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Abstract

Background: Poorly managed pain can lead to substance use disorders, depression, suicide, worsening health, and increased
use of health services. Most pain assessments occur in clinical settings away from patients’ natural environments. Advances in
smart home technology may allow observation of pain in the home setting. Smart homes recognizing human behaviors may be
useful for quantifying functional pain interference, thereby creating new ways of assessing pain and supporting people living
with pain.

Objective: This study aimed to determine if a smart home can detect pain-related behaviors to perform automated assessment
and support intervention for persons with chronic pain.

Methods: A multiple methods, secondary data analysis was conducted using historic ambient sensor data and weekly nursing
assessment data from 11 independent older adults reporting pain across 1-2 years of smart home monitoring. A qualitative approach
was used to interpret sensor-based data of 27 unique pain events to support clinician-guided training of a machine learning model.
A periodogram was used to calculate circadian rhythm strength, and a random forest containing 100 trees was employed to train
a machine learning model to recognize pain-related behaviors. The model extracted 550 behavioral markers for each sensor-based
data segment. These were treated as both a binary classification problem (event, control) and a regression problem.

Results: We found 13 clinically relevant behaviors, revealing 6 pain-related behavioral qualitative themes. Quantitative results
were classified using a clinician-guided random forest technique that yielded a classification accuracy of 0.70, sensitivity of 0.72,
specificity of 0.69, area under the receiver operating characteristic curve of 0.756, and area under the precision-recall curve of
0.777 in comparison to using standard anomaly detection techniques without clinician guidance (0.16 accuracy achieved; P<.001).
The regression formulation achieved moderate correlation, with r=0.42.

Conclusions: Findings of this secondary data analysis reveal that a pain-assessing smart home may recognize pain-related
behaviors. Utilizing clinicians’ real-world knowledge when developing pain-assessing machine learning models improves the
model’s performance. A larger study focusing on pain-related behaviors is warranted to improve and test model performance.

(J Med Internet Res 2020;22(11):e23943) doi: 10.2196/23943
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Introduction

More than 50 million US adults suffer from chronic pain, and
19.6 million experience high-impact chronic pain severe enough
to interfere with daily living or work activities [1]. Guidelines
from the Centers for Disease Control and Prevention favor
nonopioid strategies to manage pain [2]; however, professionals
treating pain have raised concerns that reducing access to opioids
for the 18 million Americans using them for chronic pain will
cause needless suffering [3]. Thus, there is a critical need to
better understand how adults experiencing pain manage their
symptoms at home. Artificial intelligence (AI) may afford the
opportunity for observations leading to new understandings and
improved home-based pain management. AI for health care has
already afforded new perspectives [4] on automated assessments
leading to novel and timely interventions [5]. Machine learning
(ML) models are used in medical imaging [6,7], neurology [8],
cardiology [9,10], pulmonology [11], nephrology [12,13],
gastroenterology [14], pathology [15,16], health care informatics
[17,18], and clinical decision support [5,19]. ML models capable
of automated in-home assessments and alerts are also in the
early stages of supporting individualized home-based
interventions [20-24].

Social cognitive theory supports that mastering daily tasks is
key to living with chronic pain [25]. Pain interference is best
captured through observing physical and social changes in daily
activities [26]. However, most pain assessments occur in clinical
settings. Advances in smart home technology provide the
opportunity for unobtrusive and continuous monitoring of daily
activities [27]. Such monitoring offers sensor-based observation
of activities, routines, and behaviors and could provide direct
evidence of clinically relevant changes in daily routines [21,22],
sleep [28], and socialization [22]. To date, smart home ML
models have proven capable of differentiating behavior markers
between groups [29,30], modeling characteristics of older adults’
daily activities [20], recognizing dementia-related behaviors
[31], predicting cognitive and mobility scores [20,32],
forecasting behavior-based sleep and wake patterns [28], and
recognizing health events such as falls [22], pneumonia [33],
and depression [34].

A common limitation to developing ML health-behavior models
is the time needed to provide real-world context (ground truth)
for datasets. However, evidence exists that techniques
accounting for small samples and low levels of consistent
reporting can produce robust models [35,36]. While it may be
difficult to predict pain experience trajectories, well-validated
risk prediction models have identified individuals at risk for
long-term pain [37]. Predictive models have been tested for low
back pain [37], post-surgical cancer pain [38], and pain with
dementia [39]. Statistical modeling has also been used to predict
physical and psychological factors for long-term pain [40];
however, models have not yet been developed to identify
pain-reducing behaviors. Modifiable behaviors (eg, exercise)
remain poorly understood in the context of pain symptomology.
We hypothesize that smart homes may assist with detecting
behaviors that are influenced by pain (eg, sleep, socialization).
However, data without contextual interpretation have little
meaning in real-world situations and should be avoided in health

care delivery [41,42]. Our smart home development methods
illuminate one strategy for integrating clinical knowledge to
support the development of a prototype pain-assessing smart
home (PASH).

This multiple methods, secondary analysis used data from an
ongoing longitudinal smart home study (2017-2021). The
longitudinal study’s ML models have already demonstrated the
ability to recognize 30 activities of daily living (eg, sleeping,
eating, entering or exiting home) with approximately 98%
accuracy based on 3-fold cross validation [43]. The longitudinal
study aims to train an ML model to recognize changes in health
states in real-time in older adults with comorbidities. Participants
are monitored for 1-2 years using smart home sensors (passive
infrared motion, magnetic door use, light, temperature, and
humidity) that are deployed in their current residence. No
cameras or microphones are used. Secured date and time-stamp
sensor data are collected, and the ML model labels daily
activities in real-time [44]. Additionally, expert nurses with
advanced practice skills conduct weekly health assessments of
participants via telehealth or home visit. Individualized
semistructured interviews are conducted to obtain information
about potential changes in health status and behavior, and any
health-related concerns are documented. Participants are asked
to recall health changes (ie, health events) occurring in the 7
days prior to the nursing visit. Participants are asked: “How has
your health been in the last week?” and “Did you have any
particular days that weren’t normal?” To elicit recall, questions
are asked about each body system. For example, with a person
having atrial fibrillation, the nurse might say: “I see your heart
rate is X; have you had any issues with your heart since we last
talked?” For sleep, they ask: “Were there any nights you didn’t
sleep well? Or went to bed late, or got up early? What was
different about that day?” This line of questioning is designed
to elicit information about the “how, what, when, where, and
why” of health events. Vital signs, information about medication
changes, new symptoms by body system (eg, neuro, cardiac),
sleep quality, psychosocial status, functional status, and changes
to daily routines (eg, all-day outings) are captured. A
participatory approach is encouraged, and most participants
keep a daily journal to help with recall, though this is not
required. Health events are documented and coded by medical
type (eg, neuro, cardiac, respiratory). Nurses match health event
and sensor data and interpret event start and stop times as well
as pre-event and post-event activities and behaviors (ie,
providing real-world context, clinical ground truth). To train
PASH, we used these existing pain-related clinical and
sensor-based data. More information about the role of nurses
in the longitudinal study is available in the literature [42,45,46].

Although pain was not the focus of the longitudinal study (the
focus was on chronic conditions), multiple episodes of pain
were captured by nurses. These were available in the archived
health assessment records and used for this secondary analysis.
The purpose of this secondary analysis was to determine if
ambient sensor-based data could be used to train an ML model
that recognizes pain-related behaviors. The longitudinal study
and secondary analysis were approved by the Washington State
University Institutional Review Board.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e23943 | p. 2http://www.jmir.org/2020/11/e23943/
(page number not for citation purposes)

Fritz et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Methods

Data Inclusion Criteria
To train an ML model to recognize pain-related behaviors, we
conducted a secondary data analysis of historic longitudinal
sensor-based data and semistructured, holistic nursing
assessment interviews containing descriptions of pain. Historic
records afforded a convenient and purposive sample [47] of 17
independent, community-dwelling smart home participants aged
≥55 years with ≥2 chronic conditions, living alone, without pets.
Of these, 11 participants met the inclusion criterion of having
at least one recorded pain event during the longitudinal study.
For each participant, approximately 60,000 sensor events per
month were available, totaling 720,000 per year. All data from
passive infrared and door use sensors throughout 1-2 years’
monitoring were included for training the model. Based on prior
work developing techniques to train ML models using small
sample sizes [35,36], we determined this amount of data exceeds
ML training requirements for models using longitudinal data
and that this amount of data would likely allow the model to
capture aspects of pain. The health records of each participant
contained data from approximately 50-100 nursing assessments
(1-2 years of weekly visits). We extracted pain-related
information from the nursing record, defining a “pain event” as
any report of pain associated with a report of related behavior
changes. We also included 1 week of sensor data surrounding
the pain event for conducting qualitative analysis of the sensor
data as well as several weeks of baseline activity data — these
were weeks where the nurse noted no health changes had
occurred. “Normal” weeks were compared to weeks containing
health events to help illuminate the event in the sensor data. We
included data showing short-term visitors, which is exhibited
in the data as multiple sensors turning ON nearly simultaneously
(within <0.01 seconds of each other and <3 meters apart).

Data Exclusion Criteria
We excluded personal health data unrelated to pain. When
conducting qualitative analysis of the sensor-based data, we
excluded sensor data outside of the week surrounding the pain
event except the weeks chosen to represent baseline normal
routines. We also excluded data showing extended stay visitors

(ie, stays across multiple days and nights). More information
on the nursing team’s analytic methods, including data exclusion
processes, is available in the literature [45,46]. For training the
ML model, we excluded data from light, temperature, and
humidity sensors.

Qualitative Analysis

Adapted Qualitative Descriptive Methods
We applied the Fritz method [45] when analyzing pain-related,
sensor-based data to support our expert-guided approach. The
Fritz method includes the parallel processing of qualitative
health event data and associated sensor data for contextualizing
health changes in sensor data, enabling the development of
clinically accurate ground truth [45]. It is an analytic approach
that uses qualitative data and traditions to make sense of sensor
data. Nurses use subjective semistructured interviews, objective
nursing assessments, medical records, and clinical knowledge
of the human response to illness to understand participants’
health events and daily routines that are represented in the sensor
data. For each identified health event, 1 week of sensor data
around the time of the event are reviewed. Abnormal behavior
patterns (not aligning with known daily routines) are identified
and verified by comparing them with selected baseline routine
datasets from the 6 months surrounding the health event. A
clearly exhibited health event includes changes to normal
routines (eg, wake time, time out of home, time in bathroom).
For more information, see [45,46].

Analyzing Sensor Data
Two nurse analysts trained in qualitative descriptive methods
[48] and the Fritz method [45] separately analyzed all 27 pain
events. Each analyst used the nursing record, which included
associated dates and times, diagnosis, and a summary of daily
routines, to determine each pain event’s timing and activities.
The first round of analysis was conducted by Nurse Analyst A
as part of the ongoing longitudinal study. The second round of
analysis was conducted by Nurse Analyst B for the current
substudy. After the second round of analysis was complete,
Nurse Analysts A and B met to discuss potential themes. Figure
1 illustrates the qualitative analytic process that preceded
computer processing of the data.
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Figure 1. Multiple methods analytic processing of qualitative and quantitative data for a clinician-guided approach to machine learning (ML).

To analyze each pain event, the nursing record was reviewed
first; then, the document summarizing the participant’s daily
routines was reviewed, and the associated sensor data were
downloaded from a secure database. The day(s) of the event
and a minimum of 1 week of sensor data surrounding the event
(5 days before and 2 days after) were downloaded. If a pain
event lasted 7 days, 2 weeks’data were analyzed: the week-long
event plus 5 days before and 2 days after. Additionally, a
minimum of 3 weeks representing “normal/baseline” sensor
data were downloaded. We defined a normal week as any week
where (1) the nursing record reported the participant had a
normal week (ie, they said nothing had changed, or they said
they felt good), (2) overnight visitors were not present, and, (3)
it was not a holiday. Nurse analysts then looked at activity
timing and duration, activity sequences, and the amount of data
produced by each sensor on the day(s) of the event. We
determined the timing and duration of activities by observing
the sensor label (eg, bed, recliner) and the time of day a sensor
transition occurred (eg, between the bedroom and living room).
We determined activity sequences by observing the order in
which various sensors’ ON signals appeared. We determined
the amount of data by calculating the total number of
consecutive ON and OFF signals of a single sensor or cluster
of sensors (eg, bed, general bedroom area). For example,
insomnia or restlessness in the night was observed in the sensor
data as an increase in the total number of consecutive bed sensor
ON signals or the intermixing of other sensors’ ON signals (eg,
kitchen sensors) instead of sensor quietness (ie, absence of
sensor ON signals, representing sleep). Once the pain event was
clearly identified in the sensor data (eg, significant change in
sleep behavior), baseline data of routine behaviors from the

surrounding weeks and months were compared to the behavior
anomalies associated with the pain event. A minimum of 3
datasets per event representing normal routines were captured
for comparison; however, nurse analysts continually expanded
their review of the sensor data surrounding the pain event until
they were satisfied that reviewing more data would not produce
additional understandings.

Developing Themes
Figure 2 illustrates the influence of abnormal behaviors
(associated with experiencing pain) on emerging qualitative
behavioral themes. Patterns in the sensor data representing
pain-related behaviors became apparent when we compared
sensor-based data across all 27 different pain events and across
all participants (N=11). Emerging patterns were designated as
behavioral themes. Some emerging themes incorporated related
ideas; so, they were clustered together and assigned a larger,
overarching idea that became the major theme. For example,
the overarching idea of “Sleep” subsumed minor themes that
regarded characteristics of sleep like the timing of sleep (eg,
bedtime, wake time), length and quality of sleep (with and
without interruption), and sleep location. Major themes were
chosen based on 2 criteria: The theme was present across
multiple events, and both nurses thought the theme was
clinically relevant. No themes were dropped during the process
of moving from minor to major themes. A final comprehensive
re-review of transcripts did not reveal new themes. Both nurse
analysts agreed on the chosen themes, and each nurse analyst’s
ideas were equally valued and addressed. Major themes
represent activities that persons experiencing pain will likely
alter. Such knowledge, emerging from sensor-based observations
and clinical interpretation, supported the training of PASH.
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Figure 2. Abnormal pain-related behaviors observed in the sensor data, with 6 overarching themes.

Quantitative Analysis
The same 11 smart homes were included for both qualitative
and quantitative analyses. Only 2 sensor types (passive infrared
motion, door use) were processed for the quantitative portion
of the study. Pain events varied in length from 1 to 15 days
(mean 7.85 days); for each pain event, an equivalent set of
relatively pain-free data was included for each participant’s pain
event dataset. All collected smart home sensor events had
already been automatically labeled with corresponding normal
daily activities using our activity recognition algorithm that had
previously been trained on 30 homes (not analyzed as part of
this study). In each of these prior homes, a non-clinical annotator
provided ground truth labels for 2 months of sensor data. From
activity-labeled sensor data for the 11 homes included in this
study, 550 behavior markers were extracted. A set of activities
that occur with sufficient regularity in the homes (at least once
a day on average) was selected to inform the ML models. The
activity categories were Bathe, Bed-Toilet Transition, Cook,
Eat, Enter Home, Leave Home, Personal Hygiene, Relax, Sleep,
Take Medicine, Wash Dishes, Work, and Other Activity. The
behavior markers corresponded to statistical measures of mean,
median, standard deviation, maximum, minimum, zero
crossings, mean crossings, interquartile range, skewness,
kurtosis, and signal energy. Each measure was applied to time
series data indicating hourly distributions for overall activity
level (measured as the number of motion sensor events), hourly
distributions over home locations, and hourly distributions over
activity classes. Additionally, behavior markers were computed
that indicate daily schedule regularity and 24-hour circadian
rhythm values. The regularity value calculates the normalized
difference (in location and in activity) between the same hours
across all of the days in the sample. The circadian rhythm
strength was calculated using a periodogram, which is an
estimate of the spectral density of a signal (in this case, activity

level). The periodogram identifies the strength of the frequencies
that explain variations in time series data. We quantified
circadian rhythm as the normalized strength of the frequency
that corresponds to 24 hours.

We designed several ML approaches for detecting pain events
from sensor-derived behavior markers. First, we employed a
random forest binary classifier with 150 trees to predict whether
a day was part of a pain event (positive class) or pain-free
(negative class). Second, we trained a regression tree on the
data to determine correlation between a model of behavior
markers and pain events. For comparison with our
clinician-trained ML approaches, we employed an isolation
forest (iForest) anomaly detection algorithm with 100 estimators
to detect pain days. Unlike the random forest and regression
trees, iForest did not use any clinician guidance in detecting
anomalies that may indicate days for which the participant was
experiencing pain. Finally, we trained a decision tree algorithm
based on the positive and negative instances to determine which
behavior markers provided the greatest distinction between pain
days and those that were pain-free. We did not train the
algorithm to differentiate between pain subclasses due to the
small number of events in each group (acute, flare); however,
our clinical team’s early work determining these subgroups
using sensor-based data positions us to explore subgroup
comparisons in the future with larger sample sizes.

Results

Table 1 shows the sample characteristics of the participants and
number and duration of acute and flair pain events. A total of
11 older adult participants, aged 68-92 years, were included in
this secondary data analysis. All participants were
community-dwelling and living independently while being
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monitored with smart home sensors, except 1 participant who moved to assisted living during the study.

Table 1. Demographic characteristics of the study sample (N=11).

ResultsCharacteristics

85.72 (69-92)Age (years), mean (range)

Biologic sex, n (%)

9 (82)Female

2 (18)Male

Marital status, n (%)

1 (9)Married

1 (9)Divorced

9 (82)Widowed

Education, n (%)

2 (18)High school (some or graduated)

7 (64)College (some or graduated with Bachelor’s)

1 (9)Graduate School (Master’s or Doctorate)

Independence, n (%)

11 (100)aLiving independently

11 (100)Living alone

2 (18)Uses assistive personnel (excluding housekeeping)b

10 (91)Uses a housekeeper

4 (36)Uses assistive equipmentc

Pain event (n=27), n (%)

8 (30)Acute (duration=0.25-14 days; mean duration 6.8 days)

19 (70)Flare (duration=2-8 days; mean duration 6.6 days)

aOne participant entered assisted living after 17 months in the study.
bAssistive tasks: donning compression stockings (independent participant), medication administration, showering (assisted-living participant).
cEquipment: 4-wheeled walker, electric scooter, prosthetics.

Qualitative
We found 13 pain-related behaviors: no exit home, decreased
time out of home, visitors, sleep location, time of sleep, length
of sleep, night time sleep interruption, change in total sleep
hours (increase or decrease), sleep quality (body movement
during sleep — tossing and turning), grooming, walking speed,
change in walking pattern (short bursts, long rests), overall
activity in 24 hours. From the sensor activity patterns, 6 themes
representing all 13 behaviors emerged (Figure 2): Sleep,
Walking, Grooming, Time Spent Out of Home, Visitors, Overall

Activity Level. Themes represented pain-related behaviors.
Table 2 shows major and minor theme characteristics, the types
of pain reported by participants (noted by nurses), and the type
of sensor, location, and sensor combinations informing
qualitative interpretations. Themes generally aligned with the
13 activity categories that the ML algorithm recognized, and
each of the 6 themes was represented in the subset of 30
activities (from the prior homes) included for training PASH.
For example, the qualitative theme of “Time Spent Out of
Home” was represented in PASH’s ML model as “Enter Home”
and “Leave Home.”
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Table 2. Themes representing pain-related behaviors.

Sensor typeMeaningful sensor combina-
tions

Sensors informing themesNursing report of participants’
behaviors

Participant-reported
pain

Themes (activity
attributes)

Passive in-
frared (PIR)

<Bed-Toilet>, <Recliner-
Toilet>, <Bed-Recliner>,
<Bed-Bedroom>, <Bed-
Kitchen>

General bedroom, bed, re-
cliner

“slept in,” “moved to reclin-
er,” “increased nap time,”
“awake in night”

Neck, leg, knee, hip
pain

Sleep (rhythm,
length, location,
quality)

PIR<Recliner-Toilet>, <Bed-
Toilet>, <Hallway-Hall-
way>

Bedroom, bed, recliner, toi-
let, hallway

“shortness of breath,” “resting
more frequently when walk-
ing”

Fall, leg, knee, hip
pain; chest pain

Walking (speed,
rests, breaks)

PIR<General Bathroom Area-
Bathroom Sink> (Quantity
and duration)

Bathroom, bathroom sink“has not showered for 2

days,”a “help with grooming”

Fall, abdominal painGrooming (done,
not done)

Magnetic con-
tact (door use)

<Main Entry-Hallway>,
<Absence of sensor events>

Main entry“didn’t go to Bridge night,”
“didn’t go shopping”

Fall, neck, leg, knee,
abdominal pain

Time spent out of
home

PIRAny 2 sensors with virtually
concurrent ON signals
(<0.01 seconds apart) locat-
ed greater than 10 feet apart

General living room, reclin-
er, kitchen sink, hallway,
bathroom sink

“now has home health,”
“caregiver at bedtime,”

“daughter visit for 3 daysa to
help”

Fall, neck, leg, ab-
dominal pain

Visitors (Social,
health workers)

PIR, magnetic
contact (door
use)

Total number of sensor
events in 24 hours, room ac-
tivity length and variety; ac-
count for time out of home

All sensors“didn’t attend exercise class,”
“didn’t feel like doing much,
just laid on sofa,” “mostly in

bed for 2 days”a

Fall; leg, hip, abdom-
inal pain; chest pain

Overall activity
level (in 24
hours)

aNursing record contained actual dates of participant-reported pain events.

Sleep was the leading pain-related behavioral theme, accounting
for 6 of the 13 described behaviors. Of the 11 participants, 8
(having 22 of 27 pain events [81%]) reported sleep changes that
were observed in the sensor data. Leading observable sleep
behaviors included location (more time in a recliner), timing
(bedtime, wake time, napping), hours of sleep at night, and sleep
quality. Six of 8 acute pain events (short-term pain not
associated with underlying pain) affected sleep, resulting in 2
people spending more time in their recliner chair, 1 person
experiencing decreased overall sleep (day and night) and an
inability to sleep in bed, and 3 people with restless sleep
(decreased sleep quality). Twelve of 19 flare pain events
(exacerbation of underlying pain) affected sleep, observed as
more time in bed during the day, earlier bedtimes, more time
spent in recliners, and intermittent changes in sleep location
across several months. Two walking characteristics were
observed: Walking speed slowed, and the number or length of
rest breaks increased. We observed this in the monthly
Timed-Up-and-Go tests and by calculating the difference in the
time it took to move between specific sensors (bed and toilet
or recliner and toilet).

Grooming activities were observed by reviewing bathroom sink,
bedroom, and bedroom closet sensor groupings. A lack of
grooming recorded in the nursing record as “stayed in bed 3
days on Dilaudid” was seen in the sensor data as a decrease in
overall time spent in the bathroom in the mornings and evenings.
A lack of grooming appeared to be associated with pain
intensity. For example, the nursing record reported that 1
participant said, “I just haven’t felt like leaving the house or
even showering. I mostly lay in bed all day.” Other pain-related
behavior modifications regarded participants’ overall activity
level (in 24 hours) and time spent out of the home. All acute
pain events resulted in decreased overall activity: 2 reduced

their out-of-home activities, and 2 had more visitors. Pain-event
interpretations, event start and stop times, ground truth
annotations, and themes were communicated to the computer
science team to support the training of PASH.

Quantitative
The random forest classifier that was used to distinguish pain
from pain-free days yielded a 3-fold cross-validation
classification accuracy of 0.70, sensitivity of 0.72, specificity
of 0.69, area under the receiver operating characteristic curve
value of 0.756, and area under the precision-recall curve of
0.777. We use the term pain-free to distinguish between pain
events and routine days; participants may not have actually been
pain-free. To check the impact of clinicians’ ground truth
annotations and the expert-guided approach, we used standard
anomaly detection techniques to determine classification
accuracy without expert guidance. We used iForest to determine
periods of time that were generally considered anomalous
without clinician guidance. Using the detected anomalies (no
clinician guidance) as indicators of pain events yielded a
predictive accuracy of 0.16, a difference from the random forest
(with clinician guidance) that was statistically significant
(P<.001). Using the regression tree, a moderate correlation
(r=0.415) was found between the behavior models and an
indication of pain on the corresponding days.

The decision tree classifier created a greedy ordering of behavior
features that best distinguish pain from pain-free days using
information gain as the ordering criterion. These results
highlighted 3 features that provided a high level of
differentiation between the 2 classes: normalized overall activity
level (lower for pain days), time spent in bed-toilet transition
activities (higher for pain days), and time spent in a favorite
chair (higher for pain days). Behaviors such as overall activity
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level, walking speed (or time spent in bed-toilet transition), and
time spent in a favorite chair (including sleeping there) were
supported by both qualitative and quantitative analytic findings
and may prove important to understanding pain experiences.

Discussion

Principal Findings
Our findings show preliminarily that ambient sensor-based data
can be used to train an ML model to recognize pain-associated
behaviors. These findings align with previous studies that
indicate ML algorithms are capable of detecting behaviors that
indicate a clinically relevant change in health status
[21,23,32,33,49,50]. Unlike these previous studies, which
primarily focused on associating behaviors with cognitive and
functional health, we focused on behaviors exhibited by persons
experiencing pain. While there is significant overlap in
pain-related behaviors and other known health-related behaviors
that machines can recognize, we uniquely discovered that one
behavior not typically included in pain interference scales (yet
recognized as physical activity sequences by ML algorithms)
point to the existence of increased pain: decreased grooming.
Importantly, almost all the qualitative themes (emerging from
sensor-based data) align with behaviors that are already
well-established with validated pain interference scales [26].
The exception is “Grooming.” Grooming is not specifically
identified as a factor in some of the most commonly used pain
interference measurement scales (eg, the Brief Pain Inventory);
yet, it could become an important target to assess pain
populations when using sensor monitoring. This is an example
of how smart home monitoring can generate new evidence-based
information to support pain management.

Given that the standard anomaly detection techniques used to
determine classification accuracy without expert guidance
yielded a 16% classification accuracy compared with the
expert-guided approach (predictive accuracy 70%), our findings
support the ideas that (1) clinicians, such as nurses with frontline
pain management experience, add value to the efficacy of the
ML model and (2) PASH offers possibilities as a clinical tool
for identifying pain-related behaviors. Though the model
demonstrated a pragmatically low predictive accuracy (70%)
for clinical applications and we did not ask it to discriminate
between pain subclasses (acute, flare), it performed quite well
given the small participant sample size (N=11) and small number
of captured pain events (N=27). PASH’s accuracy could improve
given a larger participant sample size and greater number of
pain-related training events interpreted by clinicians.

The question of whether all pain leads to the same pain-related
behaviors could be raised. Our smart home approach to pain
management cannot yet determine the type of pain. Further,
this approach to pain assessment cannot determine the source,
severity, or location of a person’s pain (eg, abdominal versus
head). However, given that ML models are capable of
recognizing clinically relevant behavior changes [21,29], it is
reasonable to consider that ML models could alert when
anomalous pain-related behaviors occur regardless of which
behavior the model chooses to prioritize or the pain
characteristics. Based on our preliminary findings, it is also

plausible that, with larger samples, ML models could be trained
to alert on unrealized pain-related behaviors. Such alerts, based
on naturalistic real-time data of persons experiencing and
attempting to manage pain, would be of significant value to
clinicians seeking to perform early interventions using minimal
pharmacologics. ML affords this opportunity while also
individualizing pain context and offering the potential to
discover new perspectives on pain. Randomized controlled trials
supporting current interventions do not account for individual
differences in pain experiences. Rather, they focus on average
pain responses, leaving persons who are outliers without optimal
care. Learning how individuals with pain uniquely express their
pain moment-by-moment could lead to novel understandings
of pain and afford the opportunity to provide effective, precise
interventions. To achieve such precision, PASH would benefit
from adding ecological momentary assessment, an
in-the-moment data capture technique for naturalistic settings
[51] now regarded as the most accurate method for capturing
real-world pain [52,53].

Clinical Implications
PASH offers clinicians a more objective, data-driven way of
knowing about pain. PASH could be of benefit to nonverbal or
cognitively impaired individuals [54]. Developing consistent,
reliable, objective pain measurements; detecting patterns in
behaviors and activities that exacerbate or relieve pain; and
accurately capturing responses to medications and other pain
treatments are potential scientific discoveries that could be
realized using an AI system like PASH. In addition, PASH
could add new sensor-based evidence of biopsychosocial pain
components and facilitate the combining of traditional and new
data to augment and support clinical assessments (with reduced
bias) and clinical decision making. We recognize that it is
impossible to know when an acute pain condition may transition
into chronic pain; yet, part of our enthusiasm about this work
is the future possibility of detecting minor and important changes
in this regard using sensor data. This would be an important
contribution to pain science.

Privacy and data security have been identified as primary
concerns for older adults considering the use of a smart home.
As ubiquity of data collection expands to the home environment
and is integrated into the delivery of health care, considerations
for data security are needed so risks for data breaches are
mitigated and identities of vulnerable persons, such as persons
in pain, cannot be stolen or easily reconstructed.

Bias
Clinicians and software developers can potentially introduce
bias into ML models [5,14,55]. Assumptions and generalized
perspectives regarding subpopulations and disease progression
tendencies incorporated in a clinician’s belief structure (overtly
or inadvertently) over time could impact the reporting of ground
truth. Likewise, software developers’ assumptions (recognized
or unrecognized) have potential to impact design approaches
and perceived end-user wants and needs. To avoid algorithm
bias, clinicians and computer scientists as well as study
participants need to be a diverse group of humans [56]. To
accomplish this, intentionality toward diversity in all aspects
of the design loop is required.
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Limitations
This project was limited by the larger study’s design and the
purposive sample size (number of participants, number and type
of pain events; both convenience samples). Using historic
datasets not specifically collected for discovering pain-related
behaviors as well as the small numbers of participants and pain
events limit generalizability and make the model susceptible to
overfit. Reliance on participants’ weekly recall of health
changes, including pain, limits accuracy of sensor data
interpretations. Not all qualitative and quantitative components
of this multiple methods, secondary analysis aligned. We do
not make an attempt to differentiate between depression and
pain-related behaviors in this study and acknowledge the
synergy between these conditions. Significant time and effort
are required for the expert-guided approach to ML, which
potentially limits scalability. Larger and more diverse samples,
a longitudinal design, and use of an ecological momentary
assessment for data collection are needed. Using ML to identify
and discriminate between pain phenotypes would be of benefit
to providers and patients. PASH should be tested in a
prospective study to identify true and false positive ratios.

Additionally, PASH needs to be trained to accommodate a
multiperson household.

Conclusion
Innovative monitoring and treatment options are needed to
support persons experiencing chronic pain, their caregivers, and
the health care professionals working alongside them to improve
their quality of life and health outcomes. Our findings suggest
that smart homes using AI monitoring tools are well-positioned
to become pragmatically useful at detecting clinically relevant
pain-related behaviors or relevant changes in those behaviors.
Using smart homes to provide automated pain assessment and
intervention could alleviate some of the pressure on patients
and clinicians working in the pain management health care
arena. Concrete, objective data demonstrating how people with
pain are affected and how they self-manage painful conditions
at home could be used to deepen understandings and innovate
solutions. Leveraging such technologies for health care delivery
should be done intentionally, and clinicians should participate
in technology development studies to interpret data, provide
meaningful context, and illuminate meaningful use possibilities
in all phases of development.
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ML: machine learning
PASH: pain-assessing smart home
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