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Abstract

Background: Visual analytics (VA) promotes the understanding of data with visual, interactive techniques, using analytic and
visual engines. The analytic engine includes automated techniques, whereas common visual outputs include flow maps and
spatiotemporal hot spots.

Objective: This scoping review aims to address a gap in the literature, with the specific objective to synthesize literature on the
use of VA tools, techniques, and frameworks in interrelated health care areas of population health and health services research
(HSR).

Methods: Using the 2018 PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews) guidelines, the review focuses on peer-reviewed journal articles and full conference papers from 2005 to March
2019. Two researchers were involved at each step, and another researcher arbitrated disagreements. A comprehensive abstraction
platform captured data from diverse bodies of the literature, primarily from the computer and health sciences.

Results: After screening 11,310 articles, findings from 55 articles were synthesized under the major headings of visual and
analytic engines, visual presentation characteristics, tools used and their capabilities, application to health care areas, data types
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and sources, VA frameworks, frameworks used for VA applications, availability and innovation, and co-design initiatives. We
found extensive application of VA methods used in areas of epidemiology, surveillance and modeling, health services access,
use, and cost analyses. All articles included a distinct analytic and visualization engine, with varying levels of detail provided.
Most tools were prototypes, with 5 in use at the time of publication. Seven articles presented methodological frameworks. Toward
consistent reporting, we present a checklist, with an expanded definition for VA applications in health care, to assist researchers
in sharing research for greater replicability. We summarized the results in a Tableau dashboard.

Conclusions: With the increasing availability and generation of big health care data, VA is a fast-growing method applied to
complex health care data. What makes VA innovative is its capability to process multiple, varied data sources to demonstrate
trends and patterns for exploratory analysis, leading to knowledge generation and decision support. This is the first review to
bridge a critical gap in the literature on VA methods applied to the areas of population health and HSR, which further indicates
possible avenues for the adoption of these methods in the future. This review is especially important in the wake of COVID-19
surveillance and response initiatives, where many VA products have taken center stage.

International Registered Report Identifier (IRRID): RR2-10.2196/14019

(J Med Internet Res 2020;22(12):e17892) doi: 10.2196/17892
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Introduction

Background
Visual analytics (VA) is a term that was formally introduced in
the literature 15 years ago [1,2]. It describes a semiautomated
approach to electronic data processing, guided by users who
are able to interact with data through an interface [3,4]. In
essence, VA transforms large amounts of quantitative or
qualitative information into graphical formats that can be
modified based on the operator’s needs [4,5]. The resulting
views can be used by users with diverse backgrounds to better
understand data, communicate results, and disseminate
information across a broad spectrum of disciplines [6,7].

The implementation and use of VA have bloomed in many
sectors of health care systems during the past decade [8].
Population health research involves the study of data related to
health outcomes and determinants among and between
populations [9,10], whereas health services research (HSR)
explores the functioning of the health care system and its
workforce in relation to access, quality, costs, and patient
outcomes [11,12]. Both fields involve the analysis of big data,
including information collected through clinical databases,
administrative data sets, or electronic health records (EHRs)
[13-15]. VA offers the opportunity for health data users, such
as clinicians, researchers, decision makers, and consumers, to
visually explore and interpret complex data sets to guide
decision making and knowledge discovery [3,16].

Rationale
Although researchers have pointed out the lack of literature on
the extent of the use of VA applications in various sectors [3],
we identified 4 recent systematic reviews that covered varied
areas of VA applications in health care. The 2018 paper by
Islam et al [17] was one of the most comprehensive reviews
about data mining applications in health care. However, the
review is limited to mining approaches for health care data and
does not primarily cover VA. The recently published review by
Chung et al [8] relates to VA approaches in mental health care
systems and policy. One of the most cited systematic reviews

is that by West et al [18] on the use of visualization for EHRs
aimed at knowledge discovery. Although these reviews cover
some aspects of the wide field of visualization and analytics in
health care, none have focused on areas of population health
and HSR.

One of the seemingly close literature syntheses is the review
by Wu et al [19] on visualization and VA technologies in
medical informatics for characterizing evaluation methods.
However, there are significant distinctions between that paper
and our review. First, their review [19] relates to the subject
area of health informatics, which is almost exclusively
concerned with patient data in the context of care provision.
The classic definition of the subject area is “the applications of
information technology to healthcare delivery” [20]. Second,
Wu et al [19] cover evaluation methods for VA applications
and not VA applications themselves. Our scoping review focuses
on methods related to VA applications in population health and
HSR and does not focus on evaluation methods.

Through this review, we attempt to bridge a critical gap in the
literature on the use of VA tools, techniques, and frameworks
in the interrelated and overlapping areas of population health
and HSR. To the best of our knowledge, none of the recent
systematic literature syntheses focused on these areas of health
care or covered the VA tools and techniques that we present in
this scoping review.

In response to this broader conceptualization, this scoping
review identified and synthesized findings from English
language peer-reviewed sources that used VA approaches and
methods in population health and HSR. Such a synthesis of the
literature will be helpful for researchers, practitioners, and
decision support analysts to (1) explore recent trends in the use
of innovative VA methods in the important health care domains
of population health and HSR, (2) learn from methodological
frameworks, and (3) uptake these techniques to meet the
growing needs for data-driven insights. Furthermore, this review
presents the settings for which VA applications are developed
and applied as well as the intended target audience. This
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information is important in the context of the use of VA
techniques in participatory co-design initiatives.

Objectives
The objectives of this review are (1) to identify the scope and
nature of the use of VA methods in population health and HSR
and (2) to summarize methodological tools, techniques, and
frameworks from peer-reviewed literature in both health care
areas.

Methods

Protocol and Overall Scoping Review Methodology
The study protocol was previously published, detailing the
search strategy and methods [21]. We primarily followed the
Joanna Briggs Institute guidelines on scoping reviews [22] and
the framework by Arksey and O’Malley for conducting scoping
reviews [23], with improvements suggested by Levac et al [24]
and Peters et al [25] for conceptualizing the population,
concepts, and context of the study, especially given the context
of a methods-based review.

We further used the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews
(PRISMA-ScR) checklist from the work by Tricco et al [26] to
operationalize the different steps, while providing milestones
and guideposts for adaptation during the review. The checklist
is shown in Multimedia Appendix 1. We followed the journal
guidelines for the preparation of the manuscript. The major
methodological steps for the systematic scoping review
comprised determining the research question; identifying
relevant studies; title, abstract, and full-text screening; data
abstraction; and the collation, summarization, and reporting of
the results.

Eligibility Criteria
The inclusion and exclusion criteria are presented in Textboxes
1 and 2, respectively. Papers included during the screening stage
needed to have a central VA component with a focus on
population health or HSR. Studies conducted in clinical settings
or focusing on a single condition, without a population or health
service component, were not included in the review. The
operational definitions for all concepts are presented in detail
later in this section.

Textbox 1. Inclusion criteria for selection of articles.

Inclusion criteria

• Peer-reviewed or conference papers

• January 1, 2005, to March 31, 2019

• Population health or health services research (HSR) related

• Articles with population-level or HSR metrics: incidence, prevalence, events over time and space, spatiotemporal, access, utilization, disease or
condition distribution, and social or multiple determinants of health

• Articles with an analytic engine and a visualization engine

• Articles with exploratory data analytic techniques

• Articles on electronic medical records and electronic health records

• Articles with dashboards with an explicit analytic engine to feed data

• Articles with automated analysis, data mining techniques, interactive tools, and iterative analysis

Textbox 2. Exclusion criteria for the articles.

Exclusion criteria

• Articles not in the English language

• Editorials, projects, reviews, book chapters, short papers, or reports

• Articles on medical imaging

• Studies conducted in clinical settings without a population-level or health services research component

• Articles for individual condition from a single hospital or unit, such as intensive care, surgery, anesthesia, without a population-level or health
services research (HSR) component

• Articles on device or sensor data without a population-level or HSR component

• Studies lacking an analytic method or engine

• Cartographic or geographic information systems (GIS) method

One of the primary aims of both population health and HSR is
to better understand disease distribution and barriers to equitable
care. We included these components and related metrics for

population health, such as incidence, prevalence, and events
over time and space, to guide us in delineating research that
focused on clinical or individual conditions or cases. For
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example, if a diabetes dashboard presented clinical care for an
individual in a hospital setting, such as blood sugar or glycated
hemoglobin levels, it was excluded. However, if a diabetes
dashboard presented a population with glycated hemoglobin
levels in a hospital catchment area, it was included as it had a
population-level component. Studies without an analytic engine
were excluded. Finally, articles not in the English language and
non–peer-reviewed work, such as editorials, projects, short
papers, conference abstracts, and reports, were excluded.

The eligibility criteria were revised twice during the screening
process. In total, 4 items were added later to the exclusion
criteria: studies conducted in clinical settings without a
population-level component, articles on device or sensor data,
articles related to cartographic methods, and articles related to
geographic information systems (GIS) techniques. However,
VA articles with a GIS component covering spatiotemporal
data, sometimes termed geo-VA, were included in the review.
Figure 1 shows a simplified decision tree for the selection of
articles.

Figure 1. Decision tree for assessing article eligibility.

Scoping Review Timeline
We were able to trace the first formal use of the term VA to the
seminal work by Thomas and Cook in 2005 [2,3]. As the use
of the term was in the area of national defense, we expected a
lag time in the adoption of the methodology and the use of the
term in health care. On the basis of these reasons, our

multidisciplinary team decided to include articles from January
1, 2005, to March 31, 2019.

Information Sources
The full electronic search strategy is provided in Multimedia
Appendix 2. It was developed through an iterative process by
the research team, which included an information specialist
(JB). A preliminary search was conducted in MEDLINE,
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following which the first 100 resulting article abstracts were
reviewed to refine the search strategy. The search strategy was
then peer reviewed using the Peer Review of Electronic Search
Strategies (PRESS) guidelines by a second information
specialist. A total of 6 databases were searched in April 2019

using both keywords and subject-specific vocabulary (eg,
Medical Subject Headings [MeSH], Emtree; Table 1). We have
detailed the search strategy, the keywords used, and the
operationalization of the concepts in depth in the published
protocol [21].

Table 1. Databases and search results.

Search results (n=14,099), nPlatformDatabase

4633OvidSPMEDLINE

1880OvidSPEMBASE

5396Web of ScienceWeb of Science core collection

1267Engineering VillageCompendex

151IEEEIEEE Xplore

772Engineering VillageInspec

The review management software Covidence was used to
manage the search results, including the importing of references,
screening of citations, and conflict resolution [27]. Duplicates
were removed in 3 phases. First, citations were checked in
EndNote (Clarivate Analytic) for duplicates, followed by
duplicate identification by Covidence (Veritas Health
Innovation) systematic review software. Finally, duplicates
were removed manually during the full-text review.

To complement the database searches, we conducted an internet
search using Google and Google Scholar search engines, and
we manually searched 10 journals deemed relevant to the
research question. These were Applied Clinical Informatics,
Visual Analytics in Healthcare Proceedings,IEEE Transactions
on Information Technology in Biomedicine, Journal of Medical
Internet Research, Journal of Medical Systems, Journal of the
American Medical Informatics Association, Health Affairs,
Journal of Biomedical Informatics, Healthcare Informatics
Research, and PLOS One. We further reviewed the conference
proceedings from Visual Analytics in Health Care, which is

held one year apart in collaboration with the American Medical
Information Association and IEEE VIS conferences. In addition,
we reviewed the references from another 13 systematic and
narrative topic-related reviews identified during the screening
of the articles [7,16-19,28-35].

Selection of Sources of Evidence
The process for the selection of sources of evidence was divided
into 2 phases. First, to enhance the consistency among reviewers
in the team, we met to discuss the inclusion and exclusion
criteria. We randomly selected 50 articles that each reviewer
screened for title and abstract. After this initial pilot assessment,
we discussed the process, criteria, conflicts, ambiguities, and
difficulties encountered. This pilot phase led to a slight
readjustment of the inclusion and exclusion criteria. This
iterative methodology, with the selection of sources of evidence
is illustrated in Figure 2. In the second phase, 2 reviewers were
required for the title and abstract screening process as well as
for the full-text screening process. In both cases, conflicts were
resolved by another reviewer.

Figure 2. Pilot assessment and revision of criteria for selection of sources of evidence.
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Data Charting
The data charting form was developed specifically for this
review and piloted with 3 randomly selected articles to refine
the categories of abstraction. Each article was then assigned to
2 independent researchers. A third researcher offered arbitration,
correction, and validation of the abstraction where required. For
the specific abstraction fields, we followed the definitions
detailed in the Operational Concepts and Definitions section.

Data Items and Synthesis of Results
Data abstraction was based on 5 major categories: (1) study
characteristics (eg, country, problem, settings, target audience);
(2) frameworks, tools, and techniques used (eg, tool name,
framework followed); (3) analytic and visualization methods
and engines used (eg, analytic engine, data type, data used); (4)
domains of health care and type of measures used (eg,
population health, health services); and (5) study innovation,
impact, availability of the tool, and whether it was co-designed
with the target audience. The results were compiled into tables
under these major categories, following the major schema
developed during the operationalization of the concepts and
abstraction of the articles.

Operational Concepts and Definitions
Our initial literature search revealed varying definitions and
inconsistent use of terms for the 3 major concepts: population
health, HSR, and VA. To translate these terms into operational
definitions, we undertook a 3-pronged strategy of studying
seminal literature, recent systematic reviews, and subject trees
in MEDLINE. Although the search terms and their sources are
detailed in the study protocol [21], we detail the operationalized
concepts below.

Population Health and HSR
Defined as the “science and art of preventing disease” [36],
population health is nested under the larger concept of public
health. Although experts have attempted to develop a common
language related to public and population health [37], population
health as a MeSH term was only recently added to MEDLINE
in 2018 [38]. Kindig and Stoddart [9,10] define population
health as “the health outcomes of a group of individuals,
including the distribution of such outcomes within the group”
that includes “health outcomes, patterns of health determinants,
and policies and interventions that link these two.” We found
the expanded definition of population health by Kindig and
Stoddart [9,10] apt for our review to encompass the vast nature
of this area. To adapt search terms, we studied the national
public health language created by the National Institute for
Health and Care Excellence in the United Kingdom [39],
detailed database trees, and 5 recent reviews [40-44].

HSR is defined by the Canadian Institutes of Health Research
as research with the “goal of improving the efficiency and
effectiveness of health professionals and the health care system”
[11]. Population health and HSR are intertwined concepts, with
overlapping research and communities of practice, first, in the
purview of studying problems through a population lens and,
second, through a health systems and service lens. The
population health approach brings together the two in their
application toward health sector reform, allowing researchers

to formulate proposals for the organization and delivery of
health care [41,45].

Guided by 4 recent reviews [45-48] and the filters for HSR
developed by the National Library of Medicine [49], we
translated the concept to the search strategy. Particular to HSR,
we included studies on access, utilization, and cost of health
services in the review.

VA: Analytic and Interactive Visual Engines
The seminal work by Thomas and Cook [2] defines VA as “the
science of analytical reasoning facilitated by interactive visual
interfaces.” Later, Keim et al [3] extended this concept to
“automated analysis techniques with interactive visualizations
for an effective understanding, reasoning and decision making
on the basis of very large and complex data sets.” Although
these definitions offered a high-level conceptualization of the
expansive field of VA, we needed a simplified, more
encompassing conceptual definition that could help
contextualize VA methods and applications in health care.
Hence, we opted to use the expanded definition of VA
applications in health care by Ola and Sedig [50], comprising
analytic and interactive visualization engines. Typically, the
analytics engine involves data storage, transformation, and
analysis, whereas the visualization engine provides functionality
toward data manipulation and display [50].

The analytics engine can employ advanced statistical and
machine learning (ML) techniques for various functions. For
example, an extract, transform, and load engine using ML
algorithms can bring together a database that the visual engine
uses to produce visualizations [50]. For the purposes of the
review and its focus on population health and HSR, we avoided
the term artificial intelligence.

ML is a subset of artificial intelligence methods that includes
fitting models to data and learning by training models with data
[51]. We focused on tasks such as clustering, classification, and
algorithms used to present the major techniques used toward
the analytic engine.

Interactivity is one of the recent hallmarks of VA applications,
owing to the manipulation of visual interfaces afforded by
computing power [50]. We borrow from works by Ola and Sedig
[50] and Pike et al [52] to define interactivity as the ability to
reflect changes in the visual representation of data based on one
or more indicators available on the analytic interface to the user.
Pike et al [52] categorize interaction elements into 2 main types:
lower level aimed at change of the visual representation to study
patterns, relationships, and the like and higher level that offers
an understanding of the intent of interaction itself toward
knowledge discovery. To select the appropriate literature as part
of this scoping review, we focused on lower-level interaction
that includes tasks such as filtering, determining ranges, finding
anomalies, clustering, and the like by providing menus,
dropdowns, and other options on the visualization interface.

Furthermore, to operationalize the search terms related to VA,
we studied 4 recent reviews [7,17-19] in addition to 9 seminal
papers [6,16,53-59].
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Analytic Types and Capability, Settings, and Target
Audience
To operationalize the types of analytics that the application
targeted within the use case, we adapted the work by Islam et
al [17] on data mining techniques in health care. Analytics is
defined as “knowledge discovery by analyzing, interpreting and
communicating data” [17].

Related to the analytic capability, applications were categorized
as being primarily meant for descriptive, predictive, or
prescriptive analytics for visual exploration of complex data
sets or a combination of these. Descriptive analytics is defined
as “exploration and discovery of information in the dataset,”
predictive analytics is defined as “prediction of upcoming events
based on historical data,” and prescriptive analytics is defined
as “utilization of scenarios to provide decision support” [17].
Although the visual exploration of complex data sets can be
seen as an extension of descriptive analytic capability, we kept
it as a separate category.

We gleaned information from different parts of the included
articles to obtain the study setting and audience based on the
potential application for the method, tool, or its user, as
mentioned by the authors.

Tools, Applications, and Frameworks
Tools were defined as software used to develop an application
to address a certain problem, whereas applications were one or
more software program using code or front-end programming
employed for data analysis and visualization.

Frameworks in research form the foundation, backbone, or the
blueprint on which knowledge is constructed [60]. Hence, we
opted to study the frameworks that formed the basis for the
applications to better situate the literature on VA and to help
define the lens, perspective, and conceptual background for the
methods. We defined a framework as an extension of a lens or
perspective of inquiry that is structured to allow methodological
uniformity, adaptation, reporting, understanding, and
replicability. Given that our review is methods based, we did
not differentiate between a theoretical or conceptual framework
[60].

Use Case and Data Source
A use case is defined as the application of the method to an
actual data set, source, or simulation data related to population
health or HSR. We studied whether the use case included a
single data source or multiple data sources. The goal of the
application was ascertained by studying whether the application,
tool, or method was meant for decision support, knowledge
discovery, or both.

Domains of Health Care
Finally, we adapted the domains of health care from Islam et
al [17] to represent population health, HSR, or both. We further
divided population health–related articles into clinical,
demographic, epidemiologic, spatiotemporal, or a combination

of these categories. The clinical category would include a
condition, the demographic category would include any
population-related characteristic such as age, the epidemiologic
category would include disease distribution and dynamics, and
the spatiotemporal category would include events over time and
space. An overlap between the categories within the articles
was expected.

Co-Design and Knowledge Translation
Knowledge translation is a wide term used in different contexts,
focusing on the translation of research evidence to policies and
practice [61]. Although our initial conceptualization for the
review was related to knowledge co-creation for decision
making, we realized that for the purpose of this review, a better
approach would be to consider co-design methods especially
in the development stages of an application. We used the
definition of co-design in health care by Ward et al [62] that
encompasses the partnership of health workers, patients, and
designers who aspire to change, depending on shared knowledge
to achieve better outcomes or improved efficiency.

Co-designed applications would have better viability and uptake
toward both knowledge transfer and decision support. We
studied whether the authors involved stakeholders or target
audiences during the development of an application. We did
not study co-design methods and approaches, as this was not
the objective of the review.

Results

Selection of Articles
We identified 14,099 articles through the combined database
searches. Using EndNote, 2078 duplicates were electronically
removed in 6 iterations run on 2 different versions, X7 and X9.
On importing 12,021 records into Covidence, another 711
duplicates were removed. We screened the titles and abstracts
for 11,310 records, of which 10,819 (95.65%) were excluded.
We were able to identify 57 more references from 4 systematic
reviews identified during the screening process [8,17-19] and
hand searching. The results are summarized in a Tableau
dashboard [63].

Of the 491 records included for full-text assessment, 436
(88.8%) were excluded. Reasons for exclusion were lacking a
visualization component (n=103), lacking an analytic engine
(n=57), conference abstracts and editorials (n=53), not
population health or HSR (n=44), clinical medicine related
(n=35), short papers (n=31), duplicates (n=22), cartographic
and GIS methods (n=16), no use case (n=13), non–health sector
(n=13), book chapter (n=11), reviews (n=6), sensors or devices
(n=3), sensory or computer vision or human-computer
interaction (n=3), VA method in development or approach (n=3),
medical imaging (n=2), genomics (n=1), not English language
(n=1), and other reasons (n=18). Overall, 55 articles were
included for abstraction. The PRISMA-ScR flow diagram is
shown in Figure 3.
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Figure 3. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) chart for article selection. VA: visual analytics.

Study Characteristics, Settings, and Target Audience
The country of the study was ascertained from the actual use
case of the VA application. The 55 studies included in the
analysis were from 19 countries, including the United States
(24/55, 44%), Canada (5/55, 9%), and Germany (3/55, 5%).
Details are provided in Multimedia Appendix 3 [64-118].

In terms of the settings where the research took place, studies
were most often conducted as part of, or with the involvement
of, a government unit, including a ministry or health department

(38/55, 69%), followed by academic settings (35/55, 64%),
mixed government and academic settings (18/55, 33%), and the
industry (3/55, 5%). The intended target audience was the
population health and HSR community (53/55, 96%), academic
researchers and data scientists (47/55, 85%), clinicians (21/55,
38%), both clinicians and population health and HSR
practitioners (21/55, 38%), policy and decision makers (7/55,
13%), consumers and the general public (5/55, 9%), and the
industry (3/55, 5%). Table 2 details the study setting, while
Table 3 details the target audience in the included papers.

Table 2. Setting of the use cases.

Study (reference)Values, n (%)Setting

Abusharekh et al, 2015 [67]; Afzal et al, 2011 [85]; Ali et al, 2016 [68]; Alonso et al, 2012 [92]; Antoniou
et al, 2010 [93]; Benis et al, 2017 [89]; Bryan et al, 2015 [64]; Byrd et al, 2016 [94]; Chorianopoulos et
al, 2016 [96]; Garcia-Marti et al, 2017 [97]; Gotz et al, 2014 [76]; Guo et al, 2007 [69]; Hardisty et al,
2010 [100]; Hund et al, 2016 [90]; Ji et al, 2012 [102]; Ji et al, 2013 [81]; Jiang et al, 2016 [103];
Kaieski et al, 2016 [104]; Katsis et al, 2017 [105]; Kostkova et al, 2014 [75]; Lavrac et al, 2007 [70];
Lu et al, 2017 [71]; Luo et al, 2016 [78]; Maciejewski et al, 2010 [107]; Maciejewski et al, 2011 [79];
Marek et al, 2015 [108]; Ozkaynak et al, 2015 [111]; Park et al, 2018 [112]; Perer et al, 2015 [113];
Proulx et al, 2006 [114]; Shaban-Nejad et al, 2017 [84]; Tate et al, 2014 [87]; Widanagamaachchi et al,
2017 [72]; Xing et al, 2010 [91]; Xu et al, 2013 [73]; Yan et al, 2013 [118]; Yu et al, 2017 [82]; Yu et
al, 2018 [74]

38 (69)Academic

Abusharekh et al, 2015 [67]; Afzal et al, 2011 [85]; Alonso et al, 2012 [92]; Antunes de Mendonca et
al, 2015 [86]; Baytas et al, 2016 [80]; Benis et al, 2017 [89]; Bryan et al, 2015 [64]; Castronovo et al,
2009 [77]; Chen et al, 2016 [95]; Dagliati et al, 2018 [66]; Deodhar et al, 2015 [65]; Gligorijevi et al,
2017 [98]; Haque et al, 2014 [99]; Hardisty et al, 2010 [100]; Huang et al, 2015 [101]; Jiang et al, 2016
[103]; Jinpon et al, 2017 [83]; Kaieski et al, 2016 [104]; Kruzikas et al, 2014 [106]; Lavrac et al, 2007
[70]; Lu et al, 2017 [71]; Maciejewski et al, 2011 [79]; Mitrpanont et al, 2017 [109]; Mittelstadt et al,
2014 [110]; Ozkaynak et al, 2015 [111]; Proulx et al, 2006 [114]; Shaban-Nejad et al, 2017 [84]; Soulakis
et al, 2015 [115]; Tilahun et al, 2014 [88]; Toddenroth et al, 2014 [116]; Torres et al, 2012 [117]; Xu et
al, 2013 [73]; Yan et al, 2013 [118]; Yu et al, 2017 [82]; Yu et al, 2018 [74]

35 (64)Government, ministry,
or health department

Abusharekh et al, 2015 [67]; Afzal et al, 2011 [85]; Alonso et al, 2012 [92]; Benis et al, 2017 [89]; Bryan
et al, 2015 [64]; Hardisty et al, 2010 [100]; Jiang et al, 2016 [103]; Kaieski et al, 2016 [104]; Lavrac et
al, 2007 [70]; Lu et al, 2017 [71]; Maciejewski et al, 2011 [79]; Ozkaynak et al, 2015 [111]; Proulx et
al, 2006 [114]; Shaban-Nejad et al, 2017 [84]; Xu et al, 2013 [73]; Yan et al, 2013 [118]; Yu et al, 2017
[82]; Yu et al, 2018 [74]

18 (33)Academic and govern-
ment or ministry or
health department

Gotz et al, 2014 [76]; Perer et al, 2015 [113]; Yu et al, 2018 [74]3 (5)Industry
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Table 3. Target audience of the use cases.

Study (reference)Values, n (%)Target audience

Abusharekh et al, 2015 [67]; Afzal et al, 2011 [85]; Ali et al, 2016 [68]; Alonso et al, 2012 [92];
Antoniou et al, 2010 [93]; Baytas et al, 2016 [80]; Benis et al, 2017 [89]; Bryan et al, 2015 [64];
Byrd et al, 2016 [94]; Castronovo et al, 2009 [77]; Chen et al, 2016 [95]; Chorianopoulos et al,
2016 [96]; Dagliati et al, 2018 [66]; Deodhar et al, 2015 [65]; Garcia-Marti et al, 2017 [97];
Gligorijevi et al, 2017 [98]; Gotz et al, 2014 [76]; Guo et al, 2007 [69]; Haque et al, 2014 [99];
Hardisty et al, 2010 [100]; Huang et al, 2015 [101]; Hund et al, 2016 [90]; Ji et al, 2012 [102];
Ji et al, 2013 [81]; Jiang et al, 2016 [103]; Jinpon et al, 2017 [83]; Kaieski et al, 2016 [104];
Katsis et al, 2017 [105]; Kostkova et al, 2014 [75]; Kruzikas et al, 2014 [106]; Lavrac et al, 2007
[70]; Lu et al, 2017 [71]; Luo et al, 2016 [78]; Maciejewski et al, 2011 [79]; Marek et al, 2015
[108]; Mitrpanont et al, 2017 [109]; Mittelstadt et al, 2014 [110]; Ozkaynak et al, 2015 [111];
Park et al, 2018 [112]; Perer et al, 2015 [113]; Proulx et al, 2006 [114]; Shaban-Nejad et al, 2017
[84]; Soulakis et al, 2015 [115]; Tate et al, 2014 [87]; Tilahun et al, 2014 [88]; Toddenroth et al,
2014 [116]; Torres et al, 2012 [117]; Widanagamaachchi et al, 2017 [72]; Xing et al, 2010 [91];
Xu et al, 2013 [73]; Yan et al, 2013 [118]; Yu et al, 2017 [82]; Yu et al, 2018 [74]

53 (96)Population or public health
and health services research
practitioners

Abusharekh et al, 2015 [67]; Afzal et al, 2011 [85]; Antoniou et al, 2010 [93]; Baytas et al, 2016
[80]; Bryan et al, 2015 [64]; Byrd et al, 2016 [94]; Chorianopoulos et al, 2016 [96]; Dagliati et
al, 2018 [66]; Deodhar et al, 2015 [65]; Garcia-Marti et al, 2017 [97]; Gligorijevi et al, 2017
[98]; Gotz et al, 2014 [76]; Guo et al, 2007 [69]; Haque et al, 2014 [99]; Hardisty et al, 2010
[100]; Huang et al, 2015 [101]; Hund et al, 2016 [90]; Ji et al, 2012 [102]; Ji et al, 2013 [81];
Jiang et al, 2016 [103]; Jinpon et al, 2017 [83]; Kaieski et al, 2016 [104]; Katsis et al, 2017 [105];
Kostkova et al, 2014 [75]; Kruzikas et al, 2014 [106]; Lavrac et al, 2007 [70]; Lu et al, 2017
[71]; Luo et al, 2016 [78]; Maciejewski et al, 2010 [107]; Maciejewski et al, 2011 [79]; Marek
et al, 2015 [108]; Mitrpanont et al, 2017 [109]; Mittelstadt et al, 2014 [110]; Ozkaynak et al,
2015 [111]; Park et al, 2018 [112]; Perer et al, 2015 [113]; Proulx et al, 2006 [114]; Tate et al,
2014 [87]; Tilahun et al, 2014 [88]; Toddenroth et al, 2014 [116]; Torres et al, 2012 [117];
Widanagamaachchi et al, 2017 [72]; Xing et al, 2010 [91]; Xu et al, 2013 [73]; Yan et al, 2013
[118]; Yu et al, 2017 [82]; Yu et al, 2018 [74]

47 (85)Academics and data scien-
tists

Abusharekh et al, 2015 [67]; Alonso et al, 2012 [92]; Antoniou et al, 2010 [93]; Baytas et al,
2016 [80]; Benis et al, 2017 [89]; Bryan et al, 2015 [64]; Chorianopoulos et al, 2016 [96]; Dagliati
et al, 2018 [66]; Gotz et al, 2014 [76]; Haque et al, 2014 [99]; Huang et al, 2015 [101]; Hund et
al, 2016 [90]; Lu et al, 2017 [71]; Mitrpanont et al, 2017 [109]; Mittelstadt et al, 2014 [110];
Ozkaynak et al, 2015 [111]; Perer et al, 2015 [113]; Soulakis et al, 2015 [115]; Toddenroth et
al, 2014 [116]; Widanagamaachchi et al, 2017 [72]; Xu et al, 2013 [73]

21 (38)Clinicians

Ji et al, 2013 [81]; Kruzikas et al, 2014 [106]; Maciejewski et al, 2011 [79]; Mitrpanont et al,
2017 [109]; Tilahun et al, 2014 [88]; Torres et al, 2012 [117]; Yu et al, 2017 [82]

7 (13)Policy and decision makers

Antunes de Mendonca et al, 2015 [86]; Ji et al, 2013 [81]; Kaieski et al, 2016 [104]; Maciejewski
et al, 2011 [79]; Yu et al, 2017 [82]

5 (9)Consumers and public

Gotz et al, 2014 [76]; Perer et al, 2015 [113]; Yu et al, 2018 [74]3 (5)Industry (software, pharma-
ceutical, and insurance)

Terminology Related to Visualization and Analytics
We searched for the use of VA and its variations in the articles.
Terms that indicated the use of VA included “visualization”
(52/55, 95%), “visual analytics” (29/55, 53%), “analytics”
(16/55, 29%), and “visual analytic approach” (8/55, 15%) as

the employed method. The years when the term “visual
analytics” was most commonly used were 2009 and 2017. As
visualization was mentioned in the vast majority of the articles,
alternative terms used for the analytic engine included data
mining and ML techniques. Figure 4 displays the use of terms
by year.
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Figure 4. Use of terminology from January 01, 2005, to March 30, 2019.

Tool Name, Analytic Capability, and Goal
Related to the use of specific tools, articles that mentioned the
name of the tools or base applications (34/55, 68%) are listed
in Textbox 3.

In terms of analytic capability, these included tools primarily
meant for descriptive analytics (52/55, 95%), exploratory
analyses of complex data sets (23/55, 42%), and predictive
analytics (13/55, 24%). There were no articles on prescriptive
analytics. Among the overlap in the analytic capability of the

tools, 3 studies (5%) mentioned descriptive and predictive
analytic capabilities along with visual exploration of complex
data sets [64-66]. There were 11 applications with both
descriptive and predictive analytic capabilities [64-74].

We further categorized whether the application, tool, or method
targeted population health and HSR decision support, knowledge
discovery, or both, as its goal. There was an overlap in the
application goals: decision support (44/55, 80%), knowledge
discovery (35/55, 64%), or both goals (29/55, 53%).
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Textbox 3. Name of the tool and base application (if provided).

Abusharekh et al, 2015 [67]

• H-Drive; information analytics based on R

Ali et al, 2016 [68]

• ID-Viewer

Alonso et al, 2012 [92]

• EPIPOI based on Matlab

Antoniou et al, 2010 [93]

• dAUTObase

Antunes de Mendonca et al, 2015 [86]

• On the basis of Triplify, SQL, PHP, and SPARQL EndPoint

Baytas et al, 2016 [80]

• PhenoTree

Benis et al, 2017 [89]

• DisEpi, R-based

Bryan et al, 2015 [64]

• EpiSimS

Chen et al, 2016 [95]

• SaTScan software

Chorianopoulos et al, 2016 [96]

• Flutrack.org

Dagliati et al, 2018 [66]

• MOSAIC dashboard; data mining using R and Matlab; JavaScript; HTML; Google Charts for GUI

Deodhar et al, 2015 [65]

• EpiCaster

Haque et al, 2014 [99]

• Microsoft SQL Server’s BI tool stack and ASP.NET

Hardisty et al, 2010 [100]

• LISTA-Viz

Hund et al, 2016 [90]

• Sub-VIS; based on D3.JS2

Ji et al, 2012 [102]

• ESMOS (Epidemic sentiment monitoring system)

Ji et al, 2013 [81]

• ESMOS (Epidemic sentiment monitoring system)

Jiang et al, 2016 [103]

• Health-Terrain
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Jinpon et al, 2017 [83]

• Community well-being assessment system (CWBAS)

Kaieski et al, 2016 [104]

• Vis-Health

Kostkova et al, 2014 [75]

• medi+board

Lavrac et al, 2007 [70]

• MediMap

Lu et al, 2017 [71]

• Southampton breast cancer data system (SBCDS)

Luo et al, 2016 [78]

• GS-EpiViz

Maciejewski et al, 2011 [79]

• PanViz

Marek et al, 2015 [108]

• R with spacetime, gstat and plotKML; and Google Earth

Mitrpanont et al, 2017 [109]

• SAGE2

Ozkaynak et al, 2015 [111]

• EventFlow and Discrete Time Markov Chains

Perer et al, 2015 [113]

• Care pathway explorer

Proulx et al, 2006 [114]

• nSpace and GeoTime

Shaban-Nejad et al, 2017 [84]

• Population health record (PopHR)

Tate et al, 2014 [87]

• TrialViz

Yan et al, 2013 [118]

• ISS (syndromic surveillance system)

Yu et al, 2017 [82]

• Patient-provider geographic map

Yu et al, 2018 [74]

• Watson Analytics

Afzal et al, 2011 [85]; Byrd et al, 2016 [94]; Castronovo et al, 2009 [77]; Garcia-Marti et al, 2017 [97]; Gligorijevi et al, 2017 [98]; Gotz et al, 2014
[76]; Guo et al, 2007 [69]; Huang et al, 2015 [101]; Katsis et al, 2017 [105]; Kruzikas et al, 2014 [106]; Maciejewski et al, 2010 [107]; Mittelstadt et
al, 2014 [110]; Park et al, 2018 [112]; Soulakis et al, 2015 [115]; Tilahun et al, 2014 [88]; Toddenroth et al, 2014 [116]; Torres et al, 2012 [117];
Widanagamaachchi et al, 2017 [72]; Xing et al, 2010 [91]; Xu et al, 2013 [73]
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• Not mentioned

Multimedia Appendix 4 [64-118] details the analytic capability
and goals of the application, indicating whether the analysis
was carried out for knowledge discovery or decision support,
whether the article was presented as a framework for VA, and
whether the methodology itself followed one or more
frameworks.

Framework Presented or Followed
A total of 24% (13/55) articles presented frameworks for VA
methods, which we categorized into 7 types based on the major
theories, applications, and functions that the study authors
purported to use in their methods:

1. Data integration, monitoring, and management
[67,68,71,75].

2. Combining querying, mining, and visualization for
electronic medical records (EMRs) [76].

3. Disease mapping, hypotheses generation, clinical decision
making, and knowledge discovery [66,77,78].

4. Simulation and modeling, including statistical analysis
[64,79].

5. Phenotyping for a VA tool [80].
6. Social media VA [81].
7. Studying geographic variations in access to care [82].

A total of 29% (16/55) articles used a framework in their
methods, which we broadly categorized into 6 types based on
their application to the use case:

1. Studying access to care [83,84].
2. Analytics [78].
3. Application development [65,67,85,86].
4. Data quality, linkage, and flow [72,87,88].
5. Knowledge discovery [89].
6. Visualization [64,66,71,77,90].

Table 4 lists both kinds of frameworks and related references.
The abovementioned categories are based on the objectives of
the VA application, as mentioned by the authors in their studies.
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Table 4. Articles proposing a framework and using frameworks for their visual analytics work with quoted references (if provided).

Uses one or more frameworks for VAa workPresents a frameworkStudy (reference)

Portal developed using Liferay and Vaadin frame-
works

Health data analytics framework incorporating data management, analyt-
ics, and visualization

Abusharekh et al,
2015 [67]

On the basis of the recommendations by Jankun-
Kelly and Ma. [119]

N/AbAfzal et al, 2011 [85]

N/AFramework for data integration and analytics with various modules related
to data acquisition, cleaning, parsing and analysis

Ali et al, 2016 [68]

Resource development framework for queries, with
SQL and others

N/AAntunes de Mendonca
et al, 2015 [86]

N/APhenotyping framework for a VA toolBaytas et al, 2016 [80]

Knowledge discovery in databases framework [120]N/ABenis et al, 2017 [89]

On the basis of the 3 frameworks [36-138]Presents a framework for simulating and analyzing data. Visual engine
also has a built-in statistical framework based on others

Bryan et al, 2015 [64]

On the basis of the Harrower principles [139]Conceptual framework for dynamic mapping; hypotheses generation for
disease seasonality

Castronovo et al, 2009
[77]

Temporal abstraction [140]Presents a framework as a general model for chronic disease clinical
decision support and knowledge discovery

Dagliati et al, 2018
[66]

Middleware based on the Model View Controller
Framework

N/ADeodhar et al, 2015
[65]

N/ACombines 3 components, such as visual query, pattern mining, and inter-
active vis components, in a single framework enabling an ad hoc event
sequence analysis

Gotz et al, 2014 [76]

Uses the detected subspaces of the OpenSubspace
Framework and Visualization follows Shneiderman
[141,142]

N/AHund et al, 2016 [90]

N/AFramework considers several diseases; novel 2-step sentiment classifica-
tion combining clue-based searching and ML methods to first filter out

Ji et al, 2013 [81]

the nonpersonal; identifying all personal tweets; then distinguishing
personal into negative and nonnegative sentiment tweets

Community Wellbeing Framework [143]N/AJinpon et al, 2017 [83]

N/AFramework depicts processes and components required for automated
data monitoring across multiple real-time data channels [P Kostkova. A

Kostkova et al, 2014
[75]

roadmap to integrated digital public health surveillance: the vision and
the challenges. In Proceedings of the 22nd international conference on
World Wide Web (WWW '13). 687-694., 2013]

Lifelines framework sits within the University
Hospital Southampton Clinical Data Environment
as a model for the exploratory analysis of data

Process-driven framework presented, with data, functional, and user
layers

Lu et al, 2017 [71]

Susceptible-Exposed-Infectious-Removed agent-
based modeling

Presents a new framework for effective disease-control strategies, starting
from identifying geo-social interaction patterns. Framework further used
to structure the design of a VA tool with 3 components: reorderable

Luo et al, 2016 [78]

matrix for geo-social mixing patterns, agent-based epidemic models, and
combined visualization methods

N/AThe PanViz Visualization framework uses a mathematical epidemic
model to calculate population dynamics and infection rate data

Maciejewski et al,
2011 [79]

Semantic population health framework introduced
in the tool by using type I evidence or causal

N/AShaban-Nejad et al,
2017 [84]

knowledge to arrange health indicators along the
lines of the determinants of health framework [144]

Data quality framework [145]N/ATate et al, 2014 [87]

Silk Link Discovery Framework [146]N/ATilahun et al, 2014
[88]

ViSUS framework for designing dataflow [147]N/AWidanagamaachchi et
al, 2017 [72]
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Uses one or more frameworks for VAa workPresents a frameworkStudy (reference)

N/AIntroduces Visualization framework to aid health care policy makers and
hospital administrators to visualize, identify, and optimize the geographic
variations of access to care

Yu et al, 2017 [82]

aVA: visual analytics.
bN/A: not applicable.

Data Characteristics: Source, Use Cases, Structure,
and Type
VA engines differ in their application, given their capability to
process data from multiple data sets or various sources such as
social media text data, administrative data, global repositories,
and other internet sources. In the included studies, the data
sources that were processed by the analytic engines varied,
involving single data sources (32/55, 58%), multiple data
sources (22/55, 40%), or both (6/55, 11%).

In use cases where multiple data sources were involved, there
were overlaps within the categories of data sources:
administrative or national survey data (17/55, 31%), EMR or
EHR data (17/55, 31%), spatiotemporal data (16/55, 29%), web
or social media data (8/55, 15%), and simulation data (6/55,
11%).

Articles focused on structured (40/55, 73%), unstructured
(13/55, 24%), and semistructured data (5/55, 9%). The data
sources were administrative data that included registry and
national survey data (19/55, 35%), EMR or EHR data (17/55,
31%), spatiotemporal data (16/55, 29%), simulation data (6/55,
11%), and web or social media data (8/55, 15%). Multimedia
Appendix 5 [64-118] details the source, type, and application
to the use cases.

Analytic and Visualization Engines
From the articles, we gleaned information on the analytic engine,
tools, and specific methods used, such as the algorithms for the
analytic methods. The tool’s analytic engine, its data processing,
analysis, and subsequent data visualization varied greatly. In

addition, details about the analytic and visualization engines
have not been consistently reported.

We categorized the data for the type of problem that the
application addressed by the major analytic techniques used for
summarizing the results. There were 7 major categories:
infectious disease modeling and surveillance (21/55, 38%);
medical record pattern identification (20/55, 36%); population
health monitoring (9/55, 16%); health system resource planning
(2/55, 4%); and data manipulation, disease mapping, and
sentiment analysis (1/55, 2%).

The analytic approaches undertaken included data querying
(11/55, 20%); statistical modeling (11/55, 20%); clustering
(9/55, 16%); natural language processing (NLP), pattern mining,
classification, data mining, dimensionality reduction, predictive
modeling, and other ML methods (4/55, 7%); and graph
partitioning, neural networks, simulation-based predictions, and
other statistical analyses (1/55, 2%).

The problems addressed and the analytic techniques used are
summarized in Table 5. Multimedia Appendix 5 provides
in-depth information on the data type, analytic and visual
engines, and related techniques. Major tools employed for
developing the applications included R-based tools (7/55, 13%);
D3.JS (4/55, 7%); SQL (4/55, 7%); Java-based tools (3/55, 5%);
Python-based tools, HTML 5, or Google Maps application
programming interface (API; 2/55, 4%); and not reported (15/55,
27%). The 16 remaining articles mentioned the use of one of
the following: Open Layers 3, OwlAPI, SaTScan, SQL and
Google Maps API, IBM Watson Analytics, GeoViz Toolkit,
Flutrack API, Weka, GeoTime, ESRI ArcMap, Excel2RDF and
Sgvigler, C#, JFreeChart, MS Silverlight-based Pivot Viewer,
Weka and Tableau, and Matlab.
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Table 5. Problem categories and major analytic methods.

Categories of problems with the number of articles mentioning the use of specific analytic methodsAnalytic method

TotalSentiment
analysis

Population
health monitor-
ing

Medical record
pattern identifica-
tion

Infectious dis-
ease modeling
and surveillance

Health system
resource plan-
ning

Disease
mapping

Data manipula-
tion

11—153—a11Data querying

11——281——Statistical modeling

9117————Clustering

4——13———Natural language
processing

4—3—1———Other machine
learning

4——31———Pattern mining

2—1——1——Classification

2—2—————Data mining

2——11———Dimensionality re-
duction

2——11———Predictive modeling

1———1———Graph partitioning

1———1———Neural networks

1———1———Simulation-based
predictions

1—1—————Statistical analysis

55192021211Total

aNull values.

The distribution of the tools used according to the analytic
methods is illustrated in Figure 5. Among the most often used

tools were R-based tools and packages, D3.JS, and Google Maps
API. Almost all articles mentioned a different combination of
tools that they had used for the VA application.
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Figure 5. Analytic methods and proportional distribution of tools employed. API: application programming interface; MS: Microsoft; SQL: structured
query language.

Similarly, various visualizations were used to represent the
analysis of the data processed by the analytic engine.
Visualizations were mostly interactive, with a dashboard
presenting statistics or detailed information regarding specific
populations or variables of interest. The major visualization
types were as follows: maps (17/55, 31%), timelines (8/55,
15%), heat maps (6/55, 11%), choropleth maps (6/55, 11%),
bubble charts (3/55, 5%), flow maps (2/55, 4%), and scatterplots
(2/55, 4%). The remaining 12 applications presented one of the
following visuals: spatial plots, history tree view, stacks and
cards, line, bar, causal diagram, cards, stacked bar, population
pyramid, circular tree, ranked trees, Sankey diagram, and
relationship graph.

Domains of Health Care, Problem Category, and
Related Analytic Methods
Of the articles, 98% (54/55) focused on population health,
whereas 33% (18/55) focused on HSR. There was a considerable
overlap, as 17 HSR articles had a population focus. Of the
population health articles, 44% (24/55) were on clinical
populations focusing on a condition or cluster of conditions and
31% (17/55) provided population demographics. Epidemic
monitoring and modeling for certain conditions was the focus
of 33% (18/55) studies, whereas 49% (27/55) were
spatiotemporal health care articles.

Among the HSR articles, 27% (15/55) were on health service
utilization, 18% (10/55) focused on access to care, and 4%
(2/55) were related to health care costs. The details are provided
in Multimedia Appendix 6 [64-118].

We further categorized the types of problems that the application
addressed. The 4 major problem categories were infectious
disease modeling and surveillance (21/55, 38%), medical record
pattern identification (19/55, 35%), population health monitoring
(9/55, 16%), and health system resource planning (2/55, 4%).
One use case was for data manipulation, disease mapping, health
record pattern identification, and sentiment analysis.

Figure 6 details the relative distribution of the analytic methods
used for the categories of problems. The color-coded tree map
reveals clustering and statistical modeling as the major choice
for medical record pattern identification and infectious disease
modeling and surveillance, both methods comprising 13% (7/55)
of all use cases. The second most common methods included
NLP, querying for database creation, pattern mining, and data
querying, each comprising 5% (3/55) of all methods. Other
varied methods are shown in the figure to reveal the overall
trends found in the use of methods according to the problem
addressed by the application.
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Figure 6. Problem categories and proportional distribution of analytic methods used.

Availability of the Tool, Uptake, and Co-Design
A total of 21 VA tools were in use at the time of publication of
the original article, whereas others were either not available or
prototypes. Moreover, 7 dashboards or tools were accessible
for public use, whereas 13 tools were either developed using
free, open source tools such as R or Weka or their source code
was provided. Furthermore, 38% (21/55) articles did not mention
the tools used to develop the application or the base application.

Relevant to co-design or evaluation of the tool, 10 articles
involved domain experts, multidisciplinary teams, or user
evaluations for the development and improvement of the VA
application, whereas other articles did not mention this aspect.
Relevant details have been captured in Multimedia Appendix
7 [64-118].

Innovation and Limitations of VA Applications
All applications offered an innovative edge over others at the
time of their publication. These mostly pertained to the analytic
engine and techniques such as better workflow, automation,
development of a framework, and use of advanced techniques
such as ML. Similarly, the limitations of the applications were
provided in varying detail, with 29% (16/55) articles not
mentioning any limitations, as shown in Multimedia Appendix
7.

Discussion

Significance of the Review
The aim of this scoping review is to review the literature on VA
methods, specifically their application to the fields of population
health and HSR. Given the large variety, heterogeneity, and

velocity of data sources, public health data belong to the
category of big data [50], which are increasingly being generated
and made available from administrative, EMR, and EHR
sources. Examples of large population-level repositories include
the United Kingdom’s Clinical Practice Research Datalink
database, the largest collection of anonymized primary care
patient records [87]; the Canadian administrative health data
sets [121]; and the US National Health and Nutrition
Examination Survey, collected since the 1970s [91].

Our scoping review summarizes VA methods applied to use
cases in population health and HSR. As a multidisciplinary
team, we presented the results from multiple perspectives,
including those of data scientists, population health and HSR
practitioners, and policy and decision makers. This is important
in the wake of the COVID-19 pandemic, where multiple VA
products for pandemic monitoring have surfaced for guiding
the pandemic response [122,123].

We discuss the implications and contributions of this review
for researchers and practitioners in the related health care areas
of public and population health and HSR, expanding on aspects
of specific import. We further offer targeted recommendations
for defining, reporting, and leveraging the potential of VA
methods and applications.

Reporting Checklist for VA Applications
The field of visualization and analytics is extremely broad, with
various applications in different health care and other sectors.
We had to rely mainly on iterative screening to filter out articles
that were not relevant to the study objectives, for example,
articles without use cases including usability studies,
evaluations, human-computer interaction, and GIS studies.
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There is a need for better reporting on the details of the
applications for reproducibility and transparency. This
specifically relates to the tool’s capability, application beyond
the use case, target audience, study objectives, and study
settings. In many articles, we found the statistical and analytic
methods lacking in detail, in particular on the tools used for the
analysis, the algorithms tested and applied, and the reasons for
choosing one particular analysis over the other.

Similarly, some articles from proprietary or prototypical tools
did not offer any detail on the analytic engine, while only
discussing the functional aspects of the application. Many
articles did not elaborate on how visualization presentations
should be interpreted. Most articles did not provide reasons and
processes for the selection of the visualization, its strength over
others, and how the interactive functions could offer more
insight.

Such details would help situate the literature and resultantly be
useful for better reproducibility, development, and adaptability
of prototypical and established methods to different scenarios.

Towards this goal, we developed a standard reporting checklist
(Multimedia Appendix 8) for reporting VA methods, particularly
visual and analytics engines, as is the practice for reporting
research methods such as statistical techniques [124], and
qualitative and quantitative studies [125,126]. As mentioned
previously, 4 recent systematic reviews covered areas of VA
applications in health [8,17-19]. Although these reviews offered
excellent summaries from different areas of health care and
informatics, we found that there was no reporting standard
followed, indicating the need for such a checklist. We further
sought recent literature on COVID-19–related VA products.
One of the most known COVID-19–related products is the
web-based dashboard for country-level data by Johns Hopkins
University [123]. Although the experts involved have not yet
published a paper detailing the methods for its development, a
high-level correspondence article was published in the reputed
journal Lancet [123]. In this article, the authors cite the issues
and process of developing a data stream for the dashboard. In
contrast, the authors of another VA product mapping the
COVID-19–related mobility pattern changes in US counties
detail the methods, features of the web-based platform, data
sources, system design, and insights from the results in their
publication [122].

On the basis of the findings from these papers and those included
in the scoping review, we have proposed a checklist for reporting
VA applications (Multimedia Appendix 8) to fulfill the need
for standard reporting aimed at optimizing productivity from
research efforts [3].

Proposed Definition for VA in Health Care
We adhered to the definition for VA applications in health care
by Ola and Sediq [50] for which both an analytic and visual
engine must be included. However, we found that despite
reporting analytic techniques, including an analytic engine,
many articles did not state it as such. Although “visualization”
as a term was mentioned in all articles, analytic techniques were
not mainly classified as analytic engines. This could be due to
the different use of language and understanding within the data

science communities of practice. Hence, VA as a term with a
technical definition does not seem firmly established, at least
in the health care literature. This can also be seen in various
authors’ work where they borrow from the original definition
of VA by Thomas and Cook [2] being “the science of analytical
reasoning facilitated by interactive visual interfaces.”

Thomas and Cook [2] define VA as “the science of analytical
reasoning facilitated by interactive visual interfaces,” whereas
Keim et al [3] extended the concept to “automated analysis
techniques with interactive visualizations for an effective
understanding, reasoning and decision making on the basis of
very large and complex data sets.” Borrowing from the seminal
works of Ola and Sedig [50], Keim et al [3], and Thomas and
Cook [2], we recommend using the following adapted definition
of VA, especially in areas related to public and population
health: “an approach, method or application for analytic
reasoning, exploration, knowledge discovery, and sense making
of complex data, through the use of one or more interactive
visual interfaces, employing analytic and visual engines.” In
our definition, we keep the aim of the VA technique at the fore
to provide context to the method, while expanding on the limited
concept of VA to computational tools [3,50]. We emphasize
the analytic and visual engines to help delineate the methods
from other fields, such as visualization. We also emphasize it
as it helps to define and report the methods better, for which
we included a checklist for reporting (Multimedia Appendix
8).

VA Methods, Frameworks, and Tools
We followed a broad definition of frameworks to summarize
the VA methods in developing the applications. Although
presenting the detailed findings from these frameworks is
beyond the scope of this review, we broadly categorized their
types, as it can be valuable to learn from the conceptual and
theoretical bases of this innovative method. Studying both types
of frameworks helps situate the methods for adaptation by
researchers and practitioners. Among the variety of VA
frameworks presented, most were related to disease mapping
and for knowledge discovery and hypothesis generation
[66,77,78]. This is consistent with the findings of the goals and
analytic capabilities of the tools that we summarize. Although
there is a trend toward the application of ML methods to EMR
data sets, we found 1 framework for mining and visualizing
trends and patterns from these data sets [76].

The majority of the applications were prototypes, with only 5
in use at the time of publication. In part, this may be due to
publication bias of newer VA techniques. Studies using
proprietary tools known for their visualization engines, such as
Tableau [148], Qlik [149], and Power BI [150], were
exceptionally uncommon in the articles that were reviewed.
Hence, future research may seek to survey the population health
and HSR practitioners to gain an understanding of the VA tools
that are part of their daily decision-making processes and reasons
for not publishing their findings and experiences.

Settings, Target Audience, and Co-Design Initiatives
As we limited our search to English language articles, the use
cases from the included studies were mostly from the United
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States, with fewer studies from Europe or other countries. Most
of the authors and use cases were from the same country, aside
from one exception, an author from Canada working on a use
case from the United States [91].

As expected, population health and HSR practitioners were the
most common intended target audience, followed by academic
researchers and clinicians. Policy and decision makers as well
as the general public were not the main target audiences.
Although VA is related to data visualization and is being
increasingly employed to convey insights from the data, we
contend that the use of VA is still in the developmental stages.
This corresponds to our finding that most applications were
prototypes.

There were 5 studies that were aimed at consumers, whereas 7
studies targeted policy and decision makers. However, as
participatory approaches are being emphasized for better uptake
and development of creative solutions [127], a concern related
to co-designing applications was the lack of involvement of
stakeholders, such as decision makers, and patient groups. It is
important to note that the lack of participatory co-design
approaches in developing applications could be one reason for
the overall finding of slow uptake of these methods in population
health and HSR.

Trends and Potential for VA Applications
As the results show, the use of VA varies greatly. In addition,
due to inconsistent reporting of the settings and target audiences
in the included papers, we made a calculated judgment on the
trends in the use of these techniques. As most of the studies
were conducted in academic circles, we infer that these methods
are still in development in the population health and HSR
communities of practice. Hence, the uptake of these methods
has been slow in these interrelated areas of health care. This is
not unexpected, as the field has been termed nascent, while the
application of newer techniques in public health has been rather
delayed [50].

As most tools focused on descriptive analytics, with about half
aimed at visual exploration of complex data sets, the trend in
the use of these methods toward knowledge discovery and
decision support is notable. This could be due to the availability
of increasing and expanded data sets from EMR systems. For
ML, clustering, classification, and NLP are methods of choice
for structured and text-based data sets. Many population health
applications are related to mapping, spatiotemporal distribution,
and modeling for diseases and disease control. In HSR, few
articles dealt with issues of access, utilization, and costs of
services.

Most problems addressed related to infectious disease
epidemiology, with clustering and statistical modeling being
the most commonly used analytic methods. The articles
mentioned a unique tool, a combination of tools, or did not
mention the tool or base application, which made it difficult to
summarize the types of tools used. However, as shown in Figure
5, R-based tools, Google Maps API and D3.JS, as well as a
variety of other tools were used for the VA applications.

In addition, there is added value in using VA to obtain and
combine multiple data sources to construct a fuller picture

toward the question of inquiry. As our results show, the analytic
engine in most use cases combines multiple data sources, such
as EMRs, to social media sources. As Keim et al [3] point out,
VA can contribute to solving various complex problems in
sectors including engineering, financial analysis, environment
and climate change, and socio-economic conditions.
Socio-economic considerations in health, known as the social
determinants of health, are being increasingly researched in the
context of accessibility, health, and overall quality of life of
populations [128]. In addition, VA has the potential to address
the varied shared application problems in health and related
sectors at an abstract level [3].

Learning Health Systems and COVID-19–Related VA
Products
Learning health systems are geared toward continuous
evidence-based quality improvement [129]. There are multiple
challenges in building such systems that generate knowledge
and insights on proposed improvements [130]. In the wider
context, this review allows fellow researchers, practitioners,
and decision makers to appreciate the potential presented by
VA techniques in meeting challenges in operationalizing and
building automated data-driven learning health systems [131].
VA techniques have the ability for sense making and leveraging
big data from multiple sources to operationalize such learning
health systems [33,132].

As has been the case in the last few months of the COVID-19
crisis, a plethora of VA products have surfaced, aimed at clinical
practitioners, population health and health service researchers,
policy makers, and the general public [122,123,133]. Such VA
products are being increasingly sought for epidemiologic
surveillance, monitoring, and planning of health services, in
addition to apprising the public on the magnitude of the
pandemic. It will be especially useful for research replicability
and transparency to describe the development and features of
such products in sufficient detail, toward which we presented
a reporting checklist (Multimedia Appendix 8), for aspects that
we found to be important in reporting methods and functionality
of an application. We are confident that this will serve novice
and expert researchers alike as a reminder to showcase the depth
and breadth of their efforts in developing a unique application.

Limitations
We based our inquiry of VA methods on information from
peer-reviewed journal articles and full conference papers. We
did not include book chapters, theses, short papers, editorials,
non–peer-reviewed reports, conference abstracts, and live
websites using VA techniques. We limited our review to the
year 2005 onward, and we did not explore subject-specific
databases from mathematics, geography, and computer sciences.
We sought to limit our findings to proposed or established
methods that have been either published or presented and applied
to actual use cases. We included full conference papers in the
review, but many conferences do not publish proceedings, such
as the annual Tableau conference and the Health Analytics
Summit. Use cases discussed at these meetings mostly involve
front-end proprietary tools. Hence, the complete spectrum of
the use of such tools could not be covered in this review.
However, we followed the highest methodological standards
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for conducting systematic reviews. This included developing a
multidisciplinary team of health researchers and data scientists,
following established review frameworks with at least two
independent reviewers at each step, and being guided by a
dedicated information specialist. Our search strategy was
developed over multiple iterations and was peer reviewed using
the PRESS guidelines [134] by an independent third-party
information specialist, whereas we published the review protocol
in advance [21].

Conclusions
VA as an innovative field holds great potential in yielding
insights from big health care data, especially in the related fields
of population health and HSR. This is especially relevant in the
backdrop of the COVID-19 pandemic, where multiple VA
products have taken center stage.

This scoping review provides a foundational understanding of
the current landscape on the application of VA methods in areas
of population health and HSR. We present the major VA tools,
techniques, and frameworks since 2005 published in
peer-reviewed papers. VA is an innovative, rapidly expanding
field with its roots in many disciplines, and it is being used to
build learning health systems for improving patient care,
increasing access to services, controlling costs, and appropriately
allocating resources [33]. It is expected that the next generation
of EMR systems will leverage advanced analytics to meet the
needs of diverse audiences [135]. Such systems are aimed at
harmonizing patient records; creating a seamless picture of
access to care at primary, secondary, and tertiary levels; and
managing disease outbreaks at the population level. We also
present an expanded definition for VA applications in health
care, with a reporting checklist to help researchers provide
solutions for greater replicability.
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