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Abstract

Background: Assigning meaningful probabilities of SARS-CoV-2 infection risk presents a diagnostic challenge across the
continuum of care.

Objective: The aim of this study was to develop and clinically validate an adaptable, personalized diagnostic model to assist
clinicians in ruling in and ruling out COVID-19 in potential patients. We compared the diagnostic performance of probabilistic,
graphical, and machine learning models against a previously published benchmark model.

Methods: We integrated patient symptoms and test data using machine learning and Bayesian inference to quantify individual
patient risk of SARS-CoV-2 infection. We trained models with 100,000 simulated patient profiles based on 13 symptoms and
estimated local prevalence, imaging, and molecular diagnostic performance from published reports. We tested these models with
consecutive patients who presented with a COVID-19–compatible illness at the University of California San Diego Medical
Center over the course of 14 days starting in March 2020.

Results: We included 55 consecutive patients with fever (n=43, 78%) or cough (n=42, 77%) presenting for ambulatory (n=11,
20%) or hospital care (n=44, 80%). In total, 51% (n=28) were female and 49% (n=27) were aged <60 years. Common comorbidities
included diabetes (n=12, 22%), hypertension (n=15, 27%), cancer (n=9, 16%), and cardiovascular disease (n=7, 13%). Of these,
69% (n=38) were confirmed via reverse transcription-polymerase chain reaction (RT-PCR) to be positive for SARS-CoV-2
infection, and 20% (n=11) had repeated negative nucleic acid testing and an alternate diagnosis. Bayesian inference network,
distance metric learning, and ensemble models discriminated between patients with SARS-CoV-2 infection and alternate diagnoses
with sensitivities of 81.6%-84.2%, specificities of 58.8%-70.6%, and accuracies of 61.4%-71.8%. After integrating imaging and
laboratory test statistics with the predictions of the Bayesian inference network, changes in diagnostic uncertainty at each step in
the simulated clinical evaluation process were highly sensitive to location, symptom, and diagnostic test choices.

Conclusions: Decision support models that incorporate symptoms and available test results can help providers diagnose
SARS-CoV-2 infection in real-world settings.

(J Med Internet Res 2020;22(12):e24478) doi: 10.2196/24478
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Introduction

Despite advances in molecular diagnostics and imaging, ruling
in or ruling out COVID-19 infection in an individual patient
remains a significant challenge [1]. Current guidelines from the
Centers for Disease Control and Prevention (CDC) recommend
providers to determine whether signs or symptoms are
compatible with COVID-19 infection and to test appropriate
patients using nucleic acid amplification tests (NAATs) or
antigen detection assays [2]. However, the diverse clinical
presentations of COVID-19 infection may mimic those of
common infections, potentially confounding the diagnostic
value of presenting symptoms [3]. Moreover, significant and
evolving differences in estimated local disease prevalence for
both COVID-19 infection and seasonal respiratory illnesses
meaningfully impact differential diagnostic probabilities.
Despite the uncertain utility of this symptom and local
prevalence information, in low-resource and community settings
such as ambulatory clinics, nursing homes, and telemedicine,
these may be the only sources of data. In higher-resource
settings, NAATs [4], antibody based lateral flow assays [5],
chest radiography (CXR) [6], and computed tomography (CT)
[7] may be available, yet published literature notes varied
performance. Despite these limitations, clinicians with access
to any imaging and testing modalities must optimize diagnostic
imaging and testing sequences to appropriately reduce diagnostic
uncertainty in a given setting.

This complexity highlights the need for reliable and
user-friendly clinical decision support systems (CDSS) that
suggest optimal testing strategies and quantify SARS-CoV-2
infection risk for patients across the continuum of care. Prior
research has demonstrated the potential utility of Bayesian
inference [8,9] and machine learning [10,11] methods in
diagnostic decision making, but computational clinical decision
support has often been underutilized due to a lack of
accessibility, transparency, workflow integration, and most
importantly, the flexibility to incorporate local provider beliefs
into the diagnostic model [12,13].

A robust diagnostic risk model should be built on individualized
patient data that is easily obtained by patients and health care
workers. Menni et al [14] analyzed a large database of
smartphone-enabled, self-reported symptom tracker records to
predict potential COVID-19 cases using logistic regression
models. In the US test set, this approach had a reported
sensitivity of 66% and a specificity of 83%. Ahsan et al [15]
used deep learning techniques to differentiate between
COVID-19 and non–COVID-19 patients based on open-source
imaging and clinical data. However, the performance of this or
other machine learning models in clinical settings has not yet
been examined.

Moreover, in evolving contexts where illness presentation may
change depending on host and viral characteristics, large
databases of individual patient records may not be available or
locally relevant. Constructing inflexible predictive algorithms,
such as logistic regression models, based on out-of-date and
locally irrelevant data sets would significantly compromise
diagnostic accuracy. Addressing these issues, Chishti et al [16]

demonstrated the advantages of using flexible probabilistic
frameworks built without large-scale clinical data sets to
generate ranked differential diagnoses that are more accurate
that those developed by physicians.

Combining the approaches of this prior work suggests that an
appropriate diagnostic support model should rely on easily
obtained symptom data, probabilistic frameworks to avoid the
need for large-scale data sets, and most importantly, a flexible
schema to refine predictions based on provider judgment and
the ability to adapt to changes in local prevalence and current
diagnostic test performance. To this end, we present a
comparison and clinical validation of 3 such quantitative models
as well as an ensemble approach to the diagnosis of COVID-19
in ambulatory and acute care settings. We then illustrate how
this approach can be employed to help providers optimally
reduce diagnostic uncertainty through appropriate diagnostic
test choices and update predictions based on local clinical
context and test results as that are obtained. Finally, we provide
an interactive, online resource to assess COVID-19 infection
probability based on user-defined parameters such as local
disease prevalence, imaging, and testing performance [17].

Methods

Data Acquisition
National and state-specific confirmed cases of COVID-19 as
of July 2, 2020, were acquired from the Center for Systems
Science and Engineering at Johns Hopkins University [18].
During our model training, validation, and testing process, we
assumed a national SARS-CoV-2 infection prevalence of 11.1%
based on the total confirmed count of 5,438,325 in the United
States as of August 17, 2020 [18], a population estimate of
328,239,523 [19], and an estimated reporting rate of 14.9%
[20-22]. Prevalence and conditional symptom probabilities for
diseases in the differential diagnosis were collected from the
CDC and literature estimates (Multimedia Appendix 1, Table
S1). COVID-19 symptom probabilities were developed primarily
from a 393-person consecutive patient series [23] and
supplemented by 3 meta-analyses, which included 3062 [24],
49,504 [25], and 53,000 patients [26]. Where conditional
symptom probabilities have not been described in the literature,
we used a symptom probability of 1.0% based on our assumption
that a higher conditional symptom probability would have been
discussed in the literature.

To incorporate location and diagnostic test results into risk
predictions, we used state-level case figures [18], state-level
population data [19], and the estimated reporting rate [20-22]
to compute an estimated SARS-CoV-2 infection prevalence for
each state. We sourced imaging diagnostic accuracies from
existing literature [6,7] and laboratory test accuracies from the
Johns Hopkins Center for Health Security. The reverse
transcription-polymerase chain reaction (RT-PCR) sensitivity
of 70% is based on published estimates [4] that take into account
operator dependency and variability in viral load across upper
respiratory tract sites [27]. The RT-PCR specificity of 99.8%
is based on published data from Abbott Molecular [28].
Antibody test sensitivity and specificity are based on published
figures [5] for electro-chemiluminescence immunoassay
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completed between 0-6 days of infection. We computed
likelihood ratios and prevalence-adjusted predictive values based

on sensitivity, specificity, and our estimated national COVID-19
prevalence of 11.1% (Table 1).

Table 1. Imaging and laboratory diagnostic test statistics for SARS-CoV-2 infection.

Predictive valuea (%)Likelihood ratio (%)Specificity (%)Sensitivity (%)Diagnostic test

NPVcPPVbNegativePositive

92.814.70.61.450.0d69.0 [6]Chest radiography

99.322.10.12.357.397.0Computed tomography [7]

96.374.50.323.397.0 [28]70.0 [4]RT-PCRe

95.997.60.3327.599.865.5Antibody (0-6 days) [5]

aPrevalence-adjusted predictive values assume a prevalence of 11.1%.
bPPV: positive predictive value.
cNPV: negative predictive value.
dNo published figures available.
eRT-PCR: reverse transcription-polymerase chain reaction.

Training
We developed Bayesian inference network (BN) and set-cover
(SC) models from published disease prevalence and conditional
symptom probabilities (see Multimedia Appendix 1, Table S1).
We simulated symptom profiles and diagnoses for 100,000
patients using the published aggregate diagnosis prevalence and
conditional symptom probabilities. Of the 100,000 simulated
patients, the number of patients assigned to each mutually
exclusive diagnosis was proportional to diagnosis prevalence.
Within each diagnostic class, we simulated a joint symptom
distribution by randomly assigning the presence or absence of
each symptom to every patient. The number of patients with a
positive symptom within each diagnostic class was proportional
to the conditional symptom probability for that symptom and
diagnosis. We trained our distance metric learning (DML) and
ensemble models on this simulated data.

Study Design
We analyzed consecutive ambulatory and hospitalized patients
with COVID-19–compatible syndromes presenting to University
of California San Diego Medical Center over 14 days in March
and April 2020, with institutional review board approval
(#200498). Patients were included if they had a recorded
presenting illness including fever or cough, and at least a single
NAAT in the electronic health record. Patients were labeled
“positive” if they had one or more positive RT-PCR tests and
a compatible syndrome or findings on radiographic imaging.
Patients were labeled “negative” if they had 2 or more
consecutive negative NAAT tests (>72 hours apart) or a single
negative RT-PCR and a negative antibody test within 14-21
days of symptom onset. Chart review was performed manually
by an infectious disease specialist with an anonymized and

blinded data set presented for analysis (see Multimedia
Appendix 1 for additional details).

Data Analysis
We calculated the sensitivity, specificity, and
prevalence-adjusted accuracy as well as the prevalence-adjusted
negative predictive value (NPV) and positive predictive value
(PPV) of each model on the clinical test data using standard
Wald-type CIs [29]. We estimated the 95% CIs for sensitivity
and specificity using Clopper-Pearson exact binomial proportion
CIs [29]. We estimated 95% CIs for accuracy using the normal
approximation method [29]. For the imaging and laboratory
tests, we computed likelihood ratios based on sensitivity and
specificity; and prevalence-adjusted predictive values based on
sensitivity, specificity, and an assumed national COVID-19
prevalence of 11.1%.

Results

Patient Characteristics
In total, 55 individuals and the presence or absence of 13
symptoms at initial presentation were included in our clinical
test data set. Of this, 38 patients (69.1%) were confirmed
SARS-CoV-2 infection positive by RT-PCR; 44 subjects were
seen via inpatient services, and 11 were seen as outpatients. The
majority of subjects (n=43, 78.2%) presented with fever, 63.6%
(n=35) with shortness of breath or dyspnea, 54.5% (n=30) with
nonproductive cough, 21.8% (n=12) with productive cough,
50.9% (n=28) with fatigue or exhaustion, 9.1% (n=5) with loss
of smell, 7.3% (n=4) with sore throat or pharyngalgia, 18.2%
(n=10) with body or muscle aches, 16.4% (n=9) with headaches,
16.4% (n=9) with diarrhea, 14.5% (n=8) with nausea, 5.5%
(n=3) with vomiting, and 3.6% (n=2) with nasal congestion or
rhinorrhea (Table 2; Multimedia Appendix 1, Table S2).
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Table 2. Clinical test data set: patient characteristics.

SARS-CoV-2 test resultTotal, n (%)Characteristic

Negative, n (%)Positive, n (%)

17 (31)38 (69)55 (100)Patients

Sex

6 (35)21 (55)27 (49)Male

11 (65)17 (45)28 (51)Female

Age (years)

8 (47)19 (50)27 (49)<60

4 (24)9 (24)13 (24)60-70

4 (24)5 (13)9 (16)70-80

1 (6)5 (13)6 (11)>80

Setting

12 (71)32 (84)44 (80)Inpatient

5 (29)6 (16)11 (20)Outpatient

Symptoms

10 (59)33 (87)43 (78)Fever

2 (12)33 (87)35 (64)Dyspnea

2 (12)28 (74)30 (55)Dry cough

8 (47)4 (11)12 (22)Productive cough

7 (41)21 (55)28 (51)Fatigue

0 (0)5 (13)5 (9)Loss of smell

3 (18)1 (3)4 (7)Sore throat

2 (12)8 (21)10 (18)Body/muscle aches

3 (18)6 (16)9 (16)Headache

4 (24)5 (13)9 (16)Diarrhea

5 (29)3 (8)8 (15)Nausea

2 (12)1 (3)3 (6)Vomiting

2 (12)0 (0)2 (4)Nasal congestion/rhinorrhea

Comorbidities

4 (24)5 (13)9 (16)Cancer

2 (12)10 (26)12 (22)Diabetes

3 (18)4 (11)7 (13)Cardiovascular disease

3 (18)12 (32)15 (27)Hypertension

Classification Performance in the Clinical Test Data
Set
Base models classified SARS-CoV-2 infection in the clinical
test data set with sensitivities and specificities of 81.6% (95%
CI 65.7 to 92.3) and 58.8% (95% CI 32.9 to 81.6) for the BN
model; 0.0% (95% CI 0.0 to 9.3) and 100.0% (95% CI 80.5 to
100.0) for the SC model; 84.2% (95% CI 68.7 to 94.0) and
64.7% (95% CI 38.3 to 85.8) for the DML model; and 81.6%
(95% CI 65.7 to 92.3) and 70.6% (95% CI 44.0 to 89.7) for the
ensemble model. The overall accuracy of each of these models

was 61.4% (95% CI 48.5 to 74.2) for the BN model; 88.9%
(95% CI 80.6 to 97.2) for the SC model; 66.9% (95% CI 54.4
to 79.3) for the DML model; and 71.8% (95% CI 59.9 to 83.7)
for the ensemble model. The prevalence-adjusted positive and
negative predictive values for each model were 19.9% (95% CI
10.5 to 29.2) and 96.2% (95% CI 92.5 to 100.0) for the BN
model; 0.0% and 88.9% for the SC model; 23.0% (95% CI 11.3
to 34.7) and 97.0% (95% CI 93.8 to 100.0) for the DML model;
and 25.8% (95% CI 11.4 to 40.2) and 96.8% (95% CI 93.7 to
100.0) for the ensemble model (Table 3).
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Table 3. Classification performance on the clinical test data set for the developed base and ensemble models compared to a logistic regression model
reported in the literature.

Predictive valuea (%)Accuracya (95% CI)
(%)

Specificity (95% CI)
(%)

Sensitivity (95% CI)
(%)

Model

NPVc (95% CI)PPVb (95% CI)

96.2 (92.5-100.0)19.9 (10.5-29.2)61.4 (48.5-74.2)58.8 (32.9-81.6)81.6 (65.7-92.3)Bayesian inference network

88.90.088.9 (80.6-97.2)100.0 (80.5-100.0)0.0 (0.0-9.3)Information-theoretic set cover

97.0 (93.8-100.0)23.0 (11.3-34.7)66.9 (54.4-79.3)64.7 (38.3-85.8)84.2 (68.7-94.0)Distance metric learning

96.8 (93.7-100.0)25.8 (11.4-40.2)71.8 (59.9-83.7)70.6 (44.0-89.7)81.6 (65.7-92.3)Multinomial logistic regression ensemble

90.5 (88.7-92.2)100.090.6 (82.9-98.3)100.0 (80.5-100.0)15.8 (6.0-31.3)Logistic regression (Menni et al [14])

aPrevalence-adjusted metrics assume a COVID-19 prevalence of 11.1%.
bPPV: positive predictive value.
cNPV: negative predictive value.

Incorporation of Location and Diagnostic Test
Sequences
We then employed the BN model to evaluate 3 hypothetical
patients with 3 different presentations: (1) fever, dry cough,
shortness of breath, and anosmia; (2) fever and dry cough; and
(3) asymptomatic. We assumed all of these patients presented
for care in an area with a local disease prevalence equivalent to
the national disease prevalence of 11.1%. For patient 1, we
simulated a clinically plausible imaging and test result sequence
of negative RT-PCR, negative antibody, and negative CXR.
The probability of a COVID-19 diagnosis following symptom
collection was 99.8%. Despite negative test results, residual
risk due to local disease prevalence and symptoms remained at
97.7%. The change in diagnosis probability, or the reduction in
diagnostic uncertainty, was only 2.1% following all 3 negative

tests. For patient 2, we simulated the same negative test
sequence. In this scenario, the combination of negative test
results with nonspecific symptom information resulted in a
decrease in residual risk to 12.3%. The reduction in diagnostic
uncertainty due to test results was 55.6%, primarily due to
negative RT-PCR and negative antibody test results. The
negative CXR provided less information as the reduction in
diagnostic uncertainty following negative RT-PCR and antibody
tests was only 6.2%. For patient 3, we simulated an imaging
and test result sequence of negative RT-PCR, positive antibody,
and negative CXR. The negative RT-PCR test reduced disease
probability by only 0.1%, and the positive antibody test
increased the probability of a COVID-19 diagnosis by 8.4%.
The CXR results reduced diagnostic uncertainty by 3.0% (Figure
1).

Figure 1. Probability of SARS-CoV-2 infection for common patient presentations and clinical test sequences. Probability of disease due to location is
the estimated national disease prevalence of 11.1%. RT-PCR: reverse transcription-polymerase chain reaction; CXR: chest radiography.
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To illustrate the dependence of risk assessment on local disease
prevalence, we simulated a patient with symptoms of only fever
and dry cough presenting in 3 locations with significantly
different COVID-19 prevalence estimates: Vermont with an
estimated statewide prevalence of 1.6%, Utah with an estimated
statewide prevalence of 9.8%, and Florida with an estimated
statewide prevalence of 18.0% at the time of the simulation.
We combined results from 3 common test sequences with our
BN pretest probabilities to compute location-dependent risk
trajectories. The test sequences included: (1) negative CXR and

negative RT-PCR; (2) negative CXR and positive RT-PCR; and
(3) positive CXR and negative RT-PCR. Our results indicate
that for a pauci-symptomatic patient presenting with identical
symptoms in states with significantly different disease
prevalence, the posttest probabilities of SARS-CoV-2 infection
following common diagnostic test sequences demonstrate
marked variation. Moreover, changes in diagnostic probability
or reductions in diagnostic uncertainty are highly context and
test dependent (Figure 2).

Figure 2. Impact of patient location and diagnostic test results on probability of SARS-CoV-2 infection. Prior probability of disease due to location is
the estimated disease prevalence for Vermont (1.6%), Utah (9.8%), and Florida (18.0%). Incremental probability due to symptoms assumes the patient
presents with only fever and dry cough. RT-PCR: reverse transcription-polymerase chain reaction; CXR: chest radiography.

Discussion

Principal Findings
Our results suggest simple computable models that quantify
patient risk of SARS-CoV-2 infection based on key elements
of the clinical case can reduce diagnostic uncertainty for
providers attempting to rule in or rule out disease with limited
or conflicting information.

Building on work by Chishti et al [16], we chose probabilistic
models considering the scarcity of detailed, individual patient
data and to take advantage of the depth of published literature
on aggregate symptom probabilities. Clinicians are trained in
evidence-based medicine, and Bayesian reasoning provides a
natural framework to understand the impact of incremental
information on diagnosis probabilities. Our approaches to
making stepwise diagnostic assessments with incremental
information mimic clinical workflows and reflect the need for
transparency and accommodation of new information critical
to clinical decision making. As in Menni et al [14], we chose
clinical indicators that would be easily obtained by patients and
providers as well as predictive models that are easily computed
and transparent to all users. While other machine learning
approaches, such as generative adversarial networks, transfer
learning, n-shot learning, and prototypical networks, are also

robust for limited data, these methods can be opaque and
inaccessible to providers and may be inflexible and fragile in
an evolving clinical context.

Our most simple model, the Bayesian inference network, is
transparent, easily interpreted, and highly modifiable depending
on the user’s prior beliefs about location-based prevalence,
conditional symptom probabilities, and imaging and laboratory
test accuracy. Clinicians, educated in evidence-based medicine
and often familiar with Bayesian decision making in diagnostic
testing, are ideal users of this model. By developing base models
that do not require access to large amounts of patient-level data
and can accommodate changes in local provider beliefs and new
sources of information, we alert physicians to the utility of using
Bayesian reasoning to not only combine multiple data streams
in order to make more informed diagnostic decisions but also
to guide decisions about use of imaging and testing that will
most effectively reduce diagnostic uncertainty.

Limitations
Our study has limitations. First, we used simulated patient data
based on prevalence and conditional symptom probabilities to
train and validate our DML and ensemble models that biased
the ensemble model to heavily weight the DML model
predictions. Second, the number of patients in our clinical test
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data set was relatively small, and this data set was enriched for
SARS-CoV-2–positive patients due to the cancellation of all
elective procedures and the use of telemedicine for almost all
patient visits during the study period, leaving clinics and
hospitals open primarily for COVID-19 patients and the acutely
ill. Third, 80% of the patients in our clinical test data set were
from inpatient services, potentially biasing model accuracy by
disease severity. Fourth, we chose as a reference standard the
RT-PCR test results for SARS-CoV-2 infection despite
outstanding questions about false negative rates in NAAT tests
due to operator dependency and patient-level differences in viral
loads across upper respiratory tract sites [4,27].

Conclusions
Overall, we found that the Bayesian inference network, the
metric learning model, and ensemble models trained and

validated on a simulated patient data set had sensitivities
(81.6%-84.2%) and specificities (58.8%-70.6%) for
discriminating between COVID-19 infection and other potential
diagnoses in real clinical settings. These models had higher
sensitivities than reported for most commonly used diagnostics,
and model specificities were higher than those of both imaging
modalities. For purposes of comparison, the logistic regression
model proposed by Menni et al [14], when applied to our clinical
test data set, had a sensitivity of 15.8% and a specificity of
100.0%. Finally, our BN model shows that information acquired
by imaging and testing choices is highly dependent on location
and symptoms, and emphasizes the utility of a quantitative
framework to guide clinical decision making in rapidly changing
local environments with potentially unreliable diagnostic tests.
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