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Abstract

Background: Internet search data on health-related terms can reflect people’s concerns about their health status in near real
time, and hence serve as a supplementary metric of disease characteristics. However, studies using internet search data to monitor
and predict chronic diseases at a geographically finer state-level scale are sparse.

Objective: The aim of this study was to explore the associations of internet search volumes for lung cancer with published
cancer incidence and mortality data in the United States.

Methods: We used Google relative search volumes, which represent the search frequency of specific search terms in Google.
We performed cross-sectional analyses of the original and disease metrics at both national and state levels. A smoothed time
series of relative search volumes was created to eliminate the effects of irregular changes on the search frequencies and obtain
the long-term trends of search volumes for lung cancer at both the national and state levels. We also performed analyses of
decomposed Google relative search volume data and disease metrics at the national and state levels.

Results: The monthly trends of lung cancer-related internet hits were consistent with the trends of reported lung cancer rates
at the national level. Ohio had the highest frequency for lung cancer-related search terms. At the state level, the relative search
volume was significantly correlated with lung cancer incidence rates in 42 states, with correlation coefficients ranging from 0.58
in Virginia to 0.94 in Oregon. Relative search volume was also significantly correlated with mortality in 47 states, with correlation
coefficients ranging from 0.58 in Oklahoma to 0.94 in North Carolina. Both the incidence and mortality rates of lung cancer were
correlated with decomposed relative search volumes in all states excluding Vermont.

Conclusions: Internet search behaviors could reflect public awareness of lung cancer. Research on internet search behaviors
could be a novel and timely approach to monitor and estimate the prevalence, incidence, and mortality rates of a broader range
of cancers and even more health issues.
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Introduction

Cancer affects people at all socioeconomic levels and has
become a worldwide public health problem. In 2018, the
International Agency for Research on Cancer reported the
substantial global burden of cancer [1]. Lung cancer is the most
commonly diagnosed cancer type (11.6% of all cases) and is
the leading cause of cancer-related deaths (18.4% of all cases).
In the United States, cancer is the second leading cause of death,
resulting in approximately 150,000 deaths per year [2,3].
Moreover, the mortality rate of lung cancer is the highest in the
United States. Current data on cancer incidence, mortality, and
survival have been mainly collected by the US Centers for
Disease Control and Prevention (CDC) and the National Cancer
Institute (NCI). However, the year of disclosing such data
usually lags about 3 years behind the year in which the data are
relevant owing to the time required for data collection,
compilation, quality control, and dissemination [4]. Despite an
increasing demand for up-to-date knowledge regarding cancers,
the lack of real-time data continues to be a major impediment
to timely and effective cancer surveillance [5]. Hence, new
methods in the era of big data are needed to help supplement
current strategies and improve the monitoring of lung cancer.

Along with the rapid spread of social media and medical forums,
people frequently search internet resources for symptom-related
information, basic medical advice, and to exchange information
[6-10]. As more and more people utilize the internet, data from
internet searches are increasingly able to better reflect real-world
data. With the advent of big data, information and
communication technologies have made it possible to reflect
trends of real-world diseases based on search data [11-13].

The past decade has witnessed an exponential increase in
internet penetration. As of April 2019, 56% of the world’s
population was reported to have internet access, with rates in
the developed world now exceeding 80% [14,15]. According
to the World Bank, individuals who use the internet accounted
for 76% of the total population in the United States in 2017
[16]. Additionally, 95% of Americans now own a cell phone
of some kind, and approximately 77% of the US population
now owns a smartphone [17]. Digital data passively generated
from user online search behaviors may be utilized to estimate
disease metrics in different states until verification data from a
traditional source becomes available [18,19]. Internet
technologies have the potential to mitigate some of the
shortcomings of current health monitoring systems and might
be used to supplement existing disease surveillance methods.

Previous studies have attempted to utilize search engines (eg,
Google and Baidu) to improve the surveillance of some
epidemics. Some scholars have made use of online social
networks (eg, Facebook and Twitter) to mine public interest in
medical-related issues such as diagnosis and treatment
knowledge, patient experience sentiments, and quality of
medical services. Meanwhile, more and more studies have
elucidated trends in disease communications through internet

communities (eg, Reddit) [20-22]. Since 2004, Google Trends
[23] has provided national- and state-level search data for free
via entering related search query terms [23]. Previous studies
have revealed that it is possible to improve the surveillance and
prediction of infectious diseases and examine public interest in
multiple health topics by monitoring the search behaviors of
millions of users and conducting data mining through such
search engines [24-29]. However, few studies have focused on
leveraging internet search data to monitor and predict cancers
at a geographically finer state-level scale [30,31].

In the present study, we tested the hypothesis that the volumes
of internet search queries related to lung cancer reflect
real-world spatiotemporal variation in the incidence and
mortality rates of lung cancer in the United States. Our findings
suggest that internet search volumes may reflect disease
characteristics of lung cancer (such as incidence and mortality)
and provide an additional means of national- and state-level
cancer surveillance in the United States.

Methods

Internet Search Data
We collected monthly search data for lung cancer through
Google Trends [23] from 2004 to 2018, at both the state and
national levels. The search data were downloaded from Google
Trends in January 2019. A research firm reported that Google
accounted for up to 92% of the market share of search engines
in 2018, representing an increase of 57% and 89% in 2004 and
2015, respectively; thus, Google is currently the most widely
used search engine in the world [32].

When downloading search data, we could freely choose our
own time range. The earliest search data available for Google
Trends are from 2004. Therefore, to illustrate and analyze more
complete changes in search trends, we first chose to download
data from 2004. Although the search data are updated in real
time, as mentioned above, the publication of cancer registration
data usually lag behind data collection for several years; thus,
the latest incidence and mortality rates of lung cancer available
for the present analysis were those published in 2015 by the
CDC. To explore the association of internet search volumes for
lung cancer with published cancer incidence and mortality rates
in the United States, we downloaded the relevant data for the
same period of time and set the year 2015 as our first deadline.
We downloaded data in January 2019 so that we could obtain
complete search data from 2004 to 2018 before conducting the
subsequent analysis.

Search Query Terms
Lung cancer awareness was examined on the basis of the general
population’s ability to seek such information or pay attention
to it [33]. We selected 12 different query terms among the most
commonly used terms for lung cancer [34]. The selected terms
were not searched in quotes. Search query volumes were filtered
by the term “health” using the Google query category feature
to discard non health-related queries that may have confounded
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the results. Each data point represented the relative search
volume (RSV) of specific query terms on a normalized scale of
0-100. The data were divided by total searches of a particular
geographic location and the particular time range they represent
to compare the relative popularity of the query terms. For
example, compared with the total search volumes, if a particular
region had a higher number of specific query terms, the RSV
would be closer to 100. Data of internet searches used in this
study are publicly available, anonymous, and cannot be traced
back to identifiable individuals.

Cancer Data
The age-adjusted incidence and mortality rates per 100,000
individuals with lung cancer in both sexes were obtained at the
state and national levels from the CDC for the period of
2004-2015 [2]. Incidence and mortality rates were then merged
by state and integrated with the monthly RSV data; the
processed dataset included 144 data points for each state for a
total of 7344 data points.

Statistical Analyses
RSVs at national and state levels are represented as time-series
data. Each time series was divided into four parts: long-term
trend, seasonal change, cycling, and random fluctuation. We
used a time-series decomposition method to eliminate the effects
of irregular changes and obtained the long-term trends of the
internet search data from January 2004 to December 2018. Each
long-term trend is a continuously increasing or decreasing trend
that an objective phenomenon exhibits over a long period of
time, which may be due to a fundamental cause. The purposes
of studying long-term trends are to understand the regularity of
the development of internet search data, provide the necessary
conditions for statistical prediction, and remove them from the
time series to ultimately analyze the influence of other factors
on the time series. The steps of this procedure were as follows.
First, we chose a multiplication model based on the time-series
graph of the RSV of each state. Second, we used a
moving-average method to smooth the time series, and used a
monthly average method to calculate the seasonal index. Third,
we drew a scatter plot and selected the long-term trend of the
appropriate curve model to fit the sequence and obtain the
long-term trend. Finally, after decomposing the seasonal index

and the periodic variation factors, the remaining factors
represented the long-term trend.

We performed Spearman correlation analysis to evaluate the
relationship between the known lung cancer incidence and
mortality rates and Google RSVs over the period of 2004-2015.
As Spearman correlation analysis is a nonparametric method,
no assumptions of distributions were required on the original
variables. We also performed Spearman correlation analysis to
evaluate the relationship among the incidence and mortality
rates and search data after time-series decomposition.

We assumed that trends in lung cancer-related internet hits
would be consistent with those reported for national lung cancer
incidence. As the search data could be downloaded in real time,
we downloaded complete search data from 2004 to 2018.
However, publication of incidence and mortality rates usually
lags 3 years behind the actual data. Hence, after the correlation
analysis, we conducted a simple linear prediction of the
incidence and mortality rates of lung cancer from 2016 to 2018
based on previous epidemiological data, and explored whether
trends in lung cancer internet hits would be consistent with the
future incidence and mortality rates of lung cancer in the same
manner as described above. Therefore, we set the year 2018 as
our second deadline for the present analysis.

Statistical analysis was conducted using IBM SPSS (version
22.0, IBM Corporation, Armonk, NY, USA), EViews (version
8, IHS Global Inc, London, UK), and R project (version 3.4, R
Development Core Team, Vienna, Austria). The statistical
significance of the correlation for each dataset was computed
using a two-tailed Student t test. The significance level was set
at alpha=.05 for all tests.

Results

Burden of Lung Cancer
Figure 1 shows the ranking of lung cancer rates in each state in
2004 and 2015. Compared with those in 2004, both rates
declined to varying degrees in all states by 2015. Kentucky
showed the highest incidence and mortality rates of lung cancer,
whereas Utah showed the lowest incidence and mortality rates
of lung cancer.
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Figure 1. Mortality and incidence rates of lung cancer in the United States broken down by state in 2004 and 2015.

Inclusion of Search Query Terms
We separately extracted the Google RSVs for each of the 12
keywords selected in the above method. However, except for
“lung cancer,” the other query terms lacked Google RSVs for
all states. Thus, we only selected the common lay term “lung
cancer” in this study in consideration of the integrity of the data
(see Multimedia Appendix 1).

Regional Distribution of Relative Search Volumes
Figure 2 shows the regional distributions of the Google RSVs,
mortality, and incidence data for lung cancer in 2004, 2015,
and 2018. The change in color from green to red in the heatmap
indicates low to high values of the datasets, respectively. From
2004 to 2015, the following states had the highest incidences
of lung cancer (ranked in the top 5 at any point): Kentucky,
West Virginia, Tennessee, Delaware, Arkansas, Mississippi,
Maine, Oklahoma, Missouri, and Indiana. The following states
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had the highest mortality rates (ranked in the top 5 at any point):
Kentucky, Arkansas, West Virginia, Tennessee, Mississippi,
Oklahoma, and Louisiana. The five states with higher average
RSVs (>50 from 2004 to 2015) were as follows: Ohio,
Maryland, Connecticut, Indiana, and Pennsylvania. The three

states with lower average RSVs (<20) were as follows:
Mississippi, Wyoming, and North Dakota. Thus, the states with
higher incidence and mortality rates usually had higher RSVs
(Figure 2).

Figure 2. Regional distribution of mortality, incidence rates, and relative search volumes (RSVs) for lung cancer in the United States in 2004, 2015,
and 2018. The color of the map changes from blue to red; the closer the color is to red, the higher the value.

Trends in Internet Searches Related to the Incidence
and Mortality Rates of Lung Cancer
Figure 3 shows a time series of the Google RSVs, along with
the incidence (blue lines) and mortality (red lines) rates of lung
cancer of all states from 2004 to 2018. The green lines represent

the original RSVs, the gray lines represent the new RSVs after
seasonal decomposition, and the dotted lines represent the
predicted value (from 2016 to 2018). The trends of RSVs for
these states initially fluctuated but eventually showed a steady
trend over time. The incidence and mortality rates of lung cancer
in each state showed a downward trend with time.
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Figure 3. Time series of internet search data, incidence, and mortality rates from 2004 to 2018 in the United States. The vertical axis represents the
rate and Google relative search volumes, and the horizontal axis represents time. The unit of rate is the number of patients or deaths per 100,000 people.

Correlational Analyses
Multimedia Appendix 2 shows the Spearman correlation
coefficients among incidence rates of lung cancer, mortality
rates of lung cancer, and Google RSVs by state in the United
States. We found statistically significant correlations between
incidence rates and original Google RSVs for lung cancer in 42
of 51 states, with the only exceptions being Arkansas, California,

Connecticut, District of Columbia, North Dakota, Rhode Island,
Utah, Vermont, and West Virginia. We also found statistically
significant correlations between mortality rates and Google
RSVs for lung cancer for all but four states. For California,
Connecticut, and Vermont, there were no statistically significant
correlations between incidence rates and relative Google search
volumes, and there were also no significant correlations between
mortality rates and Google RSVs. Following time-series
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decomposition of the RSVs, both the lung cancer incidence and
mortality rates were correlated with Google RSVs in 50 states,
except for Vermont. Figure 4 shows a representative scatter plot

of incidence rates, mortality rates, and relative Google RSVs
of lung cancer by state in 2015.

Figure 4. Scatter plots with fitted linear regression lines of mortality and incidence rates vs relative search volumes for lung cancer by state. Note that
linear regression lines are not equivalent to correlation coefficients and are only included for visual purposes.

Discussion

Principal Findings
Previous studies have mainly focused on the epidemiology of
infectious diseases by analyzing internet searches or using social
media data sources (eg, Twitter) to conduct health research. The
present study examined the association between internet searches
and the incidence and mortality rates of lung cancer at national
and state levels in the United States over a 12-year period, and
predicted the incidence and mortality rates of lung cancer based
on their correlations with internet searches. We found an
association between RSVs and actual incidence rates of lung
cancer for 42 states. Upon examining lung cancer mortality
rates, we found statistically significant correlations between
mortality rates and RSVs for all but four states.

Our results support the concept of using internet search data
and broader public access in health topics for estimating disease
characteristics such as incidence and mortality rates. For
Kentucky, which had the highest lung cancer incidence and
mortality rates in the United States, both incidence and mortality
rates were strongly correlated with Google RSVs. In Utah,
which had the lowest incidence and mortality rates of lung
cancer, RSVs were not correlated with either of these two rates.
One possible explanation for this pattern could be that prior
online search activities are amplified by individuals at risk for
lung cancer, their caregivers, or those who want to acquire
knowledge on lung cancer [35-37]. Our results further suggest
that search behaviors may reflect, at least partially, the actual
prevalence of lung cancer in each state. These types of data
sources can be particularly useful when real-time information
is needed, because the publication of cancer registration data
usually lag several years from data collection. Previous studies

have also confirmed that many data elements discernible from
a user’s social media, especially demographics, can provide
new opportunities to characterize the users whose data are
analyzed in health research. Google and Twitter-based health
research is a growing field that can be utilized to conduct content
analysis, surveillance, engagement, intervention, and network
analysis in health fields [38,39]. In 37 states, the correlation
coefficients between mortality rates and RSVs were higher than
those between incidence rates and RSVs. This situation may
indicate that people pay more attention to the death caused by
lung cancer, implying a general lack awareness of prevention,
and that relevant departments are not paying enough attention
to the prevention and intervention of lung cancer.

Many other factors may contribute to this association. Although
most of the states surveyed in the present study showed
statistically significant correlations of RSVs with incidence and
mortality rates, some states did not show such correlations (eg,
Vermont). However, our study contained only one query term,
which was not able to reflect people’s search needs and changes
in search patterns. Additionally, data downloaded from Google
Trends are not raw and unprocessed data, and Google’s search
algorithm is not static. The algorithm itself is constantly being
tested and improved. The instability of Google searching caused
by algorithmic dynamics may induce Google Trends to also
offer an unstable depiction of the occurrence of lung cancer.
Algorithmic dynamics represent changes made by engineers to
improve business services and consumer use of their search
services. Google’s search algorithms and user behavior changes
can affect the tracking of Google Trends. The multitude of
algorithmic changes is the result of Google’s numerous
programmers working on small units combined with the use of
search engines by millions of consumers around the world.
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Hence, it is difficult to reproduce the original algorithm of
Google Trends. When users search for disease information,
Google may automatically provide more entries that are helpful
for diagnosis, such that changes in each user’s search result in
changes in the Google Trends due to the recommendation of
the search bar. Google does offer a function called “related
queries,” which allows users to identify the retrieved data after
a given time series, but this only applies to data at the national
level. The key concepts are the lack of transparency regarding
absolute search volumes, the exact query text and search
Boolean logic used to calculate search volumes, and
preprocessing in the temporal domain. After processing by
Google, the filtered data may have lost much of the information
contained in the original raw data [40]. Several studies have
attempted to ameliorate this shortcoming by supplementing
search data from other search engines such as Bing and Baidu.
These search engines are capable of providing more granular
search information (eg, gender, age, and regional information
of the search population) than is available from Google Trends
[41].

Twitter, Facebook, Google, and the entire internet are changing
day by day. Studying these changes, trends, and algorithms may
help us to develop more efficient data analysis models. This
situation may also be influenced by various public health
activities related to lung cancer. The launch of these activities
may increase the public’s online searches for lung cancer,
regardless of disease indicators. One study found that RSVs
increased in lung cancer screening after trials reported their
potential to reduce the risk of death in heavy smokers [42].
Previous studies have found that after the public health campaign
for a disease has been launched, information search behavior
related to the disease increases. For example, every October,
the annual breast cancer campaign in the United States
stimulates online search activities, and the number of Google
searches for “breast cancer” has since increased significantly
[43]. Moreover, RSVs for lung cancer increased after trials
reported the potential of screening to reduce the risk of death
among heavy smokers [44]. Reports of cancer in famous
individuals may also lead to an increase in internet searches,
which has been called “the celebrity effect” [30].

There are also regional differences in search volumes. In recent
years, the emergence of corresponding therapy and new early
screening methods for lung cancer have helped to prevent and
treat lung cancer, but the level of development of lung cancer
prevention and treatment, along with the diagnostic rate and
survival time of lung cancer, vary from state to state. It is well
known that indoor and outdoor air pollution increases the
incidence of lung cancer, including smoking, air pollution,
secondhand smoke, and radon [45,46]. For example, Kentucky
has a high smoking rate and a relatively high incidence of lung
cancer, whereas Utah has a low smoking rate and a relatively
low incidence of lung cancer. Local authorities should strive to
ensure that online health information is available to the public,
especially in areas with high smoking rates and lung cancer
incidence. Researchers and public health practitioners can
further explore this situation by accessing and analyzing recent
Google Trends data, which may assist with predicting regions
of concern for lung cancer. Additional research on this topic

may help to determine how organizations might use Google
Trends data as a tool for prediction and targeted interventions.
Google Trends can also be used to measure the development of
knowledge and interest in new cancer screening tests or specific
screening tests. Some scholars have found that people are
considerably interested in lung cancer screenings and virtual
colonoscopies, but are not very interested in prostate cancer
screening [44]. Researchers could explore the psychology behind
why people search for lung cancer, such as whether they search
primarily for information related to experiencing potential
symptoms, have heard of public figures suffering from lung
cancer, or have read other information on the news to prompt
such searches [47-49]. Additionally, as keyword predictors vary
over time, additional research could investigate how searches
may relate to current behavioral trends. Our study suggests that
Google Trends data could be a new data source for researchers
and organizations focused on addressing lung cancer. In the
United States, where lung cancer is reported by the CDC and
the NCI Surveillance, Epidemiology, and End Results Program
through traditional epidemiological methods, supplementing
case report data with extant data sources like Google Trends
data may help enhance current surveillance by forecasting
changes in informing targeted awareness campaigns.

We also forecasted the incidence and mortality rates of lung
cancer in all states from 2016 to 2018 based on correlations
between these rates and Google RSVs. Our direction for future
work may focus on predicting the incidence of lung cancer by
combining RSV data and real-world medical data. This approach
may not only benefit the development of early warning,
intervention, prevention, and control measures for lung cancer
but may also extend the research findings of lung cancer to other
chronic diseases.

Limitations
Studying search engine data is inevitably restricted by some
random factors. As such, the present study had some limitations.
First, since the internet search data of other query terms in some
states were not included in Google Trends, the present study
only contained one search term. Second, Google Trends is not
a real epidemiological instrument. The use of Google Trends
to estimate lung cancer is not fully representative of the general
population, since only individuals with access to the internet
can be accounted for via this approach. Third, we were unable
to determine which types of internet users conducted search
activities. Fourth, we only utilized search data from one search
engine, which may not represent search preferences of the whole
population, although Google leads the explicit core search
market in the United States [32,50]. We hope to continue to
find novel ways to identify and reduce biases in search engine
data for ultimately utilizing internet search data to provide useful
information for cancer surveillance, evaluation of public cancer
awareness, and education programs.

Conclusions
The widespread proliferation and increasing utility of the
internet have fundamental impacts on the ways in which people
seek and acquire medical information. Studying internet search
data can augment traditional methods for cancer surveillance
when registry data are lagging, and help to achieve improved
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prevention and control of diseases. In addition, underscoring
the potential utility of internet searches may be beneficial to

identify people or regions at risk for cancers or other chronic
noncommunicable diseases.
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