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Abstract

Background: Public health surveillance is based on the continuous and systematic collection, analysis, and interpretation of
data. This informs the development of early warning systems to monitor epidemics and documents the impact of intervention
measures. The introduction of digital data sources, and specifically sources available on the internet, has impacted the field of
public health surveillance. New opportunities enabled by the underlying availability and scale of internet-based sources (IBSs)
have paved the way for novel approaches for disease surveillance, exploration of health communities, and the study of epidemic
dynamics. This field and approach is also known as infodemiology or infoveillance.

Objective: This review aimed to assess research findings regarding the application of IBSs for public health surveillance
(infodemiology or infoveillance). To achieve this, we have presented a comprehensive systematic literature review with a focus
on these sources and their limitations, the diseases targeted, and commonly applied methods.

Methods: A systematic literature review was conducted targeting publications between 2012 and 2018 that leveraged IBSs for
public health surveillance, outbreak forecasting, disease characterization, diagnosis prediction, content analysis, and health-topic
identification. The search results were filtered according to previously defined inclusion and exclusion criteria.

Results: Spanning a total of 162 publications, we determined infectious diseases to be the preferred case study (108/162, 66.7%).
Of the eight categories of IBSs (search queries, social media, news, discussion forums, websites, web encyclopedia, and online
obituaries), search queries and social media were applied in 95.1% (154/162) of the reviewed publications. We also identified
limitations in representativeness and biased user age groups, as well as high susceptibility to media events by search queries,
social media, and web encyclopedias.

Conclusions: IBSs are a valuable proxy to study illnesses affecting the general population; however, it is important to characterize
which diseases are best suited for the available sources; the literature shows that the level of engagement among online platforms
can be a potential indicator. There is a necessity to understand the population’s online behavior; in addition, the exploration of
health information dissemination and its content is significantly unexplored. With this information, we can understand how the
population communicates about illnesses online and, in the process, benefit public health.

(J Med Internet Res 2020;22(3):e13680) doi: 10.2196/13680
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Introduction

Background
Public health is “the art and science of preventing disease,
prolonging life and promoting health through the organized
efforts of society” [1]. As a research and political field, it is
focused on improving the quality of life of the population by
identifying, suggesting, and applying prevention measures (eg,
through the promotion of healthy behaviors) and health-related
treatments [2]. Monitoring health is one important contribution
to public health measures and involves the systematic collection,
analysis, and interpretation of large amounts of health-related
data. The key aim of public health surveillance is to design and
guide interventions; in particular, (1) it serves as an early
warning system for health emergencies (epidemics, ie, acute
events), (2) it documents public health interventions and tracks
their progress (ie, monitoring health), and (3) it monitors and
clarifies the epidemiology of health problems, enabling the
prioritization of information necessary for the formulation of
health policy (ie, targeting chronic events) [3].

In the past, surveillance has been based on reports from health
care workers constituting an active surveillance system when
consistent and standardized reporting is in place [3,4]. However,
this architecture is costly to maintain and involves significant
delays between the moment of data capture to the time point of
the first diagnosis, thus hampering any rapid or even immediate
detection of outbreaks [5]. Instead of attempting to gather
surveillance data from a network of health facilities and
laboratories, health entities can employ a passive surveillance
system in which hospitals, clinics, or other similar sources
submit their respective health reports. This system provides an
inexpensive way to monitor the community’s health; however,
data quality is an issue owing to nonuniform reporting standards,
and timeliness remains difficult to achieve [4]. To further
complement these systems, syndromic surveillance was created
to deal with the timeliness issue by using clinical (eg, emergency
department admissions) and nonclinical sources (eg,
over-the-counter drug sales), which are available before a
diagnosis is confirmed [4]. This type of surveillance is based
on the assumption that an outbreak would manifest itself as an
anomaly in normal behavior [5]. In line with syndromic
surveillance and with the growth of the internet, new
opportunities for the detection of health-related information
have arisen, with the potential to capture the patient’s input
directly from the source. This leads to the ambitious endeavor
of being able to monitor the health of a significant portion of
the population at any point in time and at any geographical
location, with the ultimate goal of monitoring public health.

The abovementioned technological advancements have enabled
unofficial informal sources to currently provide more than 60%
of epidemic reports [6]. Data analytics based on these data
sources can provide near real-time outbreak information in
various formats (independently from official governmental
output) and have been successfully tested for health-related
purposes. Furthermore, these sources offer the unique advantage
of providing firsthand evidence for occurrences of health-related
events (eg, through social media channels) and real-time

informal reports (eg, news), which can be immediately
investigated. Any analysis can be focused only on continuous
monitoring, or by contrast to the identification of specific events
(ie, single disease focus). In the latter case, it can be targeted to
identify isolated hints (eg, mentions of flu) or to determine
significant changes in public reporting; it can be further extended
to consider the location of the population at risk or to monitor
the distribution or extension of an epidemic (eg, influenced by
the travelling population). The potential of data analytics applied
to public data for health-related developments is ever more
far-reaching in our increasingly digitally equipped society; thus,
these approaches have an important role in the improvement of
timeliness and sensitivity (ie, rapidly and correctly identifying
health mentions) in public health surveillance [7].

Internet-Based Sources for Public Health Surveillance
IBSs are characterized by providing unstructured information
from multiple origins and have proven to detect the first
evidence of an outbreak, which is particularly beneficial for
locations with a limited capacity for public health surveillance.
The use of these sources for public health is also known as
infodemiology or infoveillance. With the evidence provided by
these sources, health agents are capable of mobilizing rapid
response, reducing morbidity and mortality [8,9]. Some
examples of IBSs include search queries, web encyclopedias,
microblogs, and other social media.

Infectious diseases became the initial case study for the
application of IBSs for disease surveillance. These continue to
be a major cause of death in low-income countries [10], with
research initially focusing on dengue, and are responsible for
recurrent threats in the rest of the world (eg, swine flu and bird
flu). Furthermore, these diseases are continuously monitored
by official sources through laboratory tests or sentinel systems
over many years and such information now forms the
ground-truth data used to validate the findings from IBSs [11].

ProMED-mail is one of the first applications of such sources.
This system is currently used for communication, via email and
reports, among the infectious disease community [12]. Other
systems include aggregators such as Global Public Health
Intelligence Network, BioCaster, and HealthMap. These initially
targeted a variety of sources including emails, Really Simple
Syndication feeds, and PDF documents to extract information
referring to an increased number of clusters of infected people
at a specified time, period, or location, which could indicate a
threat. The aggregator systems still in operation also include
additional sources such as social media [7,13]. Moving to other
sources, influenza-like illnesses (ILIs) served as a prototypical
case study owing to being seasonal, worldwide, and
well-reported diseases and initiated the monitoring of web-based
queries. In particular, one of the first studies utilized Google
search volumes to estimate the percentage of ILI-related
physician visits [14]. This source was further adapted to the
surveillance of other diseases such as dengue
[15], gastroenteritis, and chickenpox [16]. This initial success
led Google to develop targeted tools for the monitoring of
influenza (Google Flu Trends) and dengue (Google Dengue
Trends) in 2008 and 2011, respectively, which were later
discontinued. Research continued and aimed to identify the
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most appropriate search terms to utilize as well as other search
services (eg, Yahoo [17]) and other languages (eg, Vårdguiden
[18]). Following search queries, microblogs, in particular,
Twitter, showed to be another source of health information
characterized by providing more descriptive information and
potentially containing semistructured metadata (eg, location
and gender) [19,20]. By filtering messages containing
disease-related keywords, the frequency of disease mentions
can be tracked and outbreaks can be identified as unusual spikes
in the message frequency [21]. Similar to search queries,
subsequent research focused on the identification of adequate
keywords, as well as the identification of personal health
messages, ie, containing a keyword relevant to the disease and
describing a first-person infection case, among others [22,23].
With the use of more descriptive albeit semantically ambiguous
data, the focus shifted to detecting true signals, ie, first-person
occurrences of diseases. The application of IBSs continued to
grow [24] in tandem with the addition of new sources such as
Facebook [25], Instagram [26], and discussion forums [27].
Noncommunicable diseases (NCDs) are the cause of 71% of
deaths globally, ranging from 37% in low-income countries to
88% in high-income countries, hence, internet-based
surveillance focus has begun to also include NCDs [10]. In this
case, emphasis was given to the online behavior of affected
individuals, as well as to the content of the information present
in the sources [28], with the goal to establish or improve health
practices and support the dissemination of health information
to address the needs of the population [29,30].

Owing to the unstructured nature and to the large volumes of
data provided by these IBSs, tailoring of solutions, applications,
and even tools for retrieving and filtering the content becomes
vital for success. Subsequent automatic use of these methods
then becomes the key step to monitor the internet sources
continuously, and eventually to identify potential public health
risks or, even better, risks to individual patients [31]. However,
disease surveillance based on online sources must be used with
caution. Automatic identification of disease events from
web-based data streams has to cope with inherent biases, ie,
false-positive events, introduced through geographic or cultural
variability in language and reporting when compared with

reliable traditional surveillance methods [32]. Furthermore,
traditional epidemiological parameters (eg, attack rate) are often
not available as a gold standard and thus limit the proper
assessment of the applied methods [31].

Objectives
Our objective was to provide a discriminative assessment of
the applications of IBSs for disease surveillance and their use
as ground truth for future research. To achieve this, we have
presented a comprehensive systematic literature review with a
focus on IBSs and their limitations, the diseases targeted, and
methods commonly applied for disease surveillance. Our
research questions (RQs) were as follows:

1. What internet-based sources are utilized for infoveillance
and infodemiology?

2. What is the aim of the research conducted using these
sources?

3. How are internet-based sources applied to generate
knowledge?

4. Which sources have shown a preference for studying
communicable and noncommunicable diseases?

5. What are the common limitations of internet-based sources?

Methods

Search Strategy
This review was conducted through several stages based on the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses process (Figure 1). To be the most inclusive,
eight mutually exclusive research libraries that contain a variety
of journals in the fields of Informatics and Biomedical Sciences
were selected. The libraries were Europe PubMed Central,
Institute of Electrical and Electronics Engineers Xplore Digital
Library, Association for Computing Machinery Digital Library,
SpringerLink, EBSCO Host, PubMed, Scopus, and Web of
Science. Keyword generation was focused on IBSs of public
health data, infoveillance, infodemiology, and disease outbreak
and surveillance. We considered all conference and journal
articles identified in this process.
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Figure 1. Flowchart applied for the literature search.

Article Selection
The keywords were generated taking into consideration a
preliminary assessment of the literature through a manual
screening of relevant studies to ensure the list was complete.
The complete list of these keywords can be found in Multimedia
Appendix 1. The literature search was initially performed from
October 10 to October 31, 2017, on the abovementioned
repositories, focusing on the publication period of 2012 to 2017.

This literature search was later augmented to include additional
search terms and to extend the publication period until 2018.
In total, the literature search had a duration of 2 months,
excluding the screening and eligibility steps. Our review focused
on the literature published after 2012 to cover a wider variety
of sources, given the time lag between their popularity peaks;
furthermore, by analyzing the literature published a few years
after the first studies (eg, 2009 for search queries [14] and 2010
for social media [19]), we focused on research with finer-grained
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and adapted methodologies (eg, improved keyword selection
and relevancy filters). To select relevant articles, a multiphase
process was implemented. First, the article title was screened
for relevance and duplicates were removed; subsequently the
abstract was screened, and only articles that passed both steps
were considered for the eligibility phase. The inclusion and
exclusion criteria for the articles were decided according to a
modified PICOTS. The criteria are specified in Multimedia
Appendix 1. The first author performed the screening process
and retrieved the data. When doubts were raised regarding the
inclusion of certain publications, the remaining authors were
consulted.

Quality Assessment
To address the quality of the studies, we implemented a set of
criteria to evaluate the publications retrieved. This assessment
was based on a set of questions with regard to the purpose of
research, contextualization, methodology, study design, the
results obtained, and findings. The quality criteria are based on
the work by Kofod-Petersen [33] and are present in Multimedia
Appendix 1.

Data Extraction
We also developed an extraction form to gather information
about the studies allowing us to understand how the issues
related to the proposed RQs have been addressed. This step was
performed using the NVivo version 11 qualitative software
database (QSR International Pty Ltd), nested cases were used
to annotate each item of the extraction form. The extraction
guidelines are available in Multimedia Appendix 1. For each
checklist item in the guidelines, we created a classification that
has been detailed in the following sections. Each paper was
classified as journal or conference, in accordance with the
inclusion criteria. Regarding the targeted diseases, we divided
this into chronic, infectious, medical conditions, and health
topics. The first three categories have been further specified.
For the Goal/Objective item, a paper was classified as outbreak
forecasting if it explicitly stated that the research was aimed at
forecasting; else, it was assigned to surveillance (ie, when the
purpose is only to identify the degree of correlation with
ground-truth data and there is no mention of forecasting);
disease characterisation was assigned when the aim was to
determine identifiable characteristics related to a disease, eg,
patient search behavior and commonly mentioned treatments,
or when the aim was to classify a text as related to a disease;
content analysis was assigned to the study of the sources’
content (eg, news presence and expressed sentiment) referring

to a disease or medical condition; personal health mention
classification focused on separating general mentions of a
disease or medical conditions (eg, news) from first-person
mentions; and diagnosis prediction was assigned when the
purpose was to attribute a disease or medical condition to a text
and its creator by proxy. The Internet-based data source can
be classified into search queries, social media (including
microblogs), websites, news, discussion forums, web
encyclopedia, and media monitoring systems. We also
considered the use of data sources external to the IBSs, which
can be classified as demographic, socioeconomic, and climate
statistics, as well as data from governmental and laboratory
sources, among others. To address the study
design/methodology, we devised the following criteria: topic
analysis corresponds to when topic modelling and similar
approaches are used; regression models encompass all regression
and autoregression models (eg, linear regression and
autoregressive moving average); statistical models was assigned
to more complex models (eg, Hidden Markov Chain);
correlation analysis was used when correlation scores are
calculated (eg, Pearson); rule-based techniques and ranking
techniques are self-explanatory; manual analysis was assigned
when no specific techniques are used other than a manual
assessment; epidemiology theory refers to the use of techniques
and measures commonly used in epidemiology (eg, Susceptible,
Exposed, Infectious, and Recovered models); linguistic analysis
was assigned when sentiment analysis and lexicons, among
others, were used; and finally, we split machine learning and
deep learning. Finally, we did not add a classification to the
findings and limitations; we chose to keep this as an open field
and manually analyzed the outcomes.

Results

Overview
The results from the search strategy are shown in Figure 1; in
total, 162 papers were considered for this systematic literature
review. The summary of the review results according to the data
extraction guidelines is presented in Multimedia Appendix 1
[34-188]. The year with the highest number of publications is
2015 (n=36), followed by 2017 (n=33), 2014 (n=25), 2016
(n=22), 2013 (n=17), 2018 (n=17), and 2012 (n=12; Figure 2).
Journal articles accounted for 130 of all publications and the
remaining 32, for conferences. The remaining results were split
into subsections correspondent to the extraction guidelines
followed. The complete summary of the literature analysis is
provided in Multimedia Appendix 1.
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Figure 2. Distribution of the selected literature per year and type.

Goal
The analyzed papers mostly focused on surveillance (n=90),
content analysis (n=46), and outbreak forecasting (n=45); other
goals included personal health mention classification (n=10),
disease characterization (n=5), and diagnosis prediction (n=4),
with 36 papers having multiple targets.

Diseases, Medical Conditions, and Health Topics
Infectious diseases are markedly the most researched cases,
with a total of 108 papers assigned. Chronic diseases are the

focus of 17 publications, followed by medical conditions with
10 publications, health topics with 7 mentions, and mental health
with 6 assigned articles (Figure 3). A set of 14 publications
target multiple diseases from all the previously mentioned
categories. Among the infectious diseases, ILIs, dengue, and
infectious intestinal diseases are the top choices with 57, 7, and
7 assigned publications, respectively. In terms of chronic
illnesses, cancer is the most researched disease (n=3). Excluding
the publications focusing on multiple cases, 78% of the diseases
appear in less than two articles.

Figure 3. Distribution of the case studies in the literature.
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Internet-Based and External Data Sources
The 162 analyzed papers can be classified into eight distinct
categories: search queries, social media, news, discussion
forums, websites, media monitoring systems, web encyclopedia,
and online obituaries. Social media (n=80) and search queries
(n=79) are the most utilized IBSs, followed by web
encyclopedias (n=13) that, in the selected papers, corresponded
solely to Wikipedia. The remaining are utilized in the following
decreasing order, forums (n=9), news (n=8), media monitoring
systems (n=2), online obituaries (n=2), and websites not related
to newspapers (n=1). A total of 29 papers utilize combinations
of these sources, with the majority (n=11) combining search
queries with social media. For social media, Twitter is mostly
used (n=71) with the remaining sources marginally appearing.
For search queries, the same behavior is seen with Google
Trends; it is present in 42 publications, and when aggregating
with Google Flu Trends and Google Dengue Trends, this value
rises to 61.

Regarding sources external to IBSs, governmental, or laboratory
surveillance statistics are the most utilized and used as
ground-truth data (n=107), the second most used external source
is hospital and emergency department visits (n=16), which are
also used as ground-truth data. Climate or temperature statistics
are applied in 8 papers, and socioeconomic statistics in 5
publications followed by health records in 4 publications,
demographic or population statistics in 3 papers, and
pharmaceutical sales in 2 publications. Scientific search engines,
Flu Near You [189], and telephone triage are used individually
in only 1 publication. In total, 45 publications do not use any
external data source, and 26 publications share multiple external
sources.

Study Design
Regarding the methodologies used, correlation analysis (n=59)
was predominant and closely followed by regression models
(n=46). Machine learning was used in 27 of the analyzed
articles, statistical models are preferred in 20 publications,
manual analysis was used in 18 of the articles, topic analysis is
used in 12 publications, and deep learning and linguistic analysis
were used in 10 articles each. Regarding the remaining
methodology, rule-based techniques (n=7), epidemiology theory
(n=6), surveys (n=3), and ranking techniques (n=1) were used
in less than 10 papers.

Findings and Limitations
Qualitatively, the studies reported positive results (n=125),
mentioning high or improved correlations with ground-truth
data, as well as the outbreak predictive power, and high accuracy
when the goal was surveillance, outbreak forecasting, personal
health mention classification, disease characterization, and
diagnosis prediction. The studies by Olson et al [55], Alicino
et al [85], and Yom-tov [109] report negative results caused by
questionable reliability with search query data and media
influence affecting social networks and web encyclopedias. For
the publications solely focused on content analysis (n=30), the
findings were reported without a negative or positive association.
A total of four publications [54,91,115,130] mention positive
and negative results related to a large variation in the correlation

score with social network data, surveillance inaccuracies for
different age groups and the lack of specificity for search query
data, and media influence when applying both social network
and search query data.

In terms of limitations, these can be divided into gold standard
(n=22); representativeness (n=76); general bias, eg, change in
search behavior, symptom variability (n=9), and media effect
(n=17); dataset size (n=7); methodology, eg, computational
cost, keywords, and spelling errors (n=63); language (n=11);
geographical restriction (n=33); and timeframe restriction
(n=20).

Discussion

In this study, we aimed to provide a discriminative assessment
on the application of IBSs in public health. To achieve this, we
focused on the literature published in the last 6 years and applied
systematic selection criteria to determine the appropriate studies
to include. As a result, we proposed a taxonomy and identified
the gaps to be addressed in future research, represented by the
identified limitations of IBSs. Hence, this section addresses
each RQ stated in the objectives.

Research Question 1: What Internet-Based Sources
Are Utilized for Infoveillance and Infodemiology?
As reported in the Results, search queries, social media,
discussion forums, news, web encyclopedia, online obituaries,
media monitoring systems, and websites constitute the general
categories of the IBSs present in the analyzed literature.

For search queries and social media, there is a large variation
in the sources, which is mostly caused by geographical
differences. The sources include platforms that are only available
to certain countries. In the case of search queries, this potentially
brings benefits in representativeness as it is possible to estimate
the country-wide disease surveillance data from online search
behavior. We argue that using a worldwide search engine,
cultural differences that shape online search behavior could be
diluted further complicating the surveillance task. Google Trends
and its variations are the most common and widely represented;
Bing also has an extensive geographical representation but a
lower market share [190]. Also included are Baidu, Naver,
Yandex, Vårdguiden and Websök, and Sapo, which cater to
different countries, namely China, South Korea, Russia, Sweden,
and Portugal, respectively. Nonetheless, the use of
country-specific search engines can be limited by their market
share, as is the case for Sapo [191], and their fine-grained
geographical representation, eg, Vårdguiden is mostly used by
people in Stockholm [68]. These limitations are further discussed
in the following subsections.

Regarding social media, the sources differ in content richness.
For example, while Twitter is a microblogging service, Weibo
incorporates functionalities that can also be found on Facebook
[192]. Nevertheless, the same reasoning applies, country-specific
platforms can potentially bring benefits in representativeness
and more closely estimate the country-wide health-related
statistics.
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The remaining sources, web encyclopedia and online obituaries,
are used without a defined geographical restriction, and only
English data were considered. Discussion forums and websites
are an exception as they were utilized in different
language-specific scenarios. Media monitoring systems also
work on data from multiple sources and languages.

Research Question 2: What Is the Aim of the Research
Conducted Using These Sources?
With IBSs of health information, the approaches are mostly
based on monitoring the internet search and information-sharing
behavior; the underlying assumption is that people actively seek
and share information on diseases they develop.

In terms of surveillance and outbreak forecasting, estimates of
disease activity within a community can be expressed by
monitoring the frequency of related internet searches, disease
mentions on social and news media, and page views in a web
encyclopedia, among others. In addition, these sources also
provide complementary information to the ground truth, eg, by
targeting sick people who might not go to the hospital. When
dealing with outbreak detection, an early and fast response is
essential. Traditional surveillance is slower to transmit
information across its different channels; therefore, IBSs
complement the traditional mechanism when dealing with
outbreaks [5,193,194].

Sources that go beyond single keywords pose a challenge as
the occurrence of disease mentions does not correspond to the
assumption that the text/health report in consideration is
referring to the user suffering from the mentioned disease. For
example, the microblog “Don’t forget to get your flu shot” is
not as valuable as the microblog “I have the flu”; the latter
corresponds to a personal health mention that has the potential
to more closely correlate with gold standard data. Hence,
personal health mention classification is based on the application
of classification techniques that aim to filter false-positives, ie,
a text containing a disease mention but not stating the user is
carrying the disease, from true-positives, ie, a first person
mentions of a disease by the affected user [37,72]. This is an
important step that has been introduced when dealing with
microblogs and online forums, as it has shown improvements
for surveillance and outbreak forecasting.

Diagnosis prediction was not a common aim of the analyzed
studies as it is difficult to validate owing to the lack of available
gold standard data and owing to privacy concerns. The studies
by De Choudhury et al [47] and Bodnar et al [64] include a prior
user selection process for whom the authors have diagnosis
information. In these cases, the source utilized was social media
as it provides more contextual information and the potential for
sentiment analysis, which is particularly valuable for mental
health infodemiology studies. In contrast, the work by Karmen
et al [97] targets the diagnosis of a health report (in the form of
a forum post) and not the user itself (as not all information for
the user is available) utilizing a similar methodology. Yom-tov
et al [113], in their study, identify risk markers that correlate
with a set of diseases based on the search behavior of assumed
affected users.

When considering long-term patients, they also seek the internet
for health information but also for online support through the
connection with other patients [36,53,86,134]. This corresponds
to the task of content analysis and disease characterization. IBSs
are not only useful to perform disease surveillance but also to
understand the information that is being shared online, which
directly relates to public health tasks. The literature also points
to the preference of sources for particular user groups, namely,
users who seek support groups or connection with other patients
and who suffer from chronic illnesses. In this situation, forums
and social media, namely, microblogs, provide a suitable
medium for the discussion of examination results, symptoms,
treatments, and support, offering insights into how diseases are
discussed online [36,41,72,86].

Research Question 3: How Are Internet-Based Sources
Applied to Generate Knowledge?
As most of the publications aim to perform disease surveillance
and outbreak forecasting, correlation analysis is regularly
applied to determine the relationship between the IBSs and
ground truth. Surveillance data are also commonly incorporated
into surveillance and forecasting using regression models, which
can also include autoregression, ie, past values of the
ground-truth data. However, these methods make several
assumptions regarding the distribution of the data, which might
not be correct and overly simplistic.

Studies that utilize multiple sources of external data tend to
apply more complex statistical methods which attempt to address
the assumptions made by regression and autoregression models
in trade of higher complexity.

The techniques mentioned earlier are applied to time-series data
that can be obtained from the search query volume, page views
from a web encyclopedia, and message/health report frequency
in social media. In the latter case, to obtain the frequency,
machine learning is commonly used to filter messages that are
considered nonrelevant for the disease or medical condition in
question. Thus, most of the machine learning approaches focus
on social media and are reliant on annotated datasets, ie, a set
of messages previously labelled as relevant or nonrelevant,
which carry an added cost as this is necessary to train the
models, as well as the lack of generalization as the labelled
dataset targets a specific disease/medical condition.

Deep learning approaches improve generalization, they are
capable of modelling complex nonlinear relationships, and do
not impose restrictions on the data, eg, distribution; however,
they have much higher complexity and can act as a black box
owing to the high number of tunable hyperparameters.
Furthermore, they require large sets of data that might not be
available for diseases with a lower prevalence.

Topic analysis is mostly used for content analysis and it provides
added benefits to manual analysis and surveys as it is
unsupervised, ie, it does not require human input to perform the
analysis. However, the topics identified might not be clearly
related to a subject, which can lead to subjective interpretations;
furthermore, it also carries high computational costs.

Linguistic analysis, in particular, sentiment analysis, can provide
insights regarding negative and positive word use, among others,
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and how it associates with diseases. For example, this is used
for mental health research as the sentiment expressed in words
can be fundamental to detect the mental state of a user [82,157].
In the same category, named entity recognition aids in the
detection of locations and disease names, among others [144].
Furthermore, the use of lexical and syntactic features and the
use of lexicons have shown to improve classification tasks, eg,
self-mentions of disease and disease-related categories [81,162].

The use of the epidemiology theory is not common as it can
require data that are not available through the use of IBSs owing
to its limits in terms of user information (eg, age and location);
however, some studies have implemented various
epidemiological models [96,121,140,170], as well as
epidemiological parameters [34,119].

Rule-based techniques are manually created and are specific to
the disease/medical condition studied; hence, they suffer from
lack of generalization.

Ranking techniques were only used in 1 of the analyzed papers
[195],  and it was used to rank the topics generated from a topic
modelling approach, suggesting that these can be used to
facilitate the interpretation of the topic analysis results.

Research Question 4: Which Sources Have Shown a
Preference for Studying Communicable and
Noncommunicable Diseases, Health Topics, and Mental
Health?
The nature of infectious diseases, ie, fast moving and with easier
measurable effects, makes these a preferential case study for
outbreak detection and surveillance. In tandem, the sources
commonly applied for these tasks are search queries and social
media, both combined and with other sources. These are the
preferred sources as their output can be transformed into
time-series data and compared with a gold standard for
evaluation. With regard to search queries, a variety has been
used to provide the most representative search behavior for the
countries and languages targeted. A similar methodology was
applied with social media, although mostly restricted to
microblogs. Another important task in studying communicable
illnesses is to explore what type of information is being shared
and when; this is vital to identify the spread of misinformation
and to analyze how far-reaching the counteractions are from
health care agencies. Hence, content analysis is also performed
by mainly utilizing social media as it provides more contextual
information than search queries. Forums and news are utilized
for the same reason; the higher contextual value allows for more
insights into the study of information dissemination.

When discussing NCDs, monitoring and content analysis are
the major approaches taken on the papers analyzed. Collecting
epidemiological data for NCDs is a labor-intensive process
[57,196]; hence, monitoring through digital sources aims
primarily to estimate the number of affected individuals, given
that official statistics are released with a significant delay
[47,57,58,95,136]. To perform such a task, the commonly used
sources are social media, search queries, and online obituaries.
Content analysis focuses on determining the behavior and
characteristics of users who actively mention a disease (eg,
through a forum or social media), and the content and

dissemination of health information. This is relevant as it allows
to explore the information that is spread within these
communities, such as personal medical advice. Additionally,
past research has shown that online communities can provide
a more convenient environment, for some patients, than
traditional face-to-face interactions with health providers
[36,41,43,82]. For content analysis, the sources applied are
social media, forums, and web encyclopedia. As stated earlier,
data with greater contextual content could provide more detailed
information regarding online behavior and information
exchange. With regard to forecasting, Gu et al [95] and Zhang
et al [138] mention the task of predicting erythromelalgia-related
hospital visits one week ahead and detecting early signals of
diabetes, both through the use of search query data.

The research on mental health, medical conditions, and health
topics focuses on content analysis; thus, the sources utilized in
the analyzed papers refer to social media, in particular,
microblogs, and forums.

Overall, the choice of the source of data is significantly related
to the health topics, aim of the study, and the data available for
evaluation. Infectious diseases have a large incidence variation;
hence, they tend to have surveillance data available and most
of the approaches focus on surveillance and outbreak forecasting
which in itself requires sources that immediately show changes
in the online behavior of users. Thus, search queries and
microblogs are preferred for an analysis requiring a timely
response. Regarding the remaining health topics, the population
affected does not fluctuate as is the case with infectious diseases;
hence, the focus is on the discussion that occurs online. It is
more valuable to determine the information being disseminated,
the questions raised online, and the needs of the patients so that
the health agencies can cater to this segment of the population.

Research Question 5: What Are the Common
Limitations of Internet-Based Sources?
Most of the studies analyzed report on positive outcomes when
utilizing IBSs for public health applications; however, some
limitations are frequently cited and only a few authors have
given these greater importance. Although recent statistics
illustrate the growth in search for health information online
[197], internet access is neither equally distributed among
countries nor equally penetrating in all regions within a country,
which significantly affects the application of IBSs of health
information [129,169]. In all the sources, common limitations
refer to the lack of representativeness and bias caused by internet
penetration and access, and preference to certain user age
groups. For example, in the case of Twitter, 62% of its 330
million users are aged between 18 and 49 years [198]; around
53% of American internet users look up information on
Wikipedia, with these users being mostly highly educated (69%)
and under the age of 30 years (62%) [199]. This type of
information elucidates on the potential bias caused by the
nongeneralized use of these sources, in particular, when a given
age group is more susceptible to a disease (eg, elderly and
children).

Another common limitation is related to precision issues caused
by the inherent nature of diseases. These tend to share symptoms
and treatments that are commonly used as keywords to detect
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relevant health reports, furthermore, the use of unspecific
health-related terminology is also common. The layman
language used in IBSs is a challenge, given that most approaches
in the field rely on the use of keywords selected from specialized
medical vocabulary, as summarized by Dai et al [142]. However,
the evolution of learning-based, lexicon-based, and embedding
approaches has started to mitigate the language specificity effect.

When ground-truth data are available, some studies question
their quality as they can be updated after the initial publication;
other mentioned limitations concern the amount of data as well
as their timespan, and geographical coverage. Language
restriction is also a common limitation of the studies, as most
are performed only in English.

In particular to search queries and social media, the lack or
limited geographical resolution is also cited as a limitation.
Using Google Trends, various studies refer to the lack of
transparency on how the search volumes are obtained, especially
since forecasting systems based on Google Trends (ie, Google
Flu Trends and Google Dengue Trends) have shown significant
algorithmic problems that led to their termination [200,201].
The need for costly, manually annotated datasets is a common
issue when the goal is to perform classification, and it mainly
occurs with social media data.

In addition, a common limitation to search queries, social media,
and web encyclopedia is the effect caused by media events. A
media event is an event or activity conducted for media
publicity. In this definition, we include examples such as
panic-inducing news [109] and celebrities being diagnosed with
medical conditions [173]. Media events have shown to
significantly affect the reliability of these sources. The results
of studies by Yom-tov [109] and Mollema et al [100]
demonstrate how these sources show a higher correlation with
media events than actual surveillance data. The study by Alicino
et al [85] also reveals that the presence of news strongly
influences the search volume in locations where an outbreak is
not occurring. In light of this, we present an interaction schema
in Figure 4; the sources of public health–related data
predominantly comprise search engine queries, which target
public sources, and peer-to-peer (P2P) social media networks;
we can further distinguish primary consumers of health
information, eg, members of P2P networks, from producers,
eg, biased and unbiased news and unbiased official data
providers (eg, governmental sources). News and official data
providers deliver biased and unbiased information to the
consumers. Consumers receive this information and spread it,
affecting their search and share behavior, namely, in search
queries, social media, and web encyclopedias.

Figure 4. Data sources interaction cycle. WHO: World Health Organization.

Conclusions
IBSs of health information are a valuable proxy to study
illnesses affecting the population. Their benefits and applications
are far-reaching and continue to evolve as a potential asset to
public health. The knowledge gathered from this review suggests
that search queries and social media provide useful data to
monitor infectious diseases. With regard to studying chronic
illnesses, discussion forums and social media are preferred. 

The methods used to select relevant keywords or messages
target specific illnesses, thus requiring constant updates to reflect
the population’s changing search behavior as well as emerging
trends. Here, we identify the first research gap; disease outbreaks

outside of the targeted disease names will not be identified, and
new terminologies crucial for the detection of previously
targeted diseases will be missed. Future approaches must focus
on the ever-changing nature of diseases. For example, new
related keywords could be identified through services such as
Google Trends’ related topics. To identify emerging illnesses,
more emphasis must be given to the structure and syntax of
messages describing a first-person mention of a disease, as this
could be applicable to other illnesses. 

The strong susceptibility to media events and the absence of
approaches dealing with this issue constitute the second research
gap. As shown in Figure 4, the interactions between the different
sources and the type of information (biased and unbiased) reach
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the consumers and affect their search and share behavior,
namely, in search queries, social media, and web encyclopedias.
Such an effect must be mitigated to ensure improved reliability
when utilizing IBSs. 

The third research gap relates to the absence of consistent
training and test periods, which impedes the appropriate
comparison among the different methodologies. To address this,
we suggest the creation of standard datasets, allowing to quantify
the improvements of distinct methodologies. We also found a
significant lack of interaction with public health officials, which
would be the entities receiving the information from these
models.

As a final recommendation, we suggest the use of an alternative
strategy to better harness the information provided by IBSs.
Namely, a proactive approach where the users are asked to
report on their health state requesting the user to anonymously
publish this information while avoiding the inclination to only
publish positive messages. Such implementations can potentially
make IBSs more comprehensible and a more valuable asset for
disease monitoring.

Systematic Literature Review Limitations
This study makes use of eight databases, aiming to achieve a
high coverage of the scientific literature. However, these
databases do not guarantee full coverage and, hence, the
inclusion of all relevant publications in our systematic
methodology. In addition, we only considered articles in English
as it is the predominant language of the scientific literature;
thus, some contributions were potentially missed. The
publication period is restricted to the last 6 years to allow for a
focus on recent trends; earlier studies were referenced in the
Introduction; however, not in an exhaustive way. We included
a variety of keywords for the literature search although we
understand that these might not cover all relevant publications.

Given that the authors followed a rigorous and systematic
methodology when including and excluding publications for
this literature review, selection bias was minimized. However,
we cannot guarantee the absence of a bias when qualitatively
presenting the findings; some categories and articles might be
over- or under-represented.
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