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Abstract

Background: Several studies have shown that facial attention differs in children with autism. Measuring eye gaze and emotion
recognition in children with autism is challenging, as standard clinical assessments must be delivered in clinical settings by a
trained clinician. Wearable technologies may be able to bring eye gaze and emotion recognition into natural social interactions
and settings.

Objective: This study aimed to test: (1) the feasibility of tracking gaze using wearable smart glasses during a facial expression
recognition task and (2) the ability of these gaze-tracking data, together with facial expression recognition responses, to distinguish
children with autism from neurotypical controls (NCs).

Methods: We compared the eye gaze and emotion recognition patterns of 16 children with autism spectrum disorder (ASD)
and 17 children without ASD via wearable smart glasses fitted with a custom eye tracker. Children identified static facial
expressions of images presented on a computer screen along with nonsocial distractors while wearing Google Glass and the eye
tracker. Faces were presented in three trials, during one of which children received feedback in the form of the correct classification.
We employed hybrid human-labeling and computer vision–enabled methods for pupil tracking and world–gaze translation
calibration. We analyzed the impact of gaze and emotion recognition features in a prediction task aiming to distinguish children
with ASD from NC participants.

Results: Gaze and emotion recognition patterns enabled the training of a classifier that distinguished ASD and NC groups.
However, it was unable to significantly outperform other classifiers that used only age and gender features, suggesting that further
work is necessary to disentangle these effects.

Conclusions: Although wearable smart glasses show promise in identifying subtle differences in gaze tracking and emotion
recognition patterns in children with and without ASD, the present form factor and data do not allow for these differences to be
reliably exploited by machine learning systems. Resolving these challenges will be an important step toward continuous tracking
of the ASD phenotype.
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Introduction

Background
Autism Spectrum Disorder (ASD) continues to be one of the
most important public health challenges we face today, with 1
in 59 American children affected by it [1-3]. Children with
autism are well known to differ from neurotypical controls
(NCs) in their emotion recognition and facial processing patterns
[4-9]. There are several leading theories about facial processing
in ASD, and the underlying biological mechanisms are not fully
understood [10-12]. However, children with autism exhibit
many observable symptoms in facial attention, such as a lack
of eye fixation, increased fixation on mouths [13], and requiring
more time to extract emotions from faces [14]. Prior studies
have found that individuals with autism have particular trouble
recognizing certain emotions [15], such as happiness, neutrality
[16], surprise [13,17-19], and fear [16,20]. At a more abstract
level, they have been shown to struggle with making complex
social judgements about trustworthiness, shame, and
approachability [8]. These eye contact and facial affect
recognition skills are important to improve social functioning
[5], but the methods currently used to measure and track such
skills are delivered in clinical settings or via trained
administrators [21,22] outside of the social context where these
skills are practiced.

Measuring emotion recognition and eye gaze in children with
autism through mobile and wearable machine learning platforms
has the potential to fill this gap for continuous phenotyping
[23-28] during natural social interactions. Thus far, emotion
recognition [8,16,20] and social attention [29,30] in autism have
mostly been studied in isolation. Both have separately been
proposed as indicators for diagnosis and quantification of autism.
We hypothesized that they are deeply linked and studied them
together as potential markers for phenotyping using wearable
smart glasses and eye tracking.

Objectives
In this study, we compared gaze and emotion recognition pattern
data from 16 children with ASD to 17 NCs participating in an
in-lab computer-based emotion recognition task to determine
if gaze differences exist between ASD and NC children.
Participating children were tasked with identifying emotions of
standardized faces on a computer screen. During the task, they
wore an early prototype of a Google Glass–based emotion
recognition learning aid named Superpower Glass [9,23,31-34],
fitted with a custom-built eye tracker that followed children’s
gaze looking at emotional stimuli or distractors. This prototype
is one of several attempts [35-37] to use Google Glass as a
learning aid for children with ASD. A prior analysis focusing
only on the emotion recognition data obtained from this study
showed that ASD and NC participants differed only subtly in
emotion recognition accuracies but that participants from the
two groups showed noticeably different patterns in their emotion
responses [31]. Children were eager to engage with the smart

glasses, showing promise for the form factor. In analyzing
gaze-tracking data from this study, we aimed to explore whether
combining gaze and emotion recognition data may yield better
distinguishing features for the two groups. We hypothesized
that (1) the NC and ASD groups differ in gaze attention patterns
and (2) this difference enables us to design an interpretable
machine learning classifier distinguishing the two groups on
our wearable platform.

Methods

Participants
Families were recruited from February 25, 2015, to January 26,
2016, at Stanford University via the Autism and Developmental
Disabilities Research Registry, referrals to the Autism and
Developmental Disabilities Clinic, the Developmental
Behavioral Unit of Lucile Packard Children’s Hospital, and
through academic presentations. ASD participants were included
if they were between the ages of 6 to 17 years and if they
provided an official autism diagnosis confirmed via medical
record. We assessed parent reports of each child’s diagnosis via
the Social Communication Questionnaire (SCQ) [38].
Participants are screened positively for ASD if they scored >16
on the SCQ. ASD participants were excluded if they had (1)
evidence of a genetic, metabolic, or infectious etiology for their
autism (in other words, had syndromic autism) based on medical
record; (2) history of seizures or other neurologic disorders; (3)
vision impairment; and/or (4) history of personality or bipolar
disorder. NC participants were excluded if they had any of the
following: (1) a score >14 on the SCQ, (2) a history of mood
or personality disorder confirmed via parent report or medical
record, (3) a sibling diagnosed with ASD or schizophrenia, (4)
a history of seizures and/or other neurologic disorder, or (5)
vision impairment.

Procedure
Eligible participants (both parents and children) provided written
informed consent under an approved institutional review board
(IRB) protocol. Following consent, a trained research assistant
delivered the Stanford Binet Intelligence Scales, Fifth Edition,
Abbreviated Battery Intelligence Quotient (ABIQ) [39] to each
child participant, and parents completed the Social
Responsiveness Scale (SRS)-2 [40]. Demographic and
evaluation results are demonstrated in Table 1.

Participants wore Google Glass fitted with an eye tracker over
the course of a 20-min computer task in which they were asked
to identify the emotion (ie, happy, sad, angry, scared, disgust,
surprised, and calm) portrayed by child actors on a screen.
Before the task began, participants were familiarized with the
list of facial emotions they would be asked to choose from.
Participants were seated approximately 25 inches from the
24-inch screen (1920×1200 resolution) so that stimuli were
presented at the eye level. Researchers conducted three
successive trials using 125 images selected from the Child
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Affective Facial Expression (CAFE) dataset [41], balanced in
each trial for race, gender, and emotion expression (T1 N=41,
T2 N=42, and T3 N=41). The CAFE dataset is a set of diverse
faces of children aged 2 to 8 years (mean 5.3 years, SD 1.5;
range 2.7-8.7) depicting seven emotional facial expressions (ie,
sad, happy, surprise, anger, disgust, fear, and neutral). The full
set of 154 images includes 90 female and 64 male children that
represent an even balance of African American, Asian, white,
Latino, and South Asian racial groups [41]. Along with each
facial affect image, each frame during all three trials displayed
two nonsocial images of high autism interest (ie, Legos, train,
and car) that have been previously validated [42] to its right
and left to create an opportunity for distraction from the center
emotion expression image (see Figure 1). Each facial stimulus
covered approximately 49% of the width and 87% of the height
of the screen. The two distractors were each displayed at
approximately 17% screen width and 31% screen height.

Facial images and corresponding distractor images were
displayed for 6 seconds before the participant was prompted to
choose from a list of the seven possible emotions. The list of

emotions was displayed until the participant verbally responded.
The glasses were deactivated during the first and third trial. In
the second trial, after 3 seconds of displaying the image, the
glasses played an audio cue, speaking out the correct labeled
emotion for the displayed image, emulating the emotion
recognition functionality of the glasses. The first 4 participants
received visual feedback in the form of a word shown on the
heads-up display indicating the emotion, but this was found to
be distracting, with reading ability strongly affecting behavior,
and was replaced by auditory cues [9,31]. Between each trial,
the eye tracker was recalibrated. Between every eight images
within each trial, a dot displaying at its center a dancing Santa
Claus appeared in the middle of the screen for 5 seconds to draw
the child’s attention to the middle of the screen for validation
of the eye tracking calibration. The sessions were all video
recorded, and a researcher accompanied the participant through
the task, recording the response option. Emotion classification
responses were confirmed via the video session recording.
During the second trial, participants received feedback from the
glasses indicating the correct emotion classification.

Table 1. Cohort composition after excluding study failures. Medication/comorbidity surveys were not completed by 5 participants from the autism
spectrum disorder cohort.

Neurotypical controls (N=17)Autism spectrum disorder (N=16)Demographic and phenotypic characteristics

Gender, n (%)

9 (53)13 (81)Males

8 (47)3 (19)Females

11.53 (2.48; 8-17)12.13 (3.31; 6-17)Age (years), mean (SD; range)

1.82 (1.07; 0-4)18.86 (6.43; 7-31)Social Communication Questionnaire score, mean (SD; range)

108.94 (9.58; 91-129) 102.75 (19.54; 55-133) Abbreviated Battery Intelligence Quotient standard score, mean (SD; range)

44.41 (8.11; 36-64)78.85 (11.13; 58->90)Social Responsiveness Scale Total score, mean (SD; range)

Comorbid psychological conditions, n (%)

0 (0)1 (9)aAnxiety disorder/depression

1 (5)1 (9)aAttention-deficit/hyperactivity disorder

Current medication, n (%)

0 (0)3 (27)aMethylphenidate

0 (0)1 (9)aArginine vasopressin

0 (0)1 (9)aGuanfacine extended release

0 (0)2 (18)aSertraline

0 (0)1 (9)aCarbamazepine

0 (0)1 (9)aAripiprazole

0 (0)1 (9)aDexmethylphenidate

1 (5)0 (0)aAllergy medication (unspecified)

1 (5)0 (0)aOther (unspecified)

15 (88)4 (36)aNo medication

aN=11.
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Figure 1. Study setup: (a) Study screen displaying facial affect stimuli and nonsocial distractors displayed for 6 seconds. (b) The screen displaying the
list of emotions that the participant is asked to classify the face from. (c) A nonparticipant child wearing a Google Glass with a custom-built eye tracker
fitted using a 3D-printed mount in a dry-run of the study protocol.

Gaze-Tracking Apparatus
The Google Glass worn by the participant was fitted with a
custom 3D-printed mount that slid onto the unit’s prism, holding
a repurposed Microsoft LifeCam HD-6000 Webcam acting as
an eye tracker (Figure 1). The webcam was modified by
breaking and removing its infrared filter and replacing two
indicator light emitting diodes with infrared emitters to produce
a low-cost pupil recording device. The mount and modified
webcam were adapted from the open source Pupil Project
prototype [43]. A number of different mounts were 3D-printed
such that at the beginning of each session, a mount could be
chosen that provided the best view of the participant’s eye. The
webcam was connected to the computer, displaying the facial
stimuli, where outward-facing video from the Glass unit was
recorded and synchronized with the inward-facing eye video.
The total hardware cost of the eye tracker add-on was
approximately US $35.

Gaze-Tracking Data
In what follows, we have briefly outlined the procedure for
obtaining gaze-tracking estimates. Details are given in
Multimedia Appendix 1.

Pupil Tracking
We employed hybrid pupil identification methods, including
maximally stable extremal regions [44], a gradient-based method
[45] and an optical flow approach [46].

Calibration for World-Gaze Spatial Correspondence
Each participant performed four calibration processes, one at
the beginning and one after each trial, yielding pupil coordinates
(relative to the field of view of the eye-facing camera) and
corresponding coordinates of the direction of gaze (referred to
as world-gaze coordinates relative to the field of view of the
front-facing camera). The true-value of the direction of each
eye gaze event was assumed to be the direction of the stimulus
provided on-screen, with no verification procedure. For each
calibration, a separate polynomial regression was performed,
yielding four candidate gaze prediction models. The gaze
prediction models each provided, for each frame (image captured
by camera), a predicted direction of eye gaze in world-gaze
coordinates.

Each participant’s eye tracking session was then manually
inspected and partitioned into time intervals for which of the
four calibration models, or none, visually appeared to apply.

Gaze Clusters
Using the world-gaze coordinate estimate, we coded each frame
as 1 of 4 categories: (F) on the facial stimulus, (L) on the left
distractor stimulus, (R) on the right distractor stimulus, or (N)
“nowhere in particular.” Calibration and gaze cluster labeling
were semiautomated processes that were performed by
independent labelers. Further details and interlabeler reliability
data are provided in Multimedia Appendix 1.

Outlier Exclusion
In some instances, various failures (eg, camera slipping out of
the mount made gaze tracking infeasible) led to unusable data.
Trials with such data were discarded as outliers upon visual
inspection. Detailed criteria are available in Multimedia
Appendix 1.

Hypothesis 1: Gaze Pattern Analysis
To test hypothesis 1, we calculated the following distraction
ratio for each participant p and each facial stimulus s in each
trial t:

We plotted a histogram to visualize the differences between
ASD and NC in gaze patterns throughout the task. We averaged
the distraction ratios for multiple trials for each participant to
arrive at a per-participant distraction ratio d(p). We then
performed 1-tailed t tests on the distraction ratio aggregated
across groups (ASD vs NC) to test the primary hypothesis. We
also performed exploratory t tests on the d(p,s,t)s across groups.
However, this assumes what is likely an unreasonable noise
model in which the d(p,s,t)s are independent within the same
participant.

To make a more direct comparison between attention to face
and attention to distractions, we further computed the given p,
s, and t as mentioned earlier:

This excludes frames coded as N from the denominator. We

then averaged dFLR over all stimuli in trial t corresponding to

true-value emotion e to obtain de
FLR(p,t).
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Hypothesis 2: Machine Learning Classification
To test hypothesis 2, we designed a machine learning classifier
predicting binary ASD vs NC from the following features:

• Emotion confusion matrices (cm; 49-dimensional): 7×7
confusion matrices were computed for each participant
across the entire trial, defined as the square matrix with
rows and columns corresponding to the possible emotion
responses, with entry in row r and column c to be the
number of frames for which the true depicted emotion
corresponds to r, but the participant inputted the emotion
corresponding to c The confusion matrices were then
normalized such that all rows summed to 1. Each element
of the resulting normalized confusion matrix was extracted
as an independent feature.

• Emotion confusion details (conf; 41- or 42-dimensional,
depending on the trial): every face in the trial was assigned
a binary value indicating whether the participant correctly
identified the emotion, encapsulating the performance over
time.

• Gaze patterns (gaze; 123- or 126-dimensional, depending
on the trial): For the 6-second duration of eye tracking
corresponding to a face in the trial, several features were
extracted: the percentage of frames spent looking directly
at the face as opposed to either of the distractors, percentage
of changes of gaze fixations directed toward the face, and
the number of frames elapsed before looking directly at the
face. Each face contributed three of these additional features
to the large pool of features.

• Participant metadata (pat; 2-dimensional): The participant’s
age and gender were considered meta-features.

This yielded a total of 219 features per trial for consideration.
As this number far exceeds the number of participants,
regularization was important to prevent model overfitting. An
elastic net model was chosen as the base classifier, as this model
incorporates both lasso and ridge regularization. Our primary
model, then, was an elastic net classifier trained and evaluated
on all available trial data using all features, concatenated by
trials. For various ablations, we trained elastic net classifiers
and standard logistic regression classifiers on subsets of the
features and the three trials individually. We evaluated accuracy
across all classifiers using leave-one-participant-out
cross-validation. We performed Monte Carlo shuffling tests to
assess the statistical significance of classifier predictions. For
logistic regression, we identified hyperparameters, including
the type of regularization (l1 or l2), automatically using grid
search on the training sets. Note that the logistic regression
models are a special case of elastic net in which one of the
regularizing terms is set to 0. In practice, optimizers for elastic
net can perform unstably in these edge cases, and so we included

the logistic regression model as a way of better optimizing over
hyperparameters.

Results

Overview
Between February 25, 2015, and January 26, 2016, we enrolled
43 (ASD=23; NC=20) participants at Stanford University under
a Stanford University IRB-approved protocol. We were unable
to use data from 10 participants because of the following
technical errors: 4 NC participants were excluded because they
had received an early version of the Superpower Glass
intervention, which included a visual display of the correct word
describing the emotion displayed in the second trial but were
unable to read those cues or complete the computer task. After
realizing this failure, the prototype was adapted such that the
remaining participants received only audio cues. Five ASD
participants were excluded because of an image order
randomization error as they received visual stimuli in a different
order than all other participants. Finally, 1 ASD participant
experienced a health issue during the study that was unrelated
to the study procedures and was unable to complete study
procedures.

The following analysis was conducted with 16 ASD participants
(mean age 12.13, SD 3.3 years) of whom 81% (13/16) were
male and 17 NC participants (mean age 11.53, SD 2.5 years)
of whom 53% (9/17) were male. See Table 1 for additional
participant demographics including SCQ, SRS, and ABIQ
scores.

Hypothesis 1: Gaze Pattern Analysis
Children with ASD showed a higher mean distraction ratio
(mean 0.0433, SD 0.0911) than NCs (mean 0.0139, SD 0.0215),
but this difference was not significant across the 33 participants
in a 1-tailed t test (P=.12).

When per-facial-stimuli distraction ratios d(p,s,t) were compared
(1792 ASD samples and 1756 NC samples), a significant
difference between ASD and NC datapoints was observed,
making an independence assumption for the data within each
of the two groups (uncorrected P<.01). A histogram of
distraction ratios is shown in Figure 2 and reveals that distraction
was higher and more inconsistent in participants with autism
than in NCs.

Similarly, we plotted N-frame-excluding distraction counts

de
FLR(p,t), averaged over all participants in the ASD and NC

groups, keeping each emotion separate (Figure 3). Averaging
over each emotion, we found no significant differences in the
means between groups (P=.11 in trial 3, higher in others), owing
largely to the high variance in the ASD group.
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Figure 2. A histogram of the distraction ratio of autism spectrum disorder (ASD; red) and neurotypical control (NC; blue) participants on a logarithmic
scale. On average, the ASD group looked at facial stimuli for less time than NCs. However, there is also considerable overlap between the groups that
reduces the predictiveness of gaze features in the individual diagnosis prediction task.

Figure 3. Histograms of (N-frame excluding) distraction ratio deFLR(p,t) of autism spectrum disorder (red) and neurotypical control (blue) participants,
averaged over participants and broken down by emotion.

Hypothesis 2: Machine Learning Classification
Cross-validation confusion matrices for an elastic net classifier
trained on all features are presented in Figure 4. Across all trials,
the model achieved a classification accuracy of 0.71 (P=.52
using Monte Carlo shuffling; see Figure 5).

Elastic net classification accuracies and uncorrected significance
tests for all feature combinations are presented in Table 2.

Classifiers trained on some gaze and expression recognition
features were able to outperform those trained on combinations
of pat, conf, and cm features in some cases, with significant P
values on a shuffling test achieving significance before (but not
after) a Bonferroni correction. Performance was best on all-trial
features as well as data restricted to trial 1. However, given the
relatively high performance on participant metadata (age and
gender), we could not conclude that gaze and expression
recognition features enhance classification. Elastic net models
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outperformed logistic regression ablation models in most tasks,
including the primary pat-gaze-cm-conf model, suggesting a

need for regularization in this dataset.

Figure 4. Cross-validation confusion matrices for the elastic net classifier trained on all features (pat, gaze, conf, and cm) for trials 1, 2, and 3, and
features from all trials concatenated (accuracies in parenthesis). Autism spectrum disorder and neurotypical control participants are most distinguishable
in trial 1, the first trial conducted which was before receiving any feedback or adjusting to the task. cm=Emotion confusion matrices; conf=Emotion
confusion details; gaze=Gaze patterns; pat=Participant metadata.

Figure 5. The shuffle test visualization for the elastic net classifier trained on all features (pat, gaze, conf, cm) concatenated for all trials yielding P=.05.
cm=Emotion confusion matrices; conf=Emotion confusion details; gaze=Gaze patterns; pat=Participant metadata.
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Table 2. Classification accuracies and significance tests for the elastic net classifier trained on different feature combinations and trials. All shuffle
tests were performed for 2500 iterations and checked for convergence.

Trial 3Trial 2Trial 1All trialsData tested

P valueAccuracy, %P valueAccuracy, %P valueAccuracy, %P valueAccuracy, %

.0471.0.0471.0.0471.0.0471.0pata (baseline)

.1761.3.2454.8.0374.2.0571.0pat-gaze-cm-conf (full)

.8135.5.9986.5.0967.7.0867.7cmb

.7241.9.6348.4.2358.1.1664.5confc

.6841.9.5648.4.1761.3.1364.5cm-conf

.1461.3.8038.7.0083.9.00283.9gazed

.1761.3.3451.6.0180.6.00483.9gaze-conf

.2158.1.1461.3.1064.5.0571.0gaze-cm

.3651.6.6345.2.0474.2.0571.0gaze-cm-conf

.0374.2.0967.7.0471.0.0277.4pat-gaze

.1164.5.0867.7.1164.5.0571.0pat-gaze-cm

.1464.5.8535.5.1167.7.0474.2pat-gaze-conf

.1661.3.0967.7.2554.8.2158.1pat-cm

.3551.6.1364.5.1961.3.1464.5pat-conf

.8832.3.1364.5.4548.4.1761.3pat-cm-conf

apat: participant metadata.
bcm: emotion confusion matrices.
cconf: emotion confusion details.
dgaze: gaze patterns.

Discussion

Principal Findings
In this study, we compared gaze and emotion recognition pattern
data of 16 children with ASD with 17 NCs. Participants
completed an in-lab computer-based emotion recognition task,
where they wore an early prototype of the Superpower Glass
system [9,31,32], a Google Glass–based emotion recognition
learning aid, as well as a custom-built eye tracker attached to
the glass that followed children’s gaze looking at an emotional
or distractor stimulus. In this limited data sample, we were
unable to construct a machine learning classifier that reliably
exploits these differences to predict ASD severity, to an
accuracy significantly beyond that of the use of the age and
gender data baseline. Although some models modestly
outperformed a metadata-only baseline, prediction margins and
significance did not hold up consistently across various
ablations. Considering the large variance in gaze distraction in
the ASD cohort, more data, perhaps more balanced for age and
gender across cohorts, are likely required to develop a reliable
model of greater use. A larger, more balanced corpus of data
would also enable the use of more complex statistical models,
such as artificial neural networks, which have the capacity to
capture more complex structure within the data.

As an increasing amount of research work points to differences
in facial attention in ASD [10-14], this study adds evidence that
children with autism, when presented with facial stimuli relevant

to a task involving social judgement, along with other,
distracting stimuli, are more likely to attend to the distracting
stimuli more. However, it also cautions that, just like with the
literature on emotion recognition [16-20], this difference is
subtle. Large and well-structured datasets are required to develop
a diagnostic and phenotyping marker from this effect. Classical
eye tracking studies have explored the subtlety of this effect in
greater detail [30,47-52] and showed that it can vary depending
on the emotional stimulus and setup. Some studies also observed
that children with ASD pay more attention to the mouth than
the eye region during an emotion recognition task [30,49-51].
The gaze data collected by our system was too noisy to test for
these subtler effects. The prevailing belief in the literature was
that facial attention differences are very clear in ASD, so we
hypothesized that distraction ratios across an emotion
recognition task alone were enough to distinguish ASD vs NC
reliably. We now believe that integrating further subtlety through
robust gaze-tracking hardware will be required to design a
phenotyping marker from this effect.

Limitations
Our study had a number of limitations including:

• Limited age range: The age range of participants was
limited to 6 to 17 years in this study. Unfortunately, this
age range is not representative of children who are in critical
periods of development for cognition and speech, and
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therefore further feasibility testing on younger children is
necessary.

• Imbalanced gender ratio: In this study, we observed a
gender ratio of 13 males to 3 females in our ASD cohort.
Though males are substantially more likely to be diagnosed
with autism than females by an average ratio of 4 males:1
female, the reported imbalance still presents a gender bias
between our sample population of children with ASD to
our NC children. Furthermore, there are gender differences
in both neurotypical and ASD children on emotion
recognition and gaze tasks [15], which may have been
exacerbated by our imbalanced cohorts.

• Limited coverage of the autism spectrum: Only 3 of our 16
ASD participants had an ABIQ lower than 80 (between 55
and 79), suggesting that 13 of our 16 recruited ASD
participants can be classified as children with
high-functioning ASD. This limits our findings, as their
performance may not be reflective of children from across
the autism spectrum.

• Chinrest added after study started: Due to too much head
movement by the first 4 participants, we added a chinrest
to provide additional stability for the remaining subjects.
This was an issue especially because more ASD subjects
took part in the study later on. This confound may be
exploited by the classifiers.

• Nonstandard eye tracking: The eye tracking system used
in this study was custom-built and has not been evaluated
on a standard dataset or compared with standard eye
trackers. The mount and camera shifted during the study,
requiring recalibration. A series of manual checks were
employed to correct for these issues and ultimately manually
annotate much of the pupil and world-gaze coordinates, as
described in Multimedia Appendix 1. The mount occluded
roughly 15% of the field of view in the lower region for
most participants, which may have had a greater distracting
effect on participants in the ASD group with tactile
sensitivities.

Furthermore, more and better-structured data of this form may
still leave our understanding incomplete for fundamental
ethological reasons. There remain many uncertainties about the
motivational factors, neurocognitive processes, and temporal
requirements of combined facial engagement and emotion
recognition. These uncertainties make it a challenge to design
an experiment with “just right” parameters, even now, when
technology seems increasingly up to the task. For the work

described in this study, to measure both emotion recognition
and attention to faces simultaneously, we used video-presented
static photos of children and had the children look at these
photos for 6 seconds to be sure they had the maximum
opportunity to perform at their best. Although the photos in the
CAFE dataset are naturalistic and representative of diverse
children, this experimental condition is quite divergent from
real-life social interactions with moving children and fleeting
displays of facial emotion. Furthermore, there are obvious
differences between looking at the face of a child on a video
screen and naturalistic facial engagement between two children.
Given the differences between these experimental conditions
and “real life,” the field still does not have enough information
to know how divergent our experimental data (or another with
different parameters attempted) might be from the ecologically
valid situations.

Future Outlook
To build a robust dataset toward at-home continuous
phenotyping, the best course of action will be to capture the
data at home as well. Key ingredients for building a robust
dataset toward at-home continuous phenotyping are as follows:
(1) large-scale in-home data acquisition, (2) augmented reality
platforms integrating robust eye tracking, (3) game design for
at-home analysis platforms, and (4) the use of clearly-defined
and measurable experimental parameters [24]. We hope that in
future studies, analyses on gaze and expression response in ASD
can be made on data gathered in the home, in less-controlled
settings, performed by families without the express need for
specialist input. However, given that follow-up studies on the
Superpower Glass system show heterogeneity in less-restricted
data collection, this will likely be a challenge for effective
human-computer interaction design: producing appropriate user
interfaces and games that homogenize use in ways so as to lower
the natural variability of measurement [28]. We expect data
acquisition to be bolstered significantly by robust gaze-tracking
hardware that can be developed at a low cost . Much of the
low-cost gaze-tracking system envisioned for this study showed
limitations once put on the children and had to be met with
relatively expensive manual data recovery efforts. Further
generations of the Superpower Glass system have not used the
eye tracker in at-home studies because of its bulkiness and
calibration issues [34,53]. As newer augmented reality devices
entering the market begin to implement native gaze tracking, it
is likely that these issues can be overcome.
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