stretching this part of the signal in the re-enacted
fall event by repeating each element as many times as necessary.
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Figure 4. Time series alignment and warping path calculated using a dynamic time warping algorithm for the vertical component of the real-world and
re-enacted fall signal.

Discussion

Principle Findings
Re-enactment was demonstrated as a suitable approach to
provide new insight into real-world fall events recorded with
inertial sensors, as well as fall events in general. It was possible
to simulate fall events more realistically and thereby verify the
interpretation even though falls were heterogeneous and showed
a high variability due to the 3D movements of the fallers.

To the best of our knowledge, the introduced method is a new
approach to reproduce with good approximation the inertial
sensor signals of real-world fall events, which allows for more
valid fall simulations under safe laboratory conditions. Prior
re-enactment studies already showed that this method is
adequate to conduct an examination of behavioral and
environmental circumstances associated with falls [13]. We
modified this approach by enhancing the written fall report with
the corresponding real-world fall signal. Reproducing the sensor
signal by re-enactment and additional videotaping of the
simulation seems to be a suitable method to prove the
interpretation of a real-world fall event when video data is
missing. By synchronizing video and sensor data, every change

in curve progression of the sensor signal can be associated with
a specific posture or movement pattern and the circumstances
can be retraced more easily.

Comparison between real-world and re-enacted fall signals was
performed by applying a DTW algorithm. This method was
suitable to measure the similarity between two events of
different lengths in the time series. This was an important
finding since our experiments demonstrated that it was
impossible to simulate fall events chronologically with enough
precision in the exact timing of each specific posture. Most
other correlation approaches cannot handle this problem. It was
further shown that the applied DTW algorithm was able to
stretch the signals in a way that enables the characteristic
patterns to be assigned to each other. There is no natural
threshold for the normalized distance to show an appropriate
fit. However, previous studies already indicated that DTW was
a suitable approach with regard to pattern recognition in human
motion regardless of thresholds [19-22]. Our results also suggest
that the DTW approach might be a promising method to detect
entire fall patterns or at least parts of the events from
accelerometer data. This could also help to further improve fall
detection algorithms.
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Our results show that the re-enactment method provides a tool
to understand fall-related movements. Based on the
FARSEEING database, it will be possible to build up a database
with sequences of sensor signals that represent specific
movement patterns and link the corresponding pictures or video
data that show the re-enacted movement. Using such a database
in combination with the method of DTW could help to identify
movement sequences of newly acquired fall signals and thereby
improve the understanding of falls, including the causes and
consequences. With this new knowledge it will be possible to
develop more reliable fall risk models [23].

The FARSEEING database contains about 200 well-described
fall events [8]; however, realistic simulations are still necessary.
It seems unrealistic to collect a sufficient number of real-world
falls for all open research questions and data intensive analytic
methods such as automated machine learning approaches for
fall detection. Currently, fall detection is insufficient, such as
when implemented in home alarm systems. The main reason
seems to be unrealistic simulated falls by younger subjects with
insufficient knowledge of real-world falls [12]. Applying such
fall detection algorithms to real-world situations resulted in high
rates of false positive or false negative alarms [24]. The
application of data on real-world falls from the FARSEEING
database in the algorithm development highly improved the
detection performance [25]. However, there is still an
unacceptable high false alarm rate. Machine-learning approaches
already show promising results in activity recognition based on
data from waist-worn inertial sensors [26,27] and might further
improve the results, but would need additional realistic fall data.

The re-enactment method will facilitate and enhance the quality
of fall simulation to provide more realistic data input for
algorithm developers. Volunteers could be trained to simulate
real-world falls that were sufficiently similar using re-enacted
fall signal data. As a next step, a study is planned to
systematically re-enact the falls provided by the FARSEEING
database and to analyze the repeatability of the results when
re-enactment is performed by different persons.

Strengths and Limitations
This new approach was developed and validated to broaden the
knowledge of real-world fall events and close the information
gap in cases of missing or fragmentary fall description. A
remarkable strength of this study is the development of the
re-enactment method based on real-world fall data derived from
the FARSEEING meta database, which is currently the largest
collection of real-world fall events recorded with inertial sensors
[8]. Although fall events are heterogeneous, it was possible to
compare several real-world data sets with a similar fall scenario
and to identify fall paradigm-specific patterns, which could be

replicated within the re-enactment protocol and lead to realistic
simulations. Furthermore, it seems that re-enactment can be
performed by any person able to simulate the fall event without
matching the clinical characteristics of the original faller.
Shawen et al [28] even demonstrated that a fall detection
approach based on the inertial sensor signals of healthy
participants recorded with a smartphone can be used to resemble
characteristics of other populations, such as individuals using
prostheses. Even though we introduced the re-enactment method
by means of only one exemplary real-world fall event, this new
approach is feasible for several real-world fall data with similar
results as shown. Further examples can be found in the
Multimedia Appendicies 1-3.

However, this method has several limitations. Due to safety
conditions the re-enactment experiments had to be performed
with constraints on the impact phase. A soft mattress was used
to lessen the impact during re-enactment experiments. Therefore,
the acceleration values caused by the impact differ from those
of real-world fall signals. Nevertheless, the reliable alignment
of both signals can be seen in Figure 3. The DTW algorithm
that was used is able to match the signals on the basis of a
similar curve progression, despite the values in the original and
re-enacted signals differing in the relatively short part of the
impact phase. However, when focusing on the impact phase it
will be necessary to use signals derived from real-world falls
with sufficient ranges of acceleration. It was previously shown
that signals derived from simulated impacts were not acceptable,
at least when fall detection algorithms were evaluated [29].

Even though the simulation of fall events, including all phases,
is feasible in general, less dominant motions might have been
overlooked and not reproduced by re-enactment. Due to the fact
that no video data were available from the real-world fall events,
the re-enacted movements were impossible to verify. In addition,
the fall reports were often limited and provided little to no
information concerning movement behavior and circumstances.

Furthermore, we only performed the re-enactment method for
common fall paradigms such as stumbling over a doorsill or
falling backwards while opening a door. It seems that these
paradigms can be reliably simulated in a laboratory. However,
every paradigm might not be transferable in an experimental
setting (eg, falling due to dizziness or collision with another
person).

Conclusions
The re-enactment approach provides a possibility to generate
data that is similar to those of real-world fall events. This
method could help to better understand real-world falls and
further improve the simulation of fall events to increase the
available realistic fall data for algorithm development.
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Multimedia Appendix 1
Triaxial acceleration signals and timeseries alignment of the vertical component of a further real-world fall event (example 1)
and a very similar signal derived during re-enactment experiment.
[PNG File , 1064 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Triaxial acceleration signals and timeseries alignment of the vertical component of a further real-world fall event (example 2)
and a very similar signal derived during re-enactment experiment.
[PNG File , 834 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Triaxial acceleration signals and timeseries alignment of the vertical component of a further real-world fall event (example 3)
and a very similar signal derived during re-enactment experiment.
[PNG File , 736 KB-Multimedia Appendix 3]
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