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Abstract

Background: Efficiently sharing health data produced during standard care could dramatically accelerate progress in cancer
treatments, but various barriers make this difficult. Not sharing these data to ensure patient privacy is at the cost of little to no
learning from real-world data produced during cancer care. Furthermore, recent research has demonstrated a willingness of
patients with cancer to share their treatment experiences to fuel research, despite potential risks to privacy.

Objective: The objective of this study was to design, pilot, and release a decentralized, scalable, efficient, economical, and
secure strategy for the dissemination of deidentified clinical and genomic data with a focus on late-stage cancer.

Methods: We created and piloted a blockchain-authenticated system to enable secure sharing of deidentified patient data derived
from standard of care imaging, genomic testing, and electronic health records (EHRs), called the Cancer Gene Trust (CGT). We
prospectively consented and collected data for a pilot cohort (N=18), which we uploaded to the CGT. EHR data were extracted
from both a hospital cancer registry and a common data model (CDM) format to identify optimal data extraction and dissemination
practices. Specifically, we scored and compared the level of completeness between two EHR data extraction formats against the
gold standard source documentation for patients with available data (n=17).

Results: Although the total completeness scores were greater for the registry reports than those for the CDM, this difference
was not statistically significant. We did find that some specific data fields, such as histology site, were better captured using the
registry reports, which can be used to improve the continually adapting CDM. In terms of the overall pilot study, we found that
CGT enables rapid integration of real-world data of patients with cancer in a more clinically useful time frame. We also developed
an open-source Web application to allow users to seamlessly search, browse, explore, and download CGT data.

Conclusions: Our pilot demonstrates the willingness of patients with cancer to participate in data sharing and how
blockchain-enabled structures can maintain relationships between individual data elements while preserving patient privacy,
empowering findings by third-party researchers and clinicians. We demonstrate the feasibility of CGT as a framework to share
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health data trapped in silos to further cancer research. Further studies to optimize data representation, stream, and integrity are
required.

(J Med Internet Res 2020;22(3):e16810) doi: 10.2196/16810
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Introduction

Every patient with cancer has a unique disease composition and
presentation that demands interrogation of complex imaging
and genome characteristics [1,2] for personalized treatment
recommendations. Currently, it is still standard to report
outcomes of cancer as group averages from clinical trials treated
with prospectively dictated regimens. Individual patient
outcomes from real-world data could further advance
personalized medicine by allowing dramatically more treatments
and outcomes to be considered [3,4]. As such a health system
can learn from its own data to improve its delivery of patient
care [5-7]. Regulatory requirements and other restrictions
prevent much patient-level data from being shared. Research
progress suffers as a result. Precision medicine methodologies
such as next-generation tumor DNA sequencing are now often
performed in routine cancer care. Unfortunately, results are
siloed in individual institutions, frustrating effective sharing or
pooling of datasets [8]. Many patients with cancer, however,
are willing to share their data and believe that the positive
benefits outweigh the potential privacy risks: 93% of patients
surveyed would be very or somewhat likely to share their data
with university scientists [9].

Despite this need and patients’ willingness to share their data,
robust deidentified data sharing methods are lacking. Innovative
alternative strategies have been developed that aim to anonymize
identifiable clinical data in a way that preserves inherent
structure, such as using generative adversarial networks [10],
but these have not as of yet been deployed for large-scale,
multiomic discovery. One immediate challenge of creating an
extensible and robust framework is identifying which data are
necessary to share (and in what format), minimizing risk for
patient reidentification while maximizing viable information
that can lead to clinical insight. Conley et al [11] released a core
set of clinical data elements that various stakeholders agreed
on for cancer genomic repositories. The lack of a standard data
sharing platform for clinical data arises from myriad causes,
including but not limited to, incompatible data streams or
formats, nonstandardized collection, conflicting business
models, extraction and accessibility procedures, and privacy
concerns. A centralized, curated platform operated by a single
institution is not ideal due to concerns of data ownership, cost,
and dissemination procedures. Trends in other fields have
migrated from analyzing batched data quarterly, whether from
customer Web clicks or manufacturing floor sensors, to real-time
analyses. Learning cycles have been reduced from months to
hours. Finally, centralized top-down data sharing efforts,
although critical to research and scientific deductive
understanding, have a fixed lifetime of the study, grant, or group
interest.

Software standards based on health care data sharing and
electronic commerce are converging to enable solutions to the
compelling need to share patient health data for both care
management and medical research. In 2013, the Global Alliance
for Genomic Health [12] was established to enable a framework
for secure, responsible, and effective clinical and genomic data
sharing. In 2016, the US president unveiled the National Cancer
Institute Cancer Moonshot effort to accelerate cancer research,
including efforts focused on data sharing (the Public Access
and Data Sharing Policy). Since then, significant progress has
been made in mining and sharing medical data. The Food and
Drug Administration announced a collaboration with Flatiron
Health to utilize deidentified clinical data for the analysis and
development of anticancer therapies outside of clinical trials in
2016. Recent studies have delivered on that promise: Agarwal
et al [7] analyzed more than 7000 clinical and genomic records
from the Flatiron Health network and Foundation Medicine to
calculate the tumor mutation burden across cancer subtypes.
Singal et al [13] demonstrated that data collected from routine
clinical care of almost 30,000 patients with cancer can yield
novel clinical insights, as evidenced in this case for non–small
cell lung cancer.

A decentralized, scalable, efficient, economical, and secure
strategy, such as blockchain technology, can fulfill requirements
for effective clinical data sharing. Although not perfect in their
scope [14], blockchain systems by design are secure and
resistant to tampering and distributed with no single point of
control or failure allowing transactions to be efficiently recorded
and verified. Multiple publications have proposed the utility of
blockchain technology for secure and scalable clinical data
sharing [15-19], and many companies and organizations are
applying blockchain platforms in health care [20]. Although
the excitement surrounding the utilization of blockchain for
distributing health care data is encouraging [21], many studies
are private, theoretical (ie, accessing feasibility), or unsuccessful
in scope. In a recent systematic review of 71 studies that
discussed managing health care records via blockchain, only
four actually were tested on live data [22].

Here, we develop a public demonstration of curated collection
that focuses on capturing the data created over the normal course
of clinical care as rapidly as possible. The Cancer Gene Trust
(CGT) [23] democratizes data analysis, enabling more experts
to participate and compare results, and accelerates the translation
of genomic findings toward a clinically useful timescale. CGT
is the first free, simple, rapid, global network to share
deidentified cancer somatic mutations, radiographic and
pathological images, and associated clinical data for
prospectively consented patients. These data are rapidly
deposited into a global off-blockchain distributed and
decentralized repository. This framework not only allows for
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the rapid dissemination of high yield and important data but
also openly details the rigorous process for deidentification,
study design, and informed patient consent. From the findings
of Mello et al [9], we hypothesized that most patients are willing
to consent to their data being shared if it helps expand the corpus
of medical knowledge. We aim to demonstrate the utility of
CGT by releasing such data from a pilot study of 18 consented
patients along with an open-source and freely available
application for visualization and exploration.

Methods

Study Design and Recruitment
The University of California, San Francisco (UCSF) institutional
review board (IRB) approved our pilot study to consent patients
for distributing their deidentified information on CGT (see
Multimedia Appendix 1 for study protocol). We approached
and consented 18 patients under care at UCSF Medical Center
to the Sharing Clinical and Genomic Data in Cancer Research
clinical pilot protocol (IRB #16-20857).

The Cancer Gene Trust Framework
CGT is a decentralized, distributed content addressable real-time
database. A submission consists of a manifest containing fields
and references to files by hash. Submissions may include
deidentified clinical fields, a list of somatic mutations, gene
expression, or any type of data relevant to a patient. Submissions
are tracked per steward (ie, institution or organization) via a

smart contract on the Ethereum [24] blockchain, which
references the underlying data stored via hash in InterPlanetary
File System (IPFS) [25]. IPFS is inherently decentralized and
distributed. Any node may request data from any other node
via the unique hash of the data and cache it locally. This affords
organic replication of data as well as scalable access. An
institution performing internal access and analysis of data may
run their own IPFS server and thereby allow high-speed LAN
access with only the initial request traversing the list of IPFS
servers to find data matching the hash.

Data Collection Procedures
We carefully navigated all institutional procedures to educate
and consent our patients before obtaining, formatting, and
distributing deidentified patient data from our cohort (Figure
1). We performed stringent and comprehensive privacy
processes to be as confident as possible so that no identifying
personal health information would be shared (see Data
Deidentification section). For the 18 enrolled patients, we were
given permission to obtain clinical documentation from their
electronic health record (EHR), their somatic mutation
information, as well as any scans taken [26]. All data, including
genomic, imaging, and structured EHR data (eg, treatment
information), for the first cohort of consented patients are
available [23]. Patients are identified by a universally unique
identifier (UUID-4). The only mapping to the actual patient is
securely controlled by trusted stewards; in this case, UCSF. All
source code and documentation for CGT are available [27].

Figure 1. Workflow and pipeline for Cancer Gene Trust. EHR: electronic health record; HIPAA: Health Insurance Portability and Accountability Act.

Overall Workflow for Cancer Gene Trust Pipeline
Patients are consented to agree to release their deidentified
clinical (Observational Medical Outcomes Partnership
[OMOP]-formatted EHR data), genomics (somatic), and imaging
data on the blockchain. Stewards representing the affiliated
institution then upload the data to CGT. Researchers, clinicians,
patients, and the public can then retrieve the data through the
Web or interface, with the data dynamically available through
the PatientExploreR-CGT app.

Genomic Data Collection
Somatic gene sequencing of tumor specimens was ordered by
the supervising physician (EC) as standard of care using either
a commercial (Foundation Medicine; FMI [28]) or in-house
panel (UCSF 500) [29]; 13 patients were sequenced and
analyzed by Foundation Medicine [30] and 4 patients by the
UCSF 500 [31] genomic panel. In the case of Foundation
Medicine, we received the patient’s report in XML format. In
the case of the UCSF 500, we requested a deidentified variant
call file from the UCSF genomic stewards.
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Image Data Collection
For patients with available radiograph imaging, we obtained
deidentified DICOM files from the UCSF’s Picture Archiving
and Communication System medical imaging system
conforming to Supplement 142: Clinical Trial De-identification
Basic Profile, which removes any identifying protected health
information (PHI) from the images as well as any accompanying
metadata. Pathology slides were obtained for each patient who
had associated pathology performed at UCSF. Deidentified
computed tomography (CT) and positron-emission
tomography-CT scans correlating to significant changes in tumor
response were uploaded for 3 patients to the CGT. Scanned
pathology slides clinically utilized for diagnostic purposes were
uploaded for 2 of these patients. These deidentified imaging
data can be viewed publicly in their entirety on the CGT and
illustrate an example collection of raw (but deidentified),
clinically relevant data for public research use. Phillips scanners
were used to digitize the pathology slides, and a review of PHI
was completed before uploading onto CGT.

Clinical Electronic Health Record Data Collection
A large aspect of this project was to evaluate the most suitable
and robust source of clinical data to share on CGT. For this
comparison, we compared UCSF Cancer registry data, collected
to meet the specifications of the Surveillance, Epidemiology,
and End Results (SEER) Program, with Observational Health
Data Sciences and Informatics (OHDSI) OMOP common data
model (CDM) extracted from the hospital EHR. The OMOP
CDM is emerging as a standard in the field of EHR research
because it is a common framework in terms of both table
structure and underlying vocabulary [32] and has enabled
powerful research and a venue for regulatory reporting [33].

SEER is a national registry for cancer reporting and provides
specific guidelines for data collection from the EHR [34]. Before
SEER submission, cancer registry data are submitted to the state
registry and assessed for data quality and consolidation with
other records for the same patient. Registry data are collected
on every cancer case admitted to a UCSF hospital for either
diagnosis and/or first course or subsequent cancer treatment per
California state cancer reporting law. Certified Tumor Registrars
abstract and code cancer information from the EHR in a format
specified by the North American Association of Central Cancer
Registries’Data Standards [35]. The data collection and coding
rules for data collection are specified by the SEER Program
Manual and fully abstracted within 6 months of patients’ date
of first contact with the hospital.

Registry Format
For the first 18 patients, clinical data were requested from the
cancer registrar’s office for curated data for ultimate submission
to SEER via the CNExT cancer registry software. For each
patient, we received an Excel export from CNExT with curated
clinical data fields (Table 1). We developed a client-side
single-page Web application that read in this Excel file on the
research coordinators computer, filtered PHI to ensure
compliance with IRB regulatory guidelines, and generated a
deidentified JSON file. The primary investigator and research
coordinator personally reviewed each deidentified registry file
for PHI before uploading onto CGT. Depending on the timing
of the patient’s presentation to the hospital relative to genetic
testing, the registry data collection could be in either an
incomplete suspense state or a completed abstract. Minimum
data collection in a suspense case comprises patient age, gender,
date of first contact, primary site, and histology. Complete cases
contained additional data items related to Basis of Diagnosis
and Therapeutic Agent.

Table 1. Breakdown of data elements for registry/Observational Medical Outcomes Partnership.

OMOP table.columnRegistry fieldGold Standard EHRa

person.gender_concept_idSexGender

person.ethnicity_concept_id Spanish OriginEthnicity

person.race_concept_idRaceRace

condition_occurrence. condition_start_dateDate of DiagnosisbDate of Diagnosis

procedure_occurrence. procedure_occurrence_idDx Confimation DX Staging/Proc

Summb
Basis of Diagnosis 

condition_occurrence. condition_concept_idCancer Site ICD-0-3 SEERc Site GroupCancer Site

condition_occurrence. condition_concept_idCancer Histology (ICD-0-3)Cancer Histology/Morphology

drug_exposure. drug_concept_idText/Code of Chemo At HospitalbTherapeutic Agent/Modality

drug_exposure. drug_exposure_start_date/drug_exposure.
drug_exposure_end_date

Chemo Start Date/Chemo End DatebBeginning and End Dates of Treatment

aEHR: electronic health record.
bIndicates that the field is listed but no or incomplete information was populated (ie, “suspense” registry cases).
cSEER: Surveillance, Epidemiology, and End Results.
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Observational Medical Outcomes Partnership Format
Procuring clinical data from OMOP was a different process as
it involved extraction of retrospective, routinely collected data
from the EHR. The Enterprise Data Warehouse (EDW) team
at UCSF is responsible for converting raw EPIC/Clarity data
into the OMOP format and acted as an honest broker for this
extraction process. First, we selected the tables and fields that
corresponded to data elements we were consented to collect
from our IRB, with buy-in from the EDW team (Table 1). No
free-text fields were included. We then provided the medical
record numbers (MRNs), and their corresponding CGT patient
IDs, to the EDW team who then performed the deidentification
process for 17 patients with available data, removing all PHI
(see Multimedia Appendix 1 and below for more details). The
EDW then extracted the data in the agreed-upon columns in 6
tables of interest, specifically: person, drug_exposure,
condition_occurrence, procedure_occurrence, and measurement.
We then performed a secondary check to verify all data were
deidentified (see below), and then transformed the files (saved
as TSV) into a single JSON file per patient.

Clinical Data Scoring Methodology
We evaluated all patients’ registry and OMOP data for
completeness based on a scoring rubric we designed (see
Multimedia Appendix 1 for full details) relating to certain
gold-standard metrics essential for clinical data sharing (Table
1), inspired by Conley et al [11]. Data from these gold-standard
metrics were captured from the true data recorded in UCSF
EPIC EHR system patient records. Next, reviewers evaluated
how much of these data could be identified from registry and
OMOP data sources. Of the 29 data elements recommended by
Conley et al [11], we were able to capture 10 of these due to
their ability to be obtained without curation from OMOP and
registry clinical pipelines. Simply, these data were evaluated
on a scale from 0 to 5 for registry and OMOP data, with 0
representing no presence of the data element in the
corresponding modality and 5 representing complete
representation (values in between correspond to 20% increments
of how complete the representation is). As such, for the 10 data
elements, the maximum score a patient can receive per data
modality is 50.

Statistical Analysis
To assess whether there was any significant difference between
registry vs OMOP in terms of data quality capture, we performed
a 2-sided Wilcoxon signed-rank test for all 17 patients who
were scored according to the above methodology. We further
assessed whether there was any difference at the field level, by
performing the same assessment per data element (eg, Gender
information). We hypothesized that although these two systems
are different in terms of data collection methodologies, there
should be no significant difference in total scores as both
systems are organized to capture the same type of clinical data.

Data Deidentification Procedures
We strived to conform to the most rigorous standards for proper
deidentification of all data released as determined by Health
Insurance Portability and Accountability Act (HIPAA) standards

(see Multimedia Appendix 1 for further discussion and complete
documentation of this process).

For the OMOP EHR data, all PHI was removed on receiving
the data from the honest broker, the EDW. In these files, all
dates were converted into age in days since birth. We performed
a secondary check to manually verify that no PHI remained in
the files. For genomic data, all germ-line mutations were
removed, leaving only somatic variants. No further processing
was required for the DICOM images that conform to Supplement
142. Pathology scans were exported into JPEG image files with
no identifying metadata or information in the image. The
single-page Web application generates a UUID for every patient.
The institution and CGT steward maintain an appendix of CGT
IDs and UCSF MRNs to preserve the possibility of
reidentification between qualified clinicians for follow-up and
further research [36].

Data Export and Sharing
These deidentified files are uploaded to the off-blockchain store
(IPFS) [25]. The off-blockchain store calculates a
cryptographically strong hash (SHA-256) of the entire
submission that is added to the stewards list of submissions,
which is then updated in the off-blockchain store. This final
step yields an updated top level cryptographically strong hash
that uniquely defines the entire state of all submissions from
the steward at that point in time. This final top-level hash is
then submitted to the blockchain as provenance for the entire
corpus of submissions from the institution. As the hash is only
256 bits in size, the cost to add to a blockchain is minimized
with the bulk of the data stored uniquely in the off-blockchain
store. Individual submission hashes as well as the overall
steward hash may be concisely referenced toward reproducing
any downstream analysis.

Data Distribution and Access
Submissions including all data are immediately available from
any IPFS server on the internet via the submission hash. IPFS
is inherently decentralized and distributed. Any node may
request data from any other node via the unique hash of the data
and cache it locally. An IPFS server when queried for the data
associated with a hash returns it if it has it locally stored, and
if not asks all of the servers it is connected to for the data. In
spirit, this is similar to the Transmission Control
Protocol/Internet Protocol layer of the internet whereby if a
router does not talk directly to the destination it checks with all
of its direct peers to see if they do. As a result, data are
duplicated as a side effect of access affording organic replication
and scalable access. IPFS servers speak HTTP and therefore
any data can be accessed in a browser or with a few lines of
code from standard bioinformatics analysis tools (eg, cBio,
Galaxy, and Jupyter).

PatientExploreR-Cancer Gene Trust: Data
Visualization
To facilitate interaction with CGT, we adapted a visualization
application to browse, search, visualize, and download the
clinical and genomic data shared on CGT. This application,
called PatientExploreR-CGT, is adapted from our original
PatientExploreR version [37]. PatientExploreR-CGT
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automatically pulls and maps all data from CGT into a
user-friendly dashboard. This application is built in R (version
3.4.1) using the Shiny [38] (version 1.0.5) framework and
directly interfaces with OMOP-formatted (version 5 or later)
EHR data. In the front-end, the following Shiny-related packages
are utilized: shinyWidgets [39], shinyjs [40], shinyalert [41],
shinycssloaders [42], shinyBS [43], and shinythemes [44].
Visualizations were created using the plotly [45] and timevis
[46] packages. In its backend, PatientExploreR-CGT makes use
of ROMOP [47] to automatically extract and map pertinent
concepts across all relevant tables (eg, person, observation, and
condition occurrence). Data processing and manipulation were
facilitated by data.table [48], DT [49], rjson [50], and dplyr
[51]. This app can be freely accessed [52].

Results

Cancer Gene Trust Pilot Study
We provide the demographics of the pilot cohort in Table 2. In
our cohort, the breakdown of primary cancer was as follows:
seven with pancreatic adenocarcinoma, four with
cholangiocarcinoma, and one each with anal squamous
carcinoma, gastric cancer, colon cancer, gastrointestinal stromal
tumor, cecal cancer, and metastatic cancer of unknown primary
origin. An additional patient also had metastatic cancer of
unknown primary origin but without EHR data. We provide a
breakdown of all such data by patient and modality in Table 3.

Table 2. Cohort demographics and clinical information. Demographic breakdown of clinical pilot cohort.

ValueModality

Gender, n (%)

6 (33)Male

12 (67)Female

Race, n (%)

11 (61)White

5 (28)Asian

2 (11)Unknown

Ethnicity, n (%)

2 (11)Hispanic/Latino

16 (89)Not Hispanic/Latino

Status, n (%)

15 (83)Alive

3 (17)Deceased

59.3 (13.3)Age (years), mean (SD)
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Table 3. Breakdown of Cancer Gene Trust data by patient and modality.

OMOPb data breakdownImagingGenomicsClinicalCGTa

DrugsProceduresConditionsPathologyCTfUCSFe 500FMIdOMOPRegistryCGT Public UUIDc

366111901597N/AN/AN/Ag✓✓✓f9b6a782-bbf5-4be8-bf7e-d1a9586d9552

20889691350✓✓N/A✓✓✓c2e2e081-4c39-4201-8a27-7b469ed39490

308613942389✓✓N/A✓✓✓db2d85aa-4f94-4e77-8755-6b94a710c1aa

1174654930N/AN/AN/A✓✓✓2fbc25da-3965-49c4-866f-72cf0abc2417

13886241179N/AN/AN/A✓✓✓940171e7-d358-463a-8d9a-2b2fa90c2a84

549405511N/AN/AN/A✓✓✓f0314175-2d19-4146-8754-fc5aed3ab420

184114216N/AN/AN/A✓✓✓c7dbcfac-37ea-43f8-8899-1a9f2fb56341

571451N/AN/A✓N/A✓✓ef5c3164-6f45-4d3a-88f0-4509226c5571

776505811N/AN/A✓N/A✓✓ec3d977b-c310-4df3-a444-f79bc3dd8b58

11042155N/AN/AN/A✓✓✓131cf62d-ad78-49c1-a699-5bcc1004cd12

131162311N/AN/AN/A✓✓✓cf11c31c-f4c3-48ba-9c46-66f406d0b7a1

601051N/AN/A✓N/A✓✓ccc2ba97-912f-4b62-b767-cca129ee6a56

171036N/AN/AN/A✓✓✓104ec531-5d95-41e2-ac72-f6cff2006b8e

805439857N/AN/A✓N/A✓✓a5627ac3-450d-4036-ade8-99ae62a5c232

674276875N/AN/AN/A✓✓✓5189efbe-3382-4353-ad2f-9afd0255c2c8

217116117N/AN/AN/AN/A✓✓253f0e2d-bebd-464b-81c5-8dd8385192b3

811121N/A✓N/A✓✓✓d199cfb0-91e8-471d-b1b3-53189cd64ee0

N/AN/AN/AN/AN/AN/AN/AN/AN/A5d3205a3-28c4-45eb-bfd8-b32d67c3be0f

aCGT: Cancer Gene Trust.
bOMOP: Observational Medical Outcomes Partnership.
cUUID: universally unique identifier.
dFMI: Foundation Medicine.
eUCSF: University of California, San Francisco
fCT: computed tomography.
gN/A: not applicable.

Breakdown of Available Data in Cancer Gene Trust
by Patient
The CGT Public ID refers to the globally unique hexadecimal
identifier per patient. ✓ indicates that data are available for that
particular modality per patient. For the OMOP data, the numbers
reflect how many data elements are available per modality.

Genomic Breakdown of Cancer Gene Trust Cohort of
Patients With Foundation One Reports
Of patients with genomic data, the majority (n=13) had
Foundation One sequencing performed and, as such, we focus
on these data for a breakdown analysis (Figure 2). Across all
patients, we identified 139 mutations in 95 genes (Multimedia
Appendix 1). On average, patients had 10.69 (SD 5.34) somatic
variants, with the most being 21 and the fewest being 3, across
different current knowledge status (ie, known pathogenic, likely
pathogenic, or of unknown consequence; panel A). On average,
these somatic variants were primarily unknown (panel B left),
with a mean of 8.07 (SD 4.57) per patient. Patients had an

average of 2.18 (SD 0.98) of known and 1.43 (SD 0.79) likely
variants. In terms of their functional effect, the majority of
variants were missense (83.5% (116/139), panel B right). These
patients had various primary diseases, the most prevalent being
pancreatic (n=4, panel C left). For these patients, biopsies were
taken from various tissues of origin, the most prevalent being
liver (n=5, panel C right). Please refer to Multimedia Appendix
1 for a diagram illustrating connections between tissue of origin
and primary disease for these patients. We further break down
the functional effect and status of variants by tissue of origin
and primary disease in Multimedia Appendix 1. These, of
course, should be considered in context to the number of patients
by tissue of origin and primary disease. With these
considerations, we still found some interesting trends. For
instance, lymph node tissue of origin (n=1 patient) had the
fewest variants (n=3) with no known pathological variants,
whereas omentum tissue of origin had the most for a single
patient (n=21) with three known pathological variants. Of
course, these trends could depend on patient-specific or severity
variations, and will require more patient data.
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Figure 2. Breakdown of Foundation One genomics results for pilot cohort. (A) The breakdown of number of variants reported per patient stratified by
their current knowledge status. (B) Breakdown of all variants for patients by effect (left) current knowledge status (right). (C) Distribution of cancer
type per patient by primary disease (left) and tissue of origin (right). (D) Distribution of genes based on the current knowledge status of encompassed
variants. (E) List of the most commonly recurrently mutated genes (N>1) by number of encompassed variants by status. Black dots represent number
of unique patients with a variant in the gene.

Across all patients, the 95 genes contained variants with various
levels of knowledge status, including overlapping domains if
there were more than one variant identified per gene (panel D).
Here, we also see that the majority of genes had variants of
unknown significance (n=82). There were 10 genes that
contained multiple variants of different knowledge classes. The
most commonly mutated genes across individuals (Multimedia

Appendix 1 and panel E, black dots) were KRAS and TP53
(n=5) followed by ARID1A and MLL2 (n=4). In a similar vein,
MLL2 has the most unique variants identified (n=6 variants
across 4 patients), followed by KRAS and TP53 (n=5 variants
across 5 patients). The majority of genes with more than one
carrier contained variants of unknown significance only (54%
(14/26)), further exemplifying the need for combining real-world
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EHR with such genomic data. We further visualize the landscape
of variants of unknown significance by effect overall and on a
per-patient level in Multimedia Appendix 1. We notice that for
1 patient with pancreatic cancer and tissue biopsy, for instance,
there is one nonsense mutation in TGFBR2 with a current
unknown knowledge status. According to TCGA GDC data
portal, there are only 15 cases of primary site pancreatic cancer
(TCGA-PAAD) with variants in this gene, and only two are
stop-gain. Sharing data such as these with other researchers
could quickly expand current knowledge status of variants and
their association with disease.

Comparing Robustness of Clinical Data Procedures
To identify the most robust format of clinical data to share on
CGT, we assessed whether there was a significant difference
in scoring quality between two disparate data formats,
specifically the prospectively collected registry and
retrospectively gathered OMOP. We hypothesized that there
would be no overall difference in scoring quality because both
methodologies in theory should capture the main core
competencies of interest.

Although we found that total score across all patients and data
elements were higher for registry compared with OMOP (Table
4; 642 vs 560), this difference was not statistically significant
(P=.13, V=44).We further analyzed any significant discrepancies
by core competency data element (Multimedia Appendix 1;
Table 1 for element descriptions and source).We found no
significant difference for Gender (P=.35, V=3), Ethnicity
(P=.17, V=6), Race (P=.17, V=13), Year of Birth (P=.35, V=3),
Basis of Diagnosis (P=.66, V=45), Cancer Site (P=.09, V=0),
Therapeutic Agent/Modality (P=.17, V=21), and Beginning and
End Dates of Treatment (P=.47, V=20). We did find, however,
that there was a significant difference between OMOP and
registry scoring for Date of Diagnosis (P=.004, V=0), with
registry having higher scores (P=.002, V=0), and Cancer
Histology (P=.0004, V=0), with registry having higher scores
(P<.001, V=0). See Multimedia Appendix 1 for per patient, per
element scores for registry and OMOP, respectively.

Break down of gold standard elements and their respective
fields in registry and OMOP is given in Table 4.

Table 4. Overall patient scores for registry vs Observational Medical Outcomes Partnership formats.

OMOPaRegistryPatient

2839f9b6a782-bbf5-4be8-bf7e-d1a9586d9552

3441c2e2e081-4c39-4201-8a27-7b469ed39490

3242db2d85aa-4f94-4e77-8755-6b94a710c1aa

30482fbc25da-3965-49c4-866f-72cf0abc2417

4131940171e7-d358-463a-8d9a-2b2fa90c2a84

3929f0314175-2d19-4146-8754-fc5aed3ab420

3315c7dbcfac-37ea-43f8-8899-1a9f2fb56341

2950ef5c3164-6f45-4d3a-88f0-4509226c5571

3335ec3d977b-c310-4df3-a444-f79bc3dd8b58

3335131cf62d-ad78-49c1-a699-5bcc1004cd12

2947cf11c31c-f4c3-48ba-9c46-66f406d0b7a1

3313ccc2ba97-912f-4b62-b767-cca129ee6a56

2435104ec531-5d95-41e2-ac72-f6cff2006b8e

3445a5627ac3-450d-4036-ade8-99ae62a5c232

38475189efbe-3382-4353-ad2f-9afd0255c2c8

3746253f0e2d-bebd-464b-81c5-8dd8385192b3

3344d199cfb0-91e8-471d-b1b3-53189cd64ee0

560642Total

aOMOP: Observational Medical Outcomes Partnership.

Total score per patient per data modality, specifically registry
vs OMOP, compared with gold standard raw EHR data. Each
score is the sum of all elements analyzed. Patient scores broken
down by element can be found in Multimedia Appendix 1.

Developing a Clinical Narrative From Cancer Gene
Trust Data
Although safely, securely, and robustly sharing clinically related
patient data is an important procedure in and of itself, we want
to demonstrate the power of this framework by compiling a
clinical narrative solely from data shared on CGT. We elected
to use patient c2e2e081-4c39-4201-8a27-7b469ed39490 as a
highlighted example (see Multimedia Appendix 1 for all relevant

J Med Internet Res 2020 | vol. 22 | iss. 3 | e16810 | p. 9http://www.jmir.org/2020/3/e16810/
(page number not for citation purposes)

Glicksberg et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


CGT hash information for this patient). We further show how
to identify these data points using PatientExploreR-CGT in the
following section.

On Day 1 (26,346 days from birth), patient underwent
laparoscopic cholecystectomy (at a prior institution)
which confirmed moderately differentiated
adenocarcinoma with mucinous features. On day 42
(26,387), pathology was reviewed at UCSF which
confirmed stage at pT2Nx. On Day 75 (26,420),
patient underwent open partial hepatectomy, portal
lymphadenectomy, and appendectomy. An FNA of
RUQ skin nodule at prior trochar site on Day 195
(26,540) identified adenocarcinoma consistent with
recurrence/metastasis from primary gallbladder site.
CT C/A/P on Day 196 (26,540) showed multiple new
peritoneal and ventral abdominal wall soft tissue
nodules suspicious for metastases.

Patient signed informed consent for CC#16457
clinical trial on Day 238 (26,583) andcompleted
baselinescans on Day 244 (26,589; Figure 3E [left];
hash ids: QmaYX3YvzDrendfcfnK1otff1kw88stxWM8

XMUdsXXKSHP [parent], Qmd7V8hS2mCtup
RLYk6Qm2AMHyk6X7Y4QPTDqZe7UCUnUT
[image]) which showed unchanged disease from Day
196. Patient randomized to Arm B:
merestinib/placebo + cisplatin + gemcitabine (not
available in OMOP data) on Day 257 (26,602) and
completed Cycle 1, Day 1 cisplatin + gemcitabine on
Day 260 (26,605). On Day 286 (26,631), Cycle 2,
Day 8 cisplatin + gemcitabine was completed.

On Day 300, a CT C/A/P was performed (26,645;
Figure 3E [right]; hash ids: QmQ6PtwhTM
qw9b3SFsa1qfW79kGK7tPrhrUHpKVLtxmj1i
[parent], QmZmVEsqNeCDuzUDDvLWYUdbxQ2QZ
ehDhkdzyCNvX8gFJF [image]) and showed stable
scattered abdominal wall, peritoneal and
retroperitoneal implants. Interval progression of mild
intrahepatic biliary dilatation, possibly due to new
soft tissue prominence at the porta hepatis,
concerning for recurrence. However, unchanged
small upper lobe pulmonary nodules were noted and
stable disease was concluded per RECIST, with
18.18% decrease in sum of target lesion diameters.
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Figure 3. PatientExploreR visualization app for Cancer Gene Trust (CGT). Breakdown of features available for the public PatientExploreR visualization
application for CGT. (A) Landing page which has all options for browsing patients, exploring patient data, and information about CGT. This page also
displays the amount of data currently compiled on CGT. (B) Browse tab for filtering for patient based on clinical concepts and/or demographics. This
list is filtered by Gallbladder-related disease and patient c2e2e081-4c39-4201-8a27-7b469ed39490 was selected. (C) Explore tab that details patient’s
background and clinical summary. The user can interact with clinical, genomic, and imaging data for selected patient. These data can be filtered and
exported and control what is shown visually in the timeline view below. (D) Genomics data extracted and displayed from either the Foundation One or
UCSF 500 report. (E) Two sample image scans that can be found via the imaging submenu or from clicking within the timeline view below. These CT
scans show baseline and C3D1, 26,589 and 26,645 age in days, respectively. Baseline contrast enhanced CT of the abdomen shows a peritoneal metastasis
(arrow) measuring 12×8 mm. Posttreatment contrast enhanced CT of the abdomen shows decreased size of the peritoneal metastasis (arrow) measuring
10×6 mm. (F) Timeline view of selected clinical and image data. This timeline view was produced by selecting the associated relevant medications in
the Drug pull-down menu, specifically: capecitabine, cisplatin, fluorouracil, and trastuzumab. With Show Images selected, we can see what relevant
medications the patient was prescribed when the images were taken. Pressing the link next to Value above, the user will be directed to all images taken
during that visit, which can be viewed on an appropriate (eg, DICOM viewer) browser.
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Exploring Cancer Gene Trust Data on
PatientExploreR-Cancer Gene Trust
To further operationalize the CGT framework, we adapted an
application called PatientExploreR to seamlessly interface with
CGT to effectively explore, visualize, and download the data.
We envision this application to be particularly useful for
individuals without much data extraction and manipulation
experience. This application requires no registration and is
publicly available [52]. PatientExploreR-CGT pulls all OMOP
data from CGT, maps all clinical concepts according to the
CDM, and provides convenient links to genomic data as well
as image data in the context of their clinical history. In Figure
3, we demonstrate the power of the visualization by showing a
detailed timeline of the above patient’s treatment timeline
around the time of the available CT scans.

Discussion

Overview
In this study, we have consented patients in an IRB-approved
process to share deidentified EHRs, genomic, and imaging data
using a blockchain-authenticated framework called CGT. Our
goal of this pilot study was to demonstrate the process of patient
consent to data sharing within a large public health institution
as well as to create a framework that can facilitate other
institutions, physicians, and patients to add their own data. The
benefit of a block-chain authenticated system was more geared
to decentralized access (authorization) rather than privacy or
security (authentication) as all submissions are public by design.
As we hypothesized, all 18 patients in the pilot study did not
have reservations about sharing their data, which has been
similarly demonstrated [9], and we believe patients from other
institutions have similar beliefs. Patient privacy was a top
priority for this project and we actively coordinated the
highest-standards for deidentification processing of all data
shared (see Multimedia Appendix 1 for deidentification process).

In designing the CGT, we had to overcome the existing
challenges in this space, namely that this framework should be
secure, efficient, and scalable while being cost-efficient, open
to the public, and not owned by a single institution. We also
had to determine not only which data should be shared but also
the appropriate format of such data that would balance
interoperability with speed of sharing. Our pilot also addresses
cultural and institutional challenges, both perceived and real,
including the IRB, patient consent and education, and other
elements.

CGT is designed as an alternate approach to centralized data
repository platforms such as Medical Information Mart for
Intensive Care [53] which have enabled a slew of powerful
research. Unlike these primarily static databases, CGT can
facilitate rapid and continual data being shared from the clinical
care system as close to the time of generation and extraction as
possible. Both systems have their merits and hopefully they will
be complementary in providing access to deidentified EHR data
to enable personalized medicine. Furthermore, CGT enables
researchers to use and interpret medical data instead of resolving
disparate access methods from multiple sources or failing

entirely because data are simply not available in any format.
Indeed, it is our hope that CGT can facilitate research studies
and enhance clinical care on a timescale not previously possible,
while allowing data holders to maintain the privacy and security
of individual data sources and the nonpublic subset of the data
[36]. At the same time, this entire process will respect individual
patient consents and cultural data sharing preferences and
expectations. CGT enables aggregation of data from all
consenting patients. CGT might bolster cancer research and
help physicians, patients, payers, and other stakeholders make
more informed decisions about the increasingly complex
diagnosis and treatment of cancer as well as its reimbursement.
CGT functions as a bridge between the highly regulated HIPAA
environment (Figure 1) and the open World Wide Web internet
environment. To alleviate concerns about data ownership, CGT
is built on a decentralized, democratized blockchain format and
will remain free and open.

Principal Findings
Compared with a list of gold standard data elements [11] that
should be shared in such a project, we found that there was no
significant difference in completeness between a prospectively
collected registry and a retrospective (OMOP) procedure for
clinical data. Certain data elements, however, were more
robustly recorded in the registry format, specifically Date of
Diagnosis and Cancer Histology. For analyses that aim to further
personalized medicine, such pieces of information might be
critical, and we hope the findings from this study can help
improve the continually adapting OMOP model to better encode
such information. These lapses could also be due to
institution-specific extract, transform, load (ETL) procedures.

Each strategy has its respective benefits and weaknesses.
Because registry data are manually coded, specific key pieces
of information can be easily highlighted and identified.
Furthermore, for registry data to be submitted to SEER, all
pieces of information must be detailed, but this process is
manual and time consuming, and often results in different stages
of aggregation per patient. As such, we found higher levels of
variance in registry records compared with those in OMOP
(mean 37.77, SD 10.87 vs mean 32.94, SD 4.26), which could
reflect delays in manual data aggregation (ie, suspense states)
or quality. It was clear though that more patients had more
complete information from registry data than OMOP, with 5
patients having more than 90% completeness cores (ie, >45
total score) in registry vs 0 in OMOP. However, by relying on
the open source OMOP standard, instead of registry or a
proprietary EHR structure, the barrier for distributing and
sharing data is drastically lowered through reducing ETL
transformation, which also lowers cost through leveraging the
conversion processes already occurring in many hospital
systems. Researchers recently demonstrated the power of OMOP
for facilitating phenotype transfer across sites [54], which aligns
well with the goal of CGT. The additional costs of time are the
clinical and regulatory tasks involved in consenting patients
and obtaining, anonymizing, and uploading data. This process
accounts for the majority of cost which will further decrease in
high volume.
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Limitations
There are many limitations of this study that need to be
addressed. Both the registry and OMOP EHR extract did not
contain all valuable and relevant core data elements. Therefore,
the comparison of data robustness cannot be extended to all
gold-standard elements that ideally should be shared in such a
project. As OMOP is from retrospective extraction process,
there is no immediate way to automatically identify primary
cancer and therapeutic efficacy, although we hope this can be
mediated by subsequent incorporation of deidentified notes or
new schema adaptations or developments. Similar to any
noncurated database, data quality for both registry and OMOP
is limited by those who entered it and could be affected by
infrastructural biases of individuals and EHR systems [55]. In
addition, the current framework is steward based, which means
that there needs to be a single individual or team representative
to submit data per institution. Similar to any cross-institution
data link of deidentified data, there is no procedure in place to
be able to map the same patient across stewards as there exists
within the registry system. Although we tried to create a
rule-based scoring system that is as unbiased as possible
involving 2 separate reviewers, the manual scoring of data
elements did contain levels of subjectivity and potential
ambiguity, which is fully detailed in the Multimedia Appendix
1.

There are also risks of reidentification associated with data
sharing, even beyond accidental leakage. Even for incomplete,
fully deidentified data, for instance, a recent study was able to
use generative copula-based method to accurately reidentify
99.98% of American individuals based on only 15 demographic
attributes [56]. Of course, many of these variables used in this
paper are not available in this dataset, but it is important to note
as other models might be developed in the future those could

be applied to the data shared. Overall, these risks need to be
weighed against the stagnation associated with keeping these
valuable data siloed. Not sharing all details pertaining to
treatment efficacy and adverse drug effects are not in the best
interests of general public and overall scientific and medical
community. Despite these limitations, open scientific data
sharing has been an enormous boon in many fields and we
believe that CGT presents a proof of concept that useful medical
data can be openly shared. We further demonstrated the
feasibility and utility of this process in a pilot study and provide
fully detailed steps for other institutions to consent and add their
patients’ data. The ultimate success of this platform will be
determined by the flow of patient data and how it can be used
to facilitate discoveries and help personalize treatment.

Conclusions
Each cancer case is unique and requires as much data as possible
to inform ideal treatment decisions. The more data that exist
and are released can help clinicians identify ideal personalized
treatment for their patients. We found the OMOP CDM is a
scalable format for dissemination, although it can be improved
by better information in key data element fields such as cancer
histology as compared with a prospectively collected registry
format. The OHDSI Oncology Working Group [12] is currently
developing an extension to OMOP to support observational
cancer research that better captures and records elements we
found available in the registry format but not in the current
OMOP implementation. We believe such an effort is invaluable
to reconcile these differences and should be integrated into the
future version of CGT. Put together, we hope that the CGT
framework, pilot study, and interactive visualization application
furthers the ideals of the cancer Moonshot project, unleashing
data trapped in silos to further cancer research and reveal
patterns that can help further personalize treatment.
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