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Abstract

Background: Conventional diagnosis of COVID-19 with reverse transcription polymerase chain reaction (RT-PCR) testing
(hereafter, PCR) is associated with prolonged time to diagnosis and significant costs to run the test. The SARS-CoV-2 virus might
lead to characteristic patterns in the results of widely available, routine blood tests that could be identified with machine learning
methodologies. Machine learning modalities integrating findings from these common laboratory test results might accelerate
ruling out COVID-19 in emergency department patients.

Objective: We sought to develop (ie, train and internally validate with cross-validation techniques) and externally validate a
machine learning model to rule out COVID 19 using only routine blood tests among adults in emergency departments.

Methods: Using clinical data from emergency departments (EDs) from 66 US hospitals before the pandemic (before the end
of December 2019) or during the pandemic (March-July 2020), we included patients aged ≥20 years in the study time frame. We
excluded those with missing laboratory results. Model training used 2183 PCR-confirmed cases from 43 hospitals during the
pandemic; negative controls were 10,000 prepandemic patients from the same hospitals. External validation used 23 hospitals
with 1020 PCR-confirmed cases and 171,734 prepandemic negative controls. The main outcome was COVID 19 status predicted
using same-day routine laboratory results. Model performance was assessed with area under the receiver operating characteristic
(AUROC) curve as well as sensitivity, specificity, and negative predictive value (NPV).

Results: Of 192,779 patients included in the training, external validation, and sensitivity data sets (median age decile 50 [IQR
30-60] years, 40.5% male [78,249/192,779]), AUROC for training and external validation was 0.91 (95% CI 0.90-0.92). Using
a risk score cutoff of 1.0 (out of 100) in the external validation data set, the model achieved sensitivity of 95.9% and specificity
of 41.7%; with a cutoff of 2.0, sensitivity was 92.6% and specificity was 59.9%. At the cutoff of 2.0, the NPVs at a prevalence
of 1%, 10%, and 20% were 99.9%, 98.6%, and 97%, respectively.

Conclusions: A machine learning model developed with multicenter clinical data integrating commonly collected ED laboratory
data demonstrated high rule-out accuracy for COVID-19 status, and might inform selective use of PCR-based testing.

(J Med Internet Res 2020;22(12):e24048) doi: 10.2196/24048
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Introduction

SARS-CoV-2 is the cause of COVID-19, which continues to
spread in an uncontrolled manner across the United States [1].
COVID-19 management includes patient isolation and
supportive care [2]. This strategy requires expeditious
COVID-19 diagnosis, but components required for the reverse
transcription polymerase chain reaction (RT-PCR; hereafter,
PCR) assay have been reported to be in short supply in some
locations during the pandemic, leading to delays in results [3].
In the absence of a widely available PCR test with rapid
turnaround, there is an urgent need to identify alternative means
for stratifying risk of patients seeking care during the COVID-19
pandemic.

Risk assessment models might identify those at low risk of
active COVID-19 using available data from the clinical
encounter [4,5]. In contrast to traditional model-building
techniques, machine learning technologies consider complex
linear and nonlinear associations between independent variables
and identify characteristic patterns of commonly collected data
among patients with COVID-19 [6]. A test with high sensitivity
and diagnostic yield (ie, fraction of patients ruled out) could be
used in a manner analogous to other rule-out tests, such as
D-dimer for pulmonary embolism [7].

Using emergency department (ED) patient encounters from a
well-established multicenter clinical database, we sought to
describe the development of a machine learning model for ruling
out COVID-19 using only routinely collected laboratory tests.
Furthermore, we aimed to assess the area under the receiver
operating characteristic (AUROC) curve of a machine learning
model’s concordance with both COVID-19 PCR test results
(for positives) and prepandemic patients (for negatives). We
hypothesized that such a machine learning model would enable
the ruling out of the disease with sensitivity >90% and
diagnostic yield >50%.

Methods

Study Design and Setting
This analysis and its reporting is compliant with the Standards
for Reporting Diagnostic Accuracy Studies (STARD) statement
[8]. This cross-sectional study was performed using 3 data sets
of deidentified, patient-level electronic medical records of adult
patients in an ED. The Premier Healthcare Database (PHD) is
a large database of 1041 US hospitals from all 9 US geographic
regions defined by the US Census [9]. At time of writing, 155
hospitals contribute SARS-CoV-2 RNA testing results to the
PHD. We separately obtained data from Cedars-Sinai Medical
Center (CSMC), an 886-bed academic medical center in Los
Angeles, CA, and the Beth Israel Deaconess Medical Center
(BIDMC), a 673-bed academic medical center in Boston, MA.
An inclusion flow diagram and descriptions of these data sets
are provided in Section A of Multimedia Appendix 1.

Prepandemic and Pandemic Time Frames
Two time frames were used, defined by the date of ED visit:
prepandemic (before January 2020) and pandemic (March 2020
through July 2020). January 2020 and February 2020 were not
included due to the lack of widespread monitoring or diagnostic
tests for COVID-19 in the United States during this time frame,
even though SARS-CoV-2 community transmission was present
in the United States during this time [10]. Clinical encounter
data from the PHD were available for the prepandemic (January
2019-December 2019) and pandemic (March 2020 through July
2020) time frames. CSMC data were available for patients with
COVID-19 during the pandemic time frame only (March-April
2020). BIDMC data were available across an extended
prepandemic time frame (2008-2019) only for patients who
were admitted through the ED.

Selection of Participants
Eligible patient encounters (hereafter, patients) were adults aged
≥20 years in an ED at an included center during one of the
prepandemic or pandemic time frames. Patients were excluded
if they were missing a laboratory result included in the model
on the day of presentation to the ED or if any of their laboratory
results were reported with inappropriate units or incorrect
specimen type. Patients were defined as PCR-positive for
COVID-19 (hereafter, PCR-positive) if they had a positive
SARS-CoV-2 RNA test on the day of presentation to the ED.
We chose PCR rather than antigen positivity to define the cases
as PCR is commonly used as the reference standard in
COVID-19 diagnosis [11,12].

Training Population and Definition of COVID-19
Cases and Controls
Training occurred in the PHD database only. The PHD training
and external validation sets were split by hospital, and only
hospitals that reported COVID positives as well as the blood
tests required for the model were included in the analysis (64
total). Of these, 43 hospitals were randomly assigned to the
training set, and 21 to the external validation set (hereafter, PHD
holdout). Cases came from the pandemic time frame, and any
patients in this time frame without a positive PCR test were
excluded. Contemporary COVID-19 PCR assays have elevated
false negative rates, which could lead to mislabeled data and
hence to degraded model performance [13]. Due to this,
prepandemic controls randomly selected from the 43 PHD
hospitals in the training set were used in place of PCR-negative
patients during the pandemic.

External Validation Populations
The external validation data set used 3 data sources: 952
PCR-positives and 154,341 prepandemic visits from the 21
hospitals in the PHD holdout set; 68 PCR-positive patients from
CSMC; and 17,393 prepandemic (2008-2019) patient encounters
from BIDMC. Patients in the pandemic time frame without a
positive PCR test were excluded. All prepandemic patients were
treated as negatives when evaluating the performance of the
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model in predicting COVID-19 status. The prepandemic patients
from the PHD holdout were chosen so as to match the top 20
most frequent primary diagnoses given to patients without
COVID-19 during the pandemic, as coded by Clinical
Classifications Software Refined (CCSR) codes (listed in
Section B of Multimedia Appendix 1).

Sensitivity Analysis Population
To evaluate how the model generalizes to pandemic time frame
patients only, we performed a sensitivity analysis using patients
presenting to the ED in the 21 centers from the PHD holdout
with any SARS-CoV-2 PCR result available on day of
presentation. This differed from the other analyses as negatives
were from the same time frame as the positives. This resulted
in a total of 952 PCR-positive patients and 6890 PCR-negative
patients in the pandemic period (March-July 2020).

Subgroup Analyses
The AUROC was tabulated by decile of age, sex, race,
admission or discharge status, and intensive care unit (ICU)
admission status in the external validation data set. The
distribution of risk scores was also visualized for all studied
cohorts through box plots. For PCR-positives, this included
positives from CSMC, and PHD visits that had a single positive
PCR result as well as visits that had a negative result before a
positive result (both on the day of presentation). For PCR
negatives during the pandemic, this included patients with both
single- and double-PCR results on the day of presentation. For
prepandemic encounters, the scores for all eligible BIDMC
patients were considered, as well as those from the PHD holdout
that matched the top 20 CCSR (non–COVID-19) codes observed
during the pandemic.

Model Development (Training and Internal Validation
With Cross-Tabulation Techniques)
The model was intended to estimate COVID-19 status on the
day of presentation to an ED using common laboratory tests
collected that day. Model training began with 29 routinely
measured features (ie, potential or included model covariates)
comprising the comprehensive metabolic panel and the complete
blood count with differential. Recursive feature elimination
with cross-validation (RFECV) was performed to arrive at the
final 15 features [14]. We used the gradient boosting model as
implemented in XGBoost [15] for all results. No hyperparameter
optimization was performed and default parameters were used.
Performance on the training set was evaluated through stratified
5-fold cross-validation. Performance in the external validation
and sensitivity analysis data sets was obtained after training the
model on the entire training set.

Statistical Analysis
Baseline demographics, ED disposition, and included laboratory
features from the training, external validation, and sensitivity
analysis data sets were tabulated by COVID-19 status.
Visualization of the distribution of features used box plots,
ordered by feature importance (compare with list values in
Section C of Multimedia Appendix 1). Model discrimination
was visualized with receiver operating characteristic (ROC)
curves and estimation of the AUROC. AUROC 95% CIs were
estimated with bootstrapping. Hosmer-Lemeshow criteria were
used to describe performance of discrimination [16]. These
criteria considered an AUROC value of 0.5 as no discrimination,
0.5 to <0.7 as poor discrimination, 0.7 to <0.8 as acceptable
discrimination, 0.8 to <0.9 as excellent discrimination, and ≥0.9
as outstanding discrimination. Sensitivity, specificity, and
negative predictive value (NPV) were defined using
conventional definitions. Diagnostic yield was defined as the
percentage of patients with a risk score below a given cutoff.
All analyses were prespecified. The sample size of this analysis
was driven by data availability in this multicenter database.

Analyses were performed in Python (Version 3.7.5; Python
Software Foundation) using the XGBoost package (Version
0.82) [17] and the Scikit-Learn library (Version 0.21.3) [18].
The use of deidentified databases as described here met the
non–human subjects research by the University of Vermont’s
Institutional Review Board criteria.

Results

Demographics and Proportion of PCR-Positive Patients
in Training Data Set, External Validation Data Set,
and Sensitivity Analysis Data Set
The training data set included 12,183 ED visits at 43 centers
from the PHD, of which 2183 results were PCR-positive. The
validation data set included 172,754 ED visits from 23 centers
(21 from the PHD, as well as the independently collected data
from CSMC and BIDMC), of which 1020 results were
PCR-positive. The sensitivity analysis data set included 7842
records from 21 centers in the PHD holdout group. Patient
demographics and visit characteristics are summarized in Table
1.

A total of 192,779 eligible patients were included in the study;
the median age decile was 50 (IQR 30-60) years and 40.5%
(78,249/192,779) were male. In the training, external validation,
and sensitivity analysis data sets, the median age deciles were
50 (IQR 30-70) years, 50 (IQR 30-60) years, and 50 (IQR 40-70)
years, respectively. Males represented 42.9%, 40.1%, and 47.4%
of patients in the data sets, respectively.
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Table 1. Demographics of patients and encounter details, by COVID-19 statusa.

Sensitivity analysis

(N=7842)

External validation

(N=172,754)

Training

(N=12,183)

Demographics

Positive (n=952)Negative
(n=6890)

Positive
(n=1020)

Negative
(n=171,734)

Positive (n=2183)Negative
(n=10,000)

Age (years), n (%)

70 (7)709 (10)71 (7)27,952 (16)198 (9)1392 (14)20 to <30

119 (12)882 (13)127 (12)29,187 (17)304 (14)1481 (15)30 to <40

205 (22)896 (13)214 (21)27,764 (16)413 (19)1398 (14)40 to <50

208 (22)1172 (17)217 (21)28,896 (17)400 (18)1649 (16)50 to <60

163 (17)1200 (17)180 (18)23,771 (14)367 (17)1512 (15)60 to <70

108 (11)1063 (15)121 (12)18,460 (11)264 (12)1322 (13)70 to <80

79 (8)968 (14)90 (9)15,704 (9)237 (11)1246 (12)≥80

Gender, n (%)

477 (50)3650 (53)502 (49)102,942 (60)1079 (49)5876 (59)Female

475 (50)3240 (47)518 (51)68,790 (40)1104 (51)4122 (41)Male

0 (0)0 (0)0 (0)2 (0)0 (0)2 (0)Unknown

Race, n (%)

201 (21)1230 (18)212 (21)28,874 (17)397 (18)1791 (18)Black

448 (47)772 (11)453 (44)23,222 (14)976 (45)904 (9)Other

36 (4)368 (5)48 (5)12,284 (7)102 (5)450 (4)Unknown

267 (28)4520 (66)307 (30)107,354 (63)708 (32)6855 (69)White

Census divisionb, n (%)

108 (11)1103 (16)108 (11)16,184 (9)280 (13)2065 (21)East North Central

50 (5)138 (2)50 (5)3549 (2)0 (0)0 (0)East South Central

92 (10)1356 (20)92 (9)18,776 (11)294 (13)782 (8)Middle Atlantic

1 (0)1 (0)1 (0)31,624 (18)1 (0)493 (5)New England

1 (0)34 (0)69 (7)3617 (2)32 (1)106 (1)Pacific

613 (64)2790 (40)613 (60)70,463 (41)1192 (55)3116 (31)South Atlantic

0 (0)0 (0)0 (0)0 (0)39 (2)633 (6)West North Central

87 (9)1468 (21)87 (9)27,521 (16)345 (16)2805 (28)West South Central

Rural or urbanb, n (%)

1 (0)34 (0)1 (0)3617 (2)21 (1)583 (6)Rural

951 (100)6856 (100)1019 (100)168,117 (98)2162 (99)9417 (94)Urban

Disposition, n (%)

522 (55)4072 (59)522 (51)132,195 (77)1175 (54)7487 (75)Discharge from emergency
department

335 (35)2375 (34)379 (37)29,793 (17)805 (37)2068 (21)Non–intensive care unit ad-
mission

95 (10)443 (6)119 (12)9746 (6)203 (9)445 (4)Intensive care unit admis-
sion

aFor the training data set: COVID-19 positivity was defined as a positive COVID-19 reverse-transcription polymerase chain reaction (hereafter, PCR)
test on the day of presentation to the emergency department among patients in the pandemic time frame (March 2020 through July 2020) in the Premier
Healthcare Database (PHD) database among a random selection of 43 of the 64 PHD hospitals reporting PCR positives. COVID-19 negativity was
defined as a selection of 10,000 patients in the prepandemic time frame (January through December 2019) in the PHD database from the same 43
hospitals as the patients with COVID-19. For the external validation data set: COVID-19 positivity was defined the same as for the training data set for
the PHD data set but also included 952 PCR-positives from the 21 hospitals in the PHD holdout set. Additionally, it included 68 patients with
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PCR-confirmed COVID-19 from Cedar Sinai Medical Center from March and April 2020. COVID-19 negativity in the external validation set was
defined using 154,341 prepandemic visits from the 21 hospitals in the PHD holdout set (January through December 2019) in which primary diagnoses
were among the 20 most frequent primary diagnoses given to patients negative for COVID-19 during the pandemic, using Clinical Classification
Software Refined codes. It also included 17,393 prepandemic (2008-2019) patient encounters from Beth Israel Deaconess Medical Center. For the
sensitivity data set: COVID-19 positivity included the same 952 PCR-positives from the 21 hospitals in the external validation data set. COVID-19
negativity was defined as visits with at least 1 PCR-negative but no PCR-positive result on the day of presentation, and included all 6890 patients with
such results from the same 21 hospitals as the positives.
bCensus division was defined using US Census classification [19]. Rural areas are considered territory outside of the US Census Bureau’s definition of
urban [20]. These geographic descriptions pertain to the hospital, not the patient’s permanent residence.

Selected Features Included in the Model and Individual
Feature Performance
The RFECV method led to the final set of 15 features listed in
Table S1 in Multimedia Appendix 1. The distributions of these
features in the training data set, stratified by COVID-19–positive
and COVID-19–negative status and ordered by importance to
the model, are shown in Figure S1 in Multimedia Appendix 1.
The features with the largest calculated importance were
eosinophils, calcium, and aspartate aminotransferase. Summary
statistics of these features in the training, external validation,

and sensitivity analysis data sets, stratified by COVID-19 status,
appear in Table S1 in Multimedia Appendix 1.

Performance of Individual Features and Model
Performance in the Training Data Set
The AUROC for each individual feature in the training data set
is shown in Figure S2 in Multimedia Appendix 1. The highest
AUROCs were observed for eosinophils, calcium, and aspartate
aminotransferase (0.70-0.80). The final model’s AUROC in the
training data set was 0.91 (95% CI 0.90-0.92; Figure 1).
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Figure 1. Discrimination as assessed by ROC curves for training, external validation, and sensitivity analysis data sets. ROC curves for the 3 different
data sets: training (blue), external validation (orange), and sensitivity analysis (green). The training curve was obtained through 5-fold cross-validation,
where positive controls are PCR-confirmed cases during the pandemic (N=2183) and negative controls are prepandemic patients (N=10,000) from 43
hospitals in the PHD. The training AUROC was 0.91 (95% CI 0.90-0.92). The external validation curve was performed in the external validation data
set after training the model on the training data set. External validation positives are PCR-confirmed cases from Cedars-Sinai Medical Center (N=68)
and from the PHD holdout set (N=952) comprising 21 hospitals. External validation negatives are prepandemic (2019) patients, from the same 21 PHD
hospitals, that match the top 20 primary non–COVID-19 diagnoses in 2020 (N=154,341), as well as all eligible prepandemic (2008-2019) Beth Israel
Deaconess Medical Center patients (N=17,393). The AUROC in the external validation data set was 0.91 (95% CI 0.90-0.92). The sensitivity analysis
curve demonstrates the effect of using prepandemic patients as negative controls compared to using PCR-negatives from 2020. In this data set, both
positives (N=952) and negatives (N=6890) were PCR-confirmed patients from the PHD holdout set (21 hospitals), and no prepandemic data was
included. The AUROC in the sensitivity analysis set was 0.89 (95% CI 0.88-0.90). AUROC: area under the receiver operating characteristic curve;
PCR: polymerase chain reaction; PHD: Premier Healthcare Database; ROC: receiver operating characteristic.

Model Performance in the External Validation Data
Set
The model’s AUROC in the external validation data set was
0.91 (95% CI 0.90-0.92), as shown in Figure 1. This corresponds
to an outstanding discrimination per the Hosmer-Lemeshow
criteria [16]. Sensitivity and specificity were 95.9 and 41.7 at
a score cutoff of 1, 92.6 and 60.0 at a score of 2, 85.5 and 78.5

at a cutoff of 5, and 79.4 and 87.6 at a cutoff of 10, respectively
(Table 2).

With a COVID-19 population prevalence of 1%, each of these
cutoffs had an NPV >99%; at 10% prevalence, each was >97%,
and at a prevalence of 20%, each was >94%. The diagnostic
yield ranged from 34% (20% prevalence, score cutoff of 1) to
87% (1% prevalence, score cutoff of 10).
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Table 2. Clinical performance metrics for the model in the external validation data set for various score cutoffs and COVID-19 pretest prevalencea.

Prevalence of 20%Prevalence of 10%Prevalence of 1%Likelihood ratiobSpecificitySensitivityScore cutoff

Yield, %NPV, %Yield, %NPV, %Yieldd, %NPVc, %

34.297.638.098.941.399.90.09941.795.91

49.597.054.798.659.499.90.12460.092.62

65.795.672.198.077.899.80.18578.585.55

74.294.480.997.486.999.80.23587.679.410

aThe maximum score was 100; a higher score indicates higher model prediction of COVID-19 positivity.
bThe likelihood ratio uses the equation for negative tests.
cNPV: negative predictive value.
dYield refers to diagnostic yield, which is the percentage of patients that can be ruled out (ie, those with a score below the cutoff).

Sensitivity Analysis and Subgroup Analyses
Figure 1 depicts the ROC curve in the sensitivity analysis data
set, which contains only year 2020 patients with PCR-confirmed
positive and negative results (ie, no historical negatives). The
AUROC was 0.89 (95% CI 0.88-0.90). In Figure 2, the AUROC

is presented for various demographic cohorts as well as patient
disposition (ED discharge, non-ICU, and ICU) in the external
validation data set. AUROCs ranged from 0.86 to 0.93. AUROC
by these subgroups was similar in the sensitivity analysis data
set, which appears as Figure S3 in the Multimedia Appendix 1.

Figure 2. Discrimination as assessed by AUROC curve in age, sex, race, and ED disposition subgroups in the external validation data set. Non-ICU
patients were admitted to the hospital but not to an ICU. Distribution of AUROC curves per demographic, as well as per patient disposition type (ED
discharge, non-ICU, and ICU) in the external validation data set. Top numbers are AUROC curves, bottom numbers in parentheses are the number of
patients. AUROC: area under the receiver operating characteristic; ED: emergency department; ICU: intensive care unit.
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Distribution of Risk Scores in Selected Subgroups
Lastly, an extensive distribution of risk scores for various
subgroups is shown in Figure S4 in Multimedia Appendix 1,
including prepandemic patients whose primary diagnoses were
among the top 20 primary diagnoses among patients without
COVID-19 in 2020. From visual inspection, it can be seen that
high scores track PCR-positive patients consistently across all
cohorts.

Discussion

Principal Results
A development and external validation study of a machine
learning model for COVID-19 status using laboratory tests
routinely collected in adult ED patients found high
discrimination across age, race, sex, and disease severity
subgroups. This model had high diagnostic yield at low score
cutoffs in a screening population with a disease prevalence of
<10%. Such a model could rapidly identify those at low risk
for COVID-19 in a “rule-out” method, and might reduce the
need for PCR testing in such patients.

Comparison With Prior Work
Prior literature has described the application of machine learning
techniques to commonly collected laboratory data for estimation
of missing laboratory analytes. For example, an analysis by
Waljee and colleagues [21] leveraged machine learning
techniques for imputation of missing laboratory data in cohorts
of patients with cirrhosis and inflammatory bowel disease at a
single institution. In comparison to other common imputation
techniques described in this manuscript, the machine learning
technique introduced the least imputation error for these
laboratory data. Luo and colleagues [22] used similar methods
to estimate ferritin from a single medical center, and found that
the machine learning technique outperformed traditional
imputation methods. These serve as strong evidence of the
potential use of machine learning for use in estimation of
laboratory data. However, outside of imputation of missing
values from research databases, the clinical utility for such
techniques was unclear prior to the COVID-19 pandemic.

During this pandemic, there is an urgent need to rapidly identify
patients with the disease to inform supportive clinical care. Prior
work has attempted to integrate combinations of clinical data
points in diagnostic models, though only a few are currently
published in peer-reviewed literature [23]. The selection of the
specific data points to integrate into machine learning models
for COVID-19 diagnosis has implications on integration into
existing clinical delivery. In contrast with the results here, which
only included components of the routinely collected complete
blood count with differential and complete metabolic panel
laboratory tests, others have integrated nonlaboratory features.
Sun and colleagues [24] reported 3 models including
demographics, radiological data, and symptomatology, and
obtained AUCs ranging from 0.65 to 0.88 for these models.
Symptomatology was not obtained with structured, validated
questionnaires and the ability to capture these symptoms in a
reproducible manner might be difficult outside of a research
setting. Further, modern medical records cannot integrate such

symptoms into automated risk scores as they are not documented
in a structured way.

Structured data obtained routinely in clinical examinations are
the simplest to integrate, and might have the least variability
between institutions. These include vital signs, demographics,
laboratory findings, and radiological images. There are few
studies describing the use of such data for the diagnosis of
COVID-19. One study found a machine learning method had
an accuracy of 87% for distinguishing between COVID-19 from
pneumonia or no relevant findings using chest radiographs [25].
A different model developed from chest computed tomography
images reported an AUROC of 0.994 when distinguishing
between COVID-19 and atypical or viral pneumonia [26].
However, national organizations recommend against the use of
radiological imaging for diagnosis of COVID-19, in part because
of the added risk of spreading infection through additional
visitation to radiology suites [27]. These models are unlikely
to be readily deployed because of the challenges of performing
elective radiological tests during this pandemic.

An additional consideration in the development of machine
learning models is the inclusion of an adequate sample size for
model training [28-30]. Other studies have investigated the role
of laboratory data with or without other nonradiological
structured clinical data or demographics for the diagnosis of
COVID-19 using machine learning techniques. For example,
Wu and colleagues [31] reported a C-index of 0.99 but included
only 108 patients (12 COVID-19–positive) in their training.
Similarly, individual efforts led by Batista, Brinati, and Soares
[32-34] describe machine learning models trained on 234, 279,
and 599 patients, respectively. These studies are also limited in
the small number of centers from which patients were enrolled,
and lack of diversity in their patient populations.

Advancement of Scientific Knowledge
The present analysis advances science in several key ways.
First, we describe a machine learning model developed in a
diverse patient population with routine laboratory data from
multiple clinical centers across the United States [35]. Second,
the model incorporates common laboratory tests that are widely
available with rapid turnaround time. As the machine learning
model can be performed essentially instantaneously, the primary
time limitation is related to phlebotomy and specimen
processing. There is a well-known bottleneck in completing
conventional COVID-19 PCR assays; a commercial laboratory
recently reported a 7-day reporting lag [36]. Third, the present
model could identify those at lowest risk for COVID-19 to
inform a “rule-out” method for screening. Those with
intermediate or greater risk for COVID-19 could be further
assessed with COVID-19 PCR testing, if indicated. Depending
on the selected score cutoff and population prevalence, such an
approach could rule out 34% to 87% of ED patients requiring
conventional COVID-19 PCR testing (see Yield, Table 2). The
specific score cutoff for rule out of COVID-19 with this model
can be customized based upon what an institution considers to
be an “acceptable” target NPV. However, the diagnostic yield
will change based upon the screening population prevalence of
COVID-19, and the diagnostic yield will be inversely related
to the screening population prevalence of COVID-19. For
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example, assume that an institution determines that an acceptable
NPV for this model is 97.5%. If this institution’s screening
population has a 20% prevalence of COVID-19, the threshold
score cutoff would be set at 1, and the diagnostic yield (ie, the
percentage of patients ruled out for COVID-19 at a score cutoff
of 1) would be 34.2% (Table 2). However, at a prevalence of
10%, the score cutoff threshold would be 10, and the diagnostic
yield would be 80.9%. The efficiency of diagnostic yield with
this model is higher at lower prevalence. Finally, the sensitivity
of the present model at a score cutoff of 1, 2, and 5 (95.9, 92.6,
and 85.5, respectively) was similar to COVID-19 antigen assays
(66.1-86.3) and sputum and saliva PCR assays (62.3-97.2) [11].
The comparatively similar sensitivities between the model and
these existing assays supports the clinical utility of machine
learning models as future diagnostic tools.

Weaknesses and Strengths
This study has weaknesses. Although the choice of prepandemic
controls partially circumvents the issue of false negatives in
PCR testing by ensuring the negatives that the model is trained
on are true negatives, it does not ensure that the positives
encompass the full spectrum of true positives, since those are
sometimes missed by PCR due to changes in viral load as a
function of disease progression [37,38]. Additionally, the use
of controls from a different time period could introduce a bias
of its own, such as different demographics or non–COVID-19
morbidities. However, the sensitivity analysis used COVID-19
positives and negatives from the pandemic time frame, and the
performance of the model was reassuringly similar to the
performance in the external validation. The performance in
demographic, clinical diagnosis, and ED disposition subgroups
was also similar to the external validation. Laboratory data were
performed locally at each hospital, rather than centrally. The
model requires all components of the laboratory data to be
included. This study only included patients who visited an ED.
Although it is likely that some of the patients in this study were
asymptomatic or presymptomatic and were found to have
COVID-19 as part of routine admission, we were unable to
determine the indications for screening and therefore are unable

to determine the performance of this model in asymptomatic
and presymptomatic adults. The present analysis only accounted
for results from COVID-19 PCR tests and not for alternative
diagnostic methods, such as antigen testing for acute infection
or antibody testing to demonstrate prior infection. Finally, the
research database did not include details about the specific PCR
assay used in diagnosis, so we are unable to comment on
performance of the model in comparison to the performance of
the specific assays.

This study has strengths. This study included data from a large
number of patients and hospitals, and to our knowledge is the
largest application of machine learning to COVID-19. Data
were derived from an electronic medical records database that
is commonly used in clinical research. The patient population
was geographically and racially diverse. The only features
included in the model are those included in blood tests that are
already routinely collected in ED encounters. Further, these
tests were from multiple hospitals, suggesting that the model is
robust against different specimen collection, handling practices,
and instrumentation. Sensitivity analyses were performed to
evaluate potential biases due to the choice of prepandemic
negative controls, and no significant bias was observed across
multiple dimensions. Our methods extend on established
machine learning–based imputation methods for missing
laboratory data [21,22], and suggest there may be clinical utility
of these techniques in ruling out the disease. Finally, the external
validation was a true external validation since it used data from
hospitals that were not included in the training data set. This
supports the resilience of the model across institutions with
differing specimen handling and laboratory processing methods.

Conclusions
A machine learning model for ruling out COVID-19 in ED
patients that integrates commonly collected laboratory data had
a discrimination accuracy that can be classified as excellent to
outstanding [16]. Using score cutoffs of 5 and 10 points, and
assuming a 10% screening population prevalence of COVID-19,
72% and 81% of patients were ruled out with this model while
maintaining an NPV >97%, respectively.
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