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Abstract

Background: Despite excellent prediction performance, noninterpretability has undermined the value of applying deep-learning
algorithms in clinical practice. To overcome this limitation, attention mechanism has been introduced to clinical research as an
explanatory modeling method. However, potential limitations of using this attractive method have not been clarified to clinical
researchers. Furthermore, there has been a lack of introductory information explaining attention mechanisms to clinical researchers.

Objective: The aim of this study was to introduce the basic concepts and design approaches of attention mechanisms. In addition,
we aimed to empirically assess the potential limitations of current attention mechanisms in terms of prediction and interpretability
performance.

Methods: First, the basic concepts and several key considerations regarding attention mechanisms were identified. Second,
four approaches to attention mechanisms were suggested according to a two-dimensional framework based on the degrees of
freedom and uncertainty awareness. Third, the prediction performance, probability reliability, concentration of variable importance,
consistency of attention results, and generalizability of attention results to conventional statistics were assessed in the diabetic
classification modeling setting. Fourth, the potential limitations of attention mechanisms were considered.

Results: Prediction performance was very high for all models. Probability reliability was high in models with uncertainty
awareness. Variable importance was concentrated in several variables when uncertainty awareness was not considered. The
consistency of attention results was high when uncertainty awareness was considered. The generalizability of attention results to
conventional statistics was poor regardless of the modeling approach.

Conclusions: The attention mechanism is an attractive technique with potential to be very promising in the future. However,
it may not yet be desirable to rely on this method to assess variable importance in clinical settings. Therefore, along with theoretical
studies enhancing attention mechanisms, more empirical studies investigating potential limitations should be encouraged.
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Introduction

In recent years, there has been significant evidence that
deep-learning algorithms can outperform other machine-learning
algorithms and conventional statistics in the medical field [1,2].
Despite the better prediction accuracy than conventional
algorithms, the implications of using deep learning have been
limited owing to the inability to explain the models [3,4].
Particularly in the medical environment, where the association
between a disease and symptoms must be identified to provide
adequate treatments, the interpretability of models is very
important [3-5]. To overcome these limitations, interpretable
deep-learning algorithms such as Shapley Additive Explanations
(SHAP), Local Interpretable Model-agnostic Explanations
(LIME), and attention mechanisms have been introduced [6-8].
The commonality of these three methodologies provides
interpretability in the form of variable importance [6-8]. The
difference between the methodologies is that with SHAP or
LIME, variable importance is measured through simulations
that change the data after model training is completed [6,7],
whereas under attention mechanisms, variable importance is
inferred during model training, which improves model
performance by weighting several important variables [8,9].

Based on this advantage, attention mechanisms have starting
to gain appeal in the clinical research field [10-17]. However,
there is a gap between the application of attention mechanisms
in clinical research and up-to-date attention algorithms in
development. Specifically, most of the recent attention studies
have focused on improving the theoretical robustness, design
approach, and model accuracy with attention mechanisms
[10-17]. However, clinical researchers are more interested in
potential limitations that may arise when attention mechanisms
are applied, and how they may differ from conventional
statistics, than in the details as to how robust and sophisticated
attention mechanisms are being developed. A few studies have
introduced the potential limitations of attention mechanisms
[18,19]. However, these studies have been theoretical, making
it difficult for clinical researchers to understand and accept the
results. Thus, it is increasingly necessary to provide a discussion
of what clinical researchers should be aware of when applying
the new concept of attention mechanisms in their research.

With the goal of reducing this gap, the aim of this study was to
evaluate attention mechanisms in terms of prediction
performance and interpretability. In addition, there remains a
lack of guidance for clinical researchers in the implementation
of attention mechanisms; therefore, to facilitate understanding
for clinical researchers, this study preemptively provides basic
concepts, key considerations, and codes for attention
mechanisms. Finally, a case analysis was performed in a
cross-sectional and structured data environment, which is the
simplest data setting possible for clinical researchers.

This study was conducted according to the following procedure.
First, the scope of the study was established in terms of the data

structure. Then, a brief introduction and several important
considerations regarding attention mechanisms were considered.
Second, based on previous research, a two-dimensional
framework was established to guide the four modeling
approaches to attention mechanisms. Third, five empirical tests
with attention mechanisms were performed using the four
models: prediction performance, probability reliability,
concentration of variable importance, consistency of attention
results, and generalizability of attention results to conventional
statistics. Finally, potential limitations that may arise when
using attention mechanisms were identified.

Methods

Research Scope
Since the design approaches of attention mechanisms differ
greatly depending on the data structure, the scope of this study
was established in terms of data structure. Specifically, attention
mechanism research in the medical field can be divided into
two main categories from a data point of view. The first category
is an unstructured data area where data containing natural
language and images cannot be stored in a row and column table
structure [20,21]. In the field of natural language processing,
attention mechanisms have been applied to determine the
relationship between words or between words and diseases in
clinical notes [13,14,22]. In the image area, attention
mechanisms have been used to highlight which parts of clinical
images were related to clinical events, or to annotate the images
[15-17]. The second category is a structured data area where
data can be organized in table formats with a row and column
structure [21]. In this area, attention mechanisms have been
applied to electronic health records to determine variables that
are strongly associated with clinical events [9,12,23].

Structured data familiar to clinical researchers are widely
applicable to most statistical analyses, including linear
regression analysis and analysis of variance (ANOVA). Since
one purpose of this study was to compare the results of attention
mechanisms and conventional statistical methods, the scope of
the study was limited to structured data. Furthermore, most
previous attention mechanism studies using structured data have
been conducted in time-series settings [9,12,23]. However, this
study was conducted in a cross-sectional data setting, which is
simpler and easier than a time-series data setting, and can
therefore help readers less familiar with attention mechanisms
to better understand the results of the case study.

Introduction to Attention

Concepts of Attention Mechanisms
Attention, one of the layers in a neural network model, quantifies
the importance of input variables in terms of their impact on
outcomes (Figure 1) [8,24,25]. Attention is mostly calculated
based on the Softmax function (Notation A1 in Multimedia
Appendix 1), such that each node in the layer has a value
between 0 and 1 and the sum of all node values must be 1
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[8,24,25]. When the node size of attention is equal to the number
of input variables, the influence of the input variables can be
transferred toward the model outcome by multiplying the
attention values with the corresponding input variables (Context
layer in Figure 1A) [8,24,25]. Accordingly, in the case of binary
classification, all values in the context layer are summed

together to produce a single value (Summation in Figure 1A).
The efficient model design without context layers is possible
through the dot product between the input and attention values
(Figure 1B). Finally, the single value may be converted to a
value between 0 and 1 through the sigmoid function (Sigmoid
transformation in Figure 1A and B).

Figure 1. Model structures for attention implementation. (A) Basic architecture of an attention mechanism model. (B) Model architecture where the
dot product is employed for transferring the influence of input variables toward the outcome. (C) Model architecture where the importance of input
variables may be decayed. (D) Model architecture that is aware of uncertainty. The percentages in the circles show examples of attention values.

The attention value of a certain variable indicates the relative
importance of that variable compared with that of other
variables. If the attention value of a particular variable is large,
the large influence of that variable is transmitted when predicting
the outcome variable. As an extreme example, when the
attention value of a variable is 1, only that variable is used to
predict the outcome variable, whereas if the attention value of
a variable is 0, that variable is not used to predict the outcome
variable. Figure 1A shows the basic architecture of a model
with attention mechanisms; the code for the model implemented
in Keras is provided in Codes A1 of Multimedia Appendix 2.

Consideration in Attention Modeling
Attention mechanisms can be implemented in various ways,
because the key feature of deep-learning modeling is that users
can freely design the structure [8,9,23-25]. However, there is a
primary important consideration in implementing attention

mechanisms. In some cases, the influence of variable importance
in the context layer can be distorted. For instance, if all wi values
are close to 0, the value of C1 has a minor effect on the next
layer even if that value is the highest in the context layer (Figure
1C). Moreover, even if the value of C2 is the lowest, if all vis
have very large positive values, the large influence of C2 can
be passed to the next layer (Figure 1C). As such, context values
can be skewed as they are computed through a weight matrix
in the process of being passed to the next layer (ie, Dense layer
in Figure 1C). As a result, the skewed effects can be propagated
to the model output if the output is inferred from the layer.
Therefore, it is very important to design a structure where the
outputs are not computed through weight matrices [9,23].
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Modeling Approaches
Although deep-learning models can be developed in various
ways depending on the tendency of developers, two approaches
have been commonly applied in recent attention studies:
increasing the degrees of freedom and uncertainty awareness
(UA).

Increase in the Degrees of Freedom
The mechanism for increasing the degrees of freedom is to
design multi-attention layers; representative algorithms that
reflect such a mechanism include transformer and bidirectional
transformer (BERT) [8,26]. Our intuition regarding the
effectiveness of the mechanism relies on the idea that models
can learn the importance of input variables from various
perspectives [8,26]. Given the randomness feature of
deep-learning training, the result from one attention layer can
be unreliable. However, the multi-attention model offers
multiple result sets with variable importance so that a reliable
set of results may compensate for an unreliable set.
Consequently, models in which multi-attention layers are applied
have recently shown better performance than other models
[8,26-28].

UA
Deep-learning algorithms are not free from the uncertainty issue,
which concerns the fact that prediction results have the potential

to be incomplete in terms of accuracy and consistency [9,29-33].
The major sources of uncertainty include data with noise and
omissions, the complexity of the model associated with the
parameters (ie, number of weights and type of activation
functions), and the structures (ie, degree of depth) [30,31]. One
way to alleviate this issue is to consider the presence of
uncertainty in modeling [9,29,32,33]. Specifically, we may
assume that node values (ie, attention values) in a certain layer

come from a distribution with a mean (μ) and a variance (σ2;
Figure 1D) [9,29,32,33]. A normal distribution (ie, a Gaussian
distribution) that is theoretically clear and can be computed
efficiently is often assumed [9,29,32,33]. Based on this
assumption, certain values with high probability are estimated,
which may mitigate the random nature of deep-learning training
[9,29-33]. A representative model designed under these
assumptions is the variational auto-encoder [32,33].

Framework for Empirical Tests
Based on the discussion above, two directions (ie, degree of
freedom and UA) were considered for attention modeling
(Figure 2). In this two-dimensional framework, four cases were
suggested for empirical tests (Figure 2). Degree of freedom is
related to model structures and UA is related to the estimation
approach.

Figure 2. Framework for empirical tests.

Empirical test entries for the four models in the framework were
categorized into two broad categories: outcome and attention
(Table 1). In terms of model outcome, a receiver operating
characteristic (ROC) test, which expresses model accuracy based

on the relationship between sensitivity and specificity, was
employed for prediction performance [34]. In addition, the
performance of probability reliability, which measures the
degree of agreement between predicted and actual probability,
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was assessed using a reliability diagram and Brier scores
[35-37].

In terms of attention, the degree of how concentrated the variable
importance was in particular variables was measured (ie,
Concentration in Table 1). The Herfindahl index, which
represents the degree of concentration with values ranging from
near 0 (least concentrated) to 1 (most concentrated), was
employed for this measure [38]. Furthermore, correlation
analysis was conducted to evaluate the consistency of attention
results between multiple instances. Lastly, the generalizability

of attention results was tested in two ways. First, the variable
effect sizes obtained from conventional statistical methods (t
test, Cohen d; chi-square test, Cramer V) were compared with
variable importance (ie, attention values) [39,40]. For clear
comparison from a clinical point of view, only the top 5% of
the variables in terms of effect size (ie, conventional methods)
and variable importance (ie, attention) were compared. Second,
regression analysis was used to determine the overall
relationship between attention values and effect sizes from
conventional methods.

Table 1. Empirical test entries for measuring the performance of four models.

MethodsEntries (measures)

Outcome

Prediction performance • Receiver operating characteristic

Probability reliability • Reliability diagrams

Attention

Concentration • Herfindahl index (near 0, least concentrated; 1, most concentrated)

Consistency • Correlation

Generalizability • Effect size: Cohen d (t test), Cramer V (chi-square test)

• Regression analysis (dependent variable, effect size obtained from conventional
methods; independent variable, attention values)

Model Specifications

Model Designs
Four models were developed according to the framework
presented in Figure 2. The letters A, B, C, and D represent
quadrants on the framework that correspond to the letters

representing the model designs in Figure 3 and Figure 4. Model
A (without any uncertainty considerations) has only a single
attention layer (Figure 3A). The basic design of model B is the
same as that of model A; however, it differs in that it has

additional layers for UA (see layers with μ, σ2, and z in Figure
3B). Thus, attention values in model B were estimated from the
Gaussian distribution [9,33].

Figure 3. Model designs for single attention mechanisms. UA: uncertainty awareness. The concept of "reparameterization trick" is described in Concept
A1 of Multimedia Appendix 1.

The two models in which the degree of freedom is considered
are presented in Figure 4. The difference between models C and

D is that uncertainty in attention estimation is considered in

model D (see layers with μ, σ2, and z in Figure 4D).
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Since these models have multi-attention layers (ie, Local
attention in Figure 4) with a heuristic size of 20, multiple
attentions are estimated. Thus, a novel structure was designed
to convey the multiple values in the direction of model
outcomes. Specifically, a context layer was created as the dot
product of the local attention layer and the input layer (see
Context layer in Figure 4). Each value on the context layer

represents the summed impact of each corresponding local
attention layer. Next, a “Weights of each local attention layer”
was formed, whose role is to weigh (with weights between 0
and 1) the summed impact values in the context layer (Figure
4). Lastly, the outcome layer was created as the dot product of
the weights of each local attention layer and the context layer.

Figure 4. Model designs for multi-attention mechanisms. UA: uncertainty awareness. The concept of "reparameterization trick" is described in Concept
A1 of Multimedia Appendix 1.

This somewhat complex structure ensures that the influence of
one variable is passed only once to the model outcome, even if
attention values are inferred multiple times (20 times in this
case). Furthermore, using both the local attention layer and the
weights corresponding to each vector, a unique attention value
for each variable can be obtained, which facilitates
interpretation.

Graphical and mathematical notations are provided for obtaining
a set of unique values (global attention in Figure A1 of
Multimedia Appendix 1). In addition, details of the four models
are provided as Keras codes in Codes A2-A5 of Multimedia
Appendix 2.

Settings for Rigorous Analysis
A 10-fold test was performed to assess the empirical test entries.
The dataset was divided into 10 test sets (10% of total sets) and
10 training sets (90% of total sets). The training sets were then
subdivided with 80% used directly for model training and 20%
for validation.

Entries related to the model outcome (Table 1) were evaluated
using all predicted probabilities of the entire sample. In other
words, all of the values estimated from the 10 test sets were
combined into one total set, which was then used for testing.
Entries related to model attention were assessed based on the
level of fold sets. Specifically, all of the estimated attention

values were aggregated so that each set of 10 folds had a
representative value. For rigorous estimation, both outcome and
attention were estimated through Monte Carlo simulations with
100 trials [5,25]. Detailed procedures for estimating outcome
and attention values are provided in the form of
pseudoalgorithms (Algorithms A1-A3) in Multimedia Appendix
2.

Cost Functions
The binary cross-entropy function, which is generally used in
binary outcome settings [41,42], was employed for models A
and C where UA was not considered. However, the loss
functions for models B and D, given their UA, were specified
differently.

The UA models assume that the model outcome is dependent

on the normal distribution (ie, layers with μ, σ2, and z), which
infers the attention value [9,32,33]. Therefore, the distribution
associated with attention should be considered in the cost
function. The cost function under these assumptions was derived
through Bayesian inference theory [9,32,33,43]. According to
this theory, the network weights should be learned so that the
distributions in the z layer generated by the weights (see z layer
in Figure 3B) become similar to the true distributions in the z
layer [9,32,33,43]. Therefore, the cost function for uncertainty
awareness models consists of two terms: the loss associated
with the model outcome and the degree of similarity associated
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with the z distribution [9,32,33,43]. The cost function, with its
description, is presented in Notation A2 of Multimedia Appendix
1.

Learning Environments and Parameters
Attention models were developed, learned, and tested on Keras
2.3.1, tensorflow 2.1.0, and Python 3.7.6. Adam with a learning
rate of 0.001 was employed as an optimizer to train all models.
A training dataset with a batch size of 5000 was provided to the
model. The early-stop rule was applied to stop training the
models at the optimal epoch. Thus, model training was
terminated when the loss value of the validation set did not
improve further during the last 1200 epochs. Other details about
activation functions and the structure of nodes and layers are
provided in Code A2 to Code A5 of Multimedia Appendix 2.
For the effect sizes of conventional statistical methods, the
values for Cohen d and Cramer V were obtained from researchpy
0.2.3, a third-party Python library. Additionally, regression
analysis was performed on Stata 13, a commercial statistical
analysis software.

Data
The case analysis was performed in a setting where the
relationship between a disease and other variables is well
established: an 8-year (2010 to 2017 inclusive) cumulative
Korea National Health and Nutrition Examination Survey
dataset, which assesses the nutrition and health status of Koreans
and collects information about major chronic diseases such as
metabolic syndrome and diabetes [44]. Since the association
between diabetes and other variables has been well established
through prior studies using these data, this selection facilitated
a clear assessment of the empirical test results of this study
[45-49]. Thus, a diabetes diagnosis (1=diabetes, 0=no diabetes)
was set as the outcome variable for the four attention models.
The subjects were classified as having or not having diabetes
based on whether they were diagnosed by a doctor, or received
diabetes medication or insulin injections. Fasting blood glucose
levels, which are a very strong indicator for diagnosing diabetes,
were intentionally used as an input variable to evaluate the
power of the attention mechanism for determining important
variables.

In the 8-year cumulative data, only variables with consistent
labels during that period were included. Variables with no
change in value, containing more than a 50% omission rate and
subject identification information were excluded from the study
set. Categorical variables of both nominal and ordinal types
were integerized using integer encoding [50]. In other words,
class labels of each categorical variable were converted into
integers. Missing values were encoded as the extreme value
99,999. Since deep-learning algorithms can learn the nonlinear
relations among variables [51], these encoding approaches can
be workable and are efficient in settings where preprocessing
is demanding owing to many variables. All values in input
variables except for a missing value indicator (ie, 99,999) were
normalized to be between 0 and 1, and were then fed into the
deep-learning models.

Results

Data Preprocessing
There were 238 variables with consistent labels in the 8-year
cumulative dataset. Only 128 variables were selected by
preprocessing. There were 22 variables with no change in value,
84 variables with more than 50% missing values, and 4 variables
containing identification information that were excluded from
the analysis. The total number of observations (ie, the number
of subjects) was 33,065, with an average age of 48.89 years and
with men accounting for 40.41% (n=13,361) of the sample.
Only 6 variables had no omissions, and the average missing
rate of variables with omissions was 10.38%

Outcome

Prediction Performance
Figure 5 represents the results for the ROC test and area under
the curve (AUC) values of the five models. The results are based
on the combined sets of predicted probabilities of 10 test sets
of each model. According to the AUC results, the accuracy of
the five models in terms of sensitivity and specificity was
excellent overall. The AUCs of the base model without the
attention mechanism, the single attention model, multi-attention
model, single attention model with UA, and multi-attention
model with UA were 0.977, 0.948, 0.968, 0.965, and 0.976,
respectively.

J Med Internet Res 2020 | vol. 22 | iss. 12 | e18418 | p. 7http://www.jmir.org/2020/12/e18418/
(page number not for citation purposes)

Kim et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Receiver operating characteristic (ROC) test for the four models. All values estimated from 10 test sets are combined into one set for each
model. The base indicates the deep-learning model without attention mechanisms. UA: uncertainty awareness.

Probability Reliability
Figure 6 shows the performance of probability reliability for
the four models in the form of a reliability diagram. A
characteristic of the UA models is that most fractions of
positives were plotted above the diagonal. By contrast, models

without UA showed more fractions of positives below the
diagonal than the other models. The fraction of positives of the
multi-attention with UA model was the closest to the diagonal.
The Brier scores of the single attention, multi-attention, single
attention with UA, and multi-attention with UA models were
0.018, 0.0171, 0.0148, and 0.0142, respectively.
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Figure 6. Reliability diagrams for four models. The Brier score measures the overall reliability of probabilistic predictions. UA: uncertainty awareness.

Attention

Concentration
Figure 7 shows stacked Herfindahl indices sorted by value size
for the 10-fold sets in each model. The values for each fold are
presented in Table A1 of Multimedia Appendix 1. In general,
models without UA showed relatively large Herfindahl indices.
The average Herfindahl index values for the single attention

and multi-attention models were 0.236 and 0.048, respectively.
However, models with UA had very small values, regardless
of the degree of freedom. The average Herfindahl index values
for the single attention with UA and multi-attention with UA
models were 0.01 and 0.01, respectively. These results indicate
that influence is more concentrated on several variables in
models where uncertainty is not considered than in those where
uncertainty is considered.
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Figure 7. Herfindahl index values of 10-fold sets for each model. UA: uncertainty awareness.

Consistency
Figure 8 shows histograms for the 45 correlations
({[10×10]–10}/2) among the 10-fold sets for each model. In
general, the correlations of the fold sets from the models with

UA were higher than those of the models without UA. The
average correlations of the fold sets from both models without
UA were calculated to be close to zero (ie, 0.01 and 0.1).
Moreover, the average correlations from the two models with
UA were calculated as 0.99 and 0.66, respectively.
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Figure 8. Histograms for correlations among 10-fold sets for each model. UA: uncertainty awareness.

Generalizability
Table 2 shows the results of the variable importance learned by
the attention models and the effect sizes measured by
conventional statistical methods. Definitions of each variable
are provided in Table A2 of Multimedia Appendix 1. The top
5% (127×0.05=6) of variables, sorted by the magnitude of values
obtained from each method, are reported. Since Cohen d from

conventional methods may take on negative values, the absolute
value was applied when sorting. Overall, models in which
uncertainty was not considered were trained to have high
attention values. Furthermore, variables such as “allownc”
(whether to receive a basic living allowance) and “house”
(whether to have own house) that bear little relation to health
status were included in the results.
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Table 2. Top 5% variable importance results estimated by different methods.

Attention valueb/Effect sizecVariablea

Single attention model

0.0615sm_presnt

0.0519BD1

0.0479pa_walk

0.0468HE_Upro

0.0430HE_alt

0.0413Npins

Multi-attention model

0.041HE_HB

0.033Sex

0.032Pa_walk

0.027HE_HBsAg

0.026Allownc

0.026HE_sbp

Single attention model with UAd

0.050pa_walk

0.017BH9_11

0.011HE_THfh2

0.010HE_THfh1

0.010HE_THfh3

0.010DI5_dg

Multi-attention model with UA

0.050pa_walk

0.019HE_THfh2

0.015BH9_11

0.013HE_THfh1

0.010HE_ast

0.010house

Conventional statisticse

1.536age

1.214HE_glu

–1.014HE_HbA1c

–0.516Wt_pool_1

–0.516Wt_itvex

0.319HE_Uglu

aSee Table A2 in Multimedia Appendix 1 for variable label descriptions.
bAverage from the 10 fold sets.
cEffect size is presented only for the conventional statistics.
dUA: uncertainty awareness.
eNull hypothesis of categorical variables=no relationships between diabetes and a categorical variable; null hypothesis of continuous variables=no
difference in variables between the diabetes and no diabetes groups.
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Table 3 shows the overall relationship between the effect sizes
of variables and variable importance. Since attention values
from both single attention and multi-attention models with UA
had a high correlation (0.943), two regression models in which

the two variables did not overlap were specified. The regression
results showed no association between the variable importance
from attention models and the effect size of variables from
conventional methods.

Table 3. Regression analysis results for assessing an association between attention values and effect sizes.

Regression 2Regression 1Regression model variablesa

P > tCoefficientP > tCoefficient

0.652−0.6680.635−0.696Single attention

0.4762.0190.4871.897Multi-attention

——c0.797−1.351Single attention with UAb

0.772−1.541——Multi-attention with UA

0.0750.0750.090.075Intercept

aThe dependent variable is the absolute value of effect size, calculated by Cohen d for continuous variables and Cramer V for categorical variables. The
total number of observations is equal to the number of variables.
bUA: uncertainty awareness.
c—: variable not included in the regression model.

Discussion

Principal Findings

Reliability
A difference in performance according to the degree of freedom
was prominent in the probability reliability diagram (Figure 6).
The fraction of positives located above the diagonal indicates
that probabilities are predicted to be larger than expected, while
the fraction of positives located below the diagonal means that
probabilities are estimated to be smaller than expected [35,36].
In this regard, overall probabilities from the two attention
models without UA tended to be underestimated, whereas the
attention models with UA tended to overestimate probabilities.
Although no clear causal relationship has been identified, several
lines of empirical evidence suggest that the over- and
underestimation is associated with data noise, estimation
methods, and parameter settings [30,52-54].

Since the difference appeared to be based on the UA axis, the
over- or underestimation tendency of the models may be related
to UA. Furthermore, the Brier scores of the two models with
UA were smaller than those of the two models without UA,
indicating that models with UA tend to estimate more reliable
probabilities than models without UA. These findings are
consistent with the results of recent research that estimated
reliable outcomes with an emphasis on UA [9,55-57].
Theoretically, the most probabilistic values are inferred from a
distribution that takes means and variances into account under
UA [9,55-57]. Thus, the awareness of uncertainty may bring
reliability to the prediction results of deep-learning models,
which are vulnerable to randomness during the learning process.

Consistency
UA produced noticeable differences in results consistency and
the concentration of variable importance. Specifically, in UA
models with low Herfindahl indices, variable importance
appeared to be distributed over many variables in contrast to

models that did not consider uncertainty (Figure 7). In addition,
high correlations between 10-fold sets were found in the
attention results from the UA models, whereas no correlations
were found in the results from UA models (Figure 8).
Furthermore, the attention values in the models with UA were
generally smaller than those of models without UA.

These results suggest that the consistency of results from the
UA models is high because the variable importance with overall
low values is distributed evenly over most variables. This result
is closely associated with the assumption that attention values
were estimated based on a normal distribution within the cost
function (see equation for the Kullback–Leibler divergence DKL

in Notation A2 of Multimedia Appendix 1). According to this

equation, as both μ and σ2 approach zero, model parameters for
forming the normal distribution approximate the true theoretical
distribution, indicating that the models are well learned [32,33].
Consequently, the overall attention values were small since the
overall values of μ were small.

Spurious Correlations
As with conventional statistical methods, the attention models
were unable to control spurious correlations during attention
learning. Specifically, of the top 5% of variables obtained from
conventional statistics, wt_pool_1 (interview weight combined
years) and wt_itvex (interview weight for a single year) have
little to do with health status (Table 2). These variables are
weights for compensating errors due to differences in the number
of households and populations between the sample design time
and the survey time. In addition, the variables “allownc”
(whether to receive basic living allowance) and “house”
(whether to have own house) were obtained from the attention
models (Table 2). These results may suggest spurious
correlations in the dataset itself [58]. In other words, these
variables, with little relation to diabetes, have a relatively close
relationship with diabetes only by chance.
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Generalizability to Conventional Statistics
In terms of clinically relevant variables, no significant
association between the results of conventional statistics and
attention models was found. Specifically, the variables age,
HE_glu (fasting blood sugar), HE_HbA1c (hemoglobin AIC),
and HE_Uglu (urine glucose) selected by conventional methods
are well known to have a direct association with diabetes
[59-61]. In addition, several variables, including pa_walk
(amount of walking) and BH9_11 (vaccination status against
influenza virus), obtained by the attention models are less
directly related to diabetes. These variables may represent
behavioral characteristics of patients with diabetes who are
trying to manage their health.

Furthermore, there was no intersection of variables selected by
both attention models and conventional statistical methods
(Table 2). In particular, HE_glu, which was intentionally used
as an input variable for testing purposes, was not determined
as a major variable in the attention mechanism models in
contrast to the conventional statistical methods. Additionally,
no variable was statistically significant in the regression analysis
that evaluated the positive association between attention values
and effect sizes (Table 3). Comprehensively, these results
suggest that the variable importance obtained from attention
mechanisms may not be generalized to the effect size of
conventional statistics.

Lessons from the Findings

Hyperparameters
The model structure and weight of terms in the cost function
are hyperparameters to be adjusted. In terms of the model
structure, the degree of freedom of attention layers was
evaluated by comparing two extreme cases of 1 attention layer
and 20 attention layers. Although the size of attention layers
does not make a significant difference, the results can be
significantly different if the number of attention layers is
different under other conditions.

Furthermore, by taking uncertainty into account in the models,
a term (ie, the degree of similarity associated with the normal
distribution) was added to the cost function. However, as
discussed previously, this term may interfere with the
assignment of great importance values to variables by making
all μ values small. To alleviate this issue, the weight of the term
may be lowered, so that the term is less reflected during model
training [9,29,33].

However, hyperparameter tuning is not conducted based on a
theoretical basis but rather on a heuristic basis. In other words,
there is no standard of how many attention layers should be
specified and how much the weight should be adjusted for better
results. If the goal of building models aims to maximize
accuracy, various hyperparameter settings can be tested in the
direction of increasing model accuracy. However, there is no
clear criterion to maximize the performance of interpretability.
In other words, although various hyperparameter settings are
tested, finding the best-optimized hyperparameter setting based
on the statistical point of view is challenging. Therefore, the
variable importance should be understood in a limited way only
within the framework of this experiment.

Potential Limitations of Interpretability
There was no significant association between the variable
importance obtained from the attention mechanism and the
effect size obtained from conventional statistics. One of the
most probable reasons for this result is that the assumption of
the association among input variables is different between
conventional methods and deep-learning algorithms.
Specifically, conventional statistical methodologies such as
linear regression analysis and ANOVA basically estimate effect
sizes based on the assumption of independence between input
variables [62,63]. Thus, if a particular input variable has nothing
to do with an outcome variable, the variable has little effect on
the outcome. In contrast, neural network–based algorithms,
including deep learning, infer outcome variables by taking into
account the dependencies between the input variables [41,42].
Therefore, a variable that is not directly related to an outcome
variable but is associated with others that are related to the
outcome variable may have a somewhat greater effect on the
outcome variable. Owing to these differences, attention results
must not be considered to have similar meanings and tendency
to the variable effect size from conventional methodologies.

Recent new technologies such as sensors (ie, wearable devices
or facilities in operating rooms) have produced new types of
data. Since the associations between variables have not yet been
fully explored, relying solely on attention mechanisms may lead
to a false judgment that variables that have minimal association
with the outcome variable are important. Hence, it is advisable
to consider the results of attention and conventional statistics
together.

Furthermore, in situations where there is a spurious correlation,
neither method provides good explanatory power. Spurious
correlations can only be eliminated through data preprocessing
based on domain knowledge. Hence, care must be taken when
implementing both attention models and conventional statistical
methods in environments with manifold variables that cannot
be preprocessed (ie, included or excluded) using definite
knowledge. In particular, finding new features using attention
mechanisms may not be adequate in environments where the
data are susceptible to spurious correlations owing to a large
number of variables but few observations such as in the field
of genetic engineering [64,65]. In this case, it may be appropriate
to employ results of attention mechanisms for reaffirming
existing findings in previous research or supporting informed
knowledge.

Future Direction for Medical Informatics
The results of this study provide several points of guidance for
future research in the medical field. First, more empirical
evidence should be secured based on various structures in terms
of the degree of freedom. It may be desirable to test what
attention results are produced when different values of degree
of freedom are employed. Particularly, given that the medical
field has various data types such as images, natural languages,
and numerical values, attention results should be assessed
according to the degree of freedom with consideration of the
data characteristics [66-69].
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Second, attention models with more sophisticated UA should
be tested. In this study, the model outcome variable was assumed
to depend on the distribution of the attention layer; that is,
P(diabetes|z). However, current state-of-the-art Bayesian
estimation assumes that the model outcomes depend on all
network weights and data; that is, P(outcome|z, weight, data)
[9,29]. Thus, it is necessary to evaluate how the variable
importance is formed when more up-to-date estimation methods
are applied.

Third, more research that strictly evaluates variable importance
based on attention mechanisms over diverse disease domains
is needed. As found in this study, attention has its limitations
in terms of generalizability to conventional statistics and control
of spurious correlations. However, since this case study was
conducted with a single cohort of Korean patients with diabetes,
more empirical evidence from various cohorts or diseases should
be tested to confirm that attention mechanisms may not provide
any significant meaning. Importantly, for elaborate empirical
research, a greater in-depth understanding of the association
between covariates and health outcomes is needed. Hence, more
domain experts on a specific disease along with data scientists
should be actively involved in these studies.

Fourth, methods for controlling the distribution of variable
importance should be studied. As revealed in this analysis, the
variable importance can be distributed over many variables or
concentrated on a few variables depending on the model
structure (Figure 7). When examining the overall relationships
between covariates and health outcomes such as a
comprehensive review of national health status [45-49], it may
be desirable to detect many potentially important variables. By
contrast, when the relationship between a small number of key
variables and outcome is important, such as in the generation
of targeted therapy [70,71], the importance should be focused
on a few variables. However, to the best of our knowledge, most
existing attention studies have not considered the control of the
variable importance distribution [8,10-12,24,25,32,33,66,68].
Therefore, more studies on this subject are needed.

Limitations
There are several limitations to be aware of when assessing the
academic value of this study. First, well-behaved data with
excellent predictive performance owing to the data
characteristics were employed for the analysis. For this reason,
the overall AUC performance (see ROC test in Figure 5) might
have been good for all approaches (ie, the degree of freedom
and UA). When the attention mechanisms are applied to
ill-behaved data without manipulation, such as the intentional
use of a variable HE_glu as an input variable, the model
accuracy may be reduced. If the accuracy of the model is

moderate and domain expertise exists for the disease, it is still
advisable to attempt a variable importance interpretation.
However, if the model accuracy becomes too poor, it may not
be worthwhile to interpret the variable importance. Furthermore,
categorical variables of both nominal and ordinal types were
integerized, and missing values were encoded as the extreme
value in this study. Although this operationalization can be
efficient in deep-learning algorithms that can learn nonlinear
relationships, it is not a robust approach. Thus, it is necessary
to identify problems with the approach and to discuss how to
deal with them when ill-behaved data with robust
operationalization are employed. Furthermore, since data from
a single cohort were used, the results of this study, which point
out the limitations of the interpretable power of attention
mechanisms, should not be generalized. Rather, it should be
recognized that accuracy performance and interpretable power
may vary depending on the modeling approaches and data.

Second, this study does not guarantee that state-of-the-art
estimation methods for UA were applied. Specifically, the
models’ outcomes do not depend on network weights. In
addition, research on estimation methodologies in deep learning
is in progress, and therefore new methodologies are still being
developed. Accordingly, the value of this study lies in the
framework proposals that suggest the research direction of
attention modeling rather than in the details of attention
estimation methods.

Third, the design of weights of each local attention layer is not
as sophisticated as the design of local attention layers (Figure
4). Specifically, uncertainty considerations are not assumed in
the weights layer. Moreover, this layer does not have to be
dependent on the local attention layer. In other words, the
weights layer may be designed as an independent layer that does
not come from the local attention layer. We plan to perform
various investigations in this area.

Conclusions
Attention mechanisms have the potential to make a significant
contribution to the medical field, where explanatory power is
important, by overcoming the limitations of the
noninterpretability of deep-learning algorithms. However,
potential problems that may arise when attention mechanisms
are applied in practice have not been well studied. Thus, we
hope that this study will serve as a cornerstone to raise potential
issues, and that many similar studies will be conducted in the
future. The cohesive awareness of potential problems arising
from attention mechanisms in the field of application will
provide theoretical researchers with new goals for
problem-solving.
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Multimedia Appendix 1
Notations, global attention inference procedure, Herfindahl index values, variable label descriptions, and reparameterization trick
concept description.
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Multimedia Appendix 2
Codes and algorithms for inferring outcomes.
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Abbreviations
ANOVA: analysis of variance
AUC: area under the curve
LIME: Local Interpretable Model-agnostic Explanations
ROC: receiver operating characteristic
SHAP: Shapley Additive Explanations
UA: uncertainty awareness
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