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Abstract

Background: There has been growing interest in data synthesis for enabling the sharing of data for secondary analysis; however,
there is a need for a comprehensive privacy risk model for fully synthetic data: If the generative models have been overfit, then
it is possible to identify individuals from synthetic data and learn something new about them.

Objective: The purpose of this study is to develop and apply a methodology for evaluating the identity disclosure risks of fully
synthetic data.

Methods: A full risk model is presented, which evaluates both identity disclosure and the ability of an adversary to learn
something new if there is a match between a synthetic record and a real person. We term this “meaningful identity disclosure
risk.” The model is applied on samples from the Washington State Hospital discharge database (2007) and the Canadian COVID-19
cases database. Both of these datasets were synthesized using a sequential decision tree process commonly used to synthesize
health and social science data.

Results: The meaningful identity disclosure risk for both of these synthesized samples was below the commonly used 0.09 risk
threshold (0.0198 and 0.0086, respectively), and 4 times and 5 times lower than the risk values for the original datasets, respectively.

Conclusions: We have presented a comprehensive identity disclosure risk model for fully synthetic data. The results for this
synthesis method on 2 datasets demonstrate that synthesis can reduce meaningful identity disclosure risks considerably. The risk
model can be applied in the future to evaluate the privacy of fully synthetic data.

(J Med Internet Res 2020;22(11):e23139) doi: 10.2196/23139
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Introduction

Data Access Challenges
Access to data for building and testing artificial intelligence
and machine learning (AIML) models has been problematic in
practice and presents a challenge for the adoption of AIML
[1,2]. A recent analysis concluded that data access issues are

ranked in the top 3 challenges faced by organizations when
implementing AI [3].

A key obstacle to data access has been analyst concerns about
privacy and meeting growing privacy obligations. For example,
a recent survey by O’Reilly [4] highlighted the privacy concerns
of organizations adopting machine learning models, with more
than half of those experienced with AIML checking for privacy
issues. Specific to health care data, a National Academy of
Medicine/Government Accountability Office report highlights
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privacy as presenting a data access barrier for the application
of AI in health care [5].

Anonymization is one approach for addressing privacy concerns
when making data available for secondary purposes such as
AIML [6]. However, there have been repeated claims of
successful re-identification attacks on anonymized data [7-13],
eroding public and regulator trust in this approach [13-22].

Synthetic data generation is another approach for addressing
privacy concerns that has been gaining interest recently [23,24].
Different generative models have been proposed, such as
decision tree–based approaches [25] and deep learning methods
like Variational Auto Encoders [26,27] and Generative
Adversarial Networks (GANs) [28-31].

There are different types of privacy risks. One of them is identity
disclosure [23,24,32], which in our context means the risk of
correctly mapping a synthetic record to a real person. Current
identity disclosure assessment models for synthetic data have
been limited in that they were formulated under the assumption
of partially synthetic data [33-39]. Partially synthetic data permit
the direct matching of synthetic records with real people because
there is a one-to-one mapping between real individuals and the
partially synthetic records. However, that assumption cannot
be made with fully synthetic data whereby there is no direct
mapping between a synthetic record and a real individual.

Some researchers have argued that fully synthetic data does not
have an identity disclosure risk [29,40-46]. However, if the
synthesizer is overfit to the original data, then a synthetic record

can be mapped to a real person [47]. Since there are degrees of
overfitting, even a partial mapping may represent unacceptable
privacy risk. Therefore, identity disclosure is still relevant for
fully synthetic data.

Another type of privacy risk is attribution risk [42,47], which
is defined as an adversary learning that a specific individual has
a certain characteristic. In this paper, we present a
comprehensive privacy model that combines identity disclosure
and attribution risk for fully synthetic data, where attribution is
conditional on identity disclosure. This definition of privacy
risk is complementary to the notion of membership disclosure
as it has been operationalized in the data synthesis literature,
where similarity between real and synthetic records is assessed
[28,48]. We then demonstrate the model on health data.

Background
Key definitions and requirements will be presented, followed
by a model for assessing identity disclosure risk. As a general
rule, we have erred on the conservative side when presented
with multiple design or parameter options to ensure that patient
privacy would be less likely to be compromised.

Definitions—Basic Concepts
The basic scheme that we are assuming is illustrated in Figure
1. We have a real population denoted by the set P of size N. A
real sample R exists such that R⊆P, and that is the set that we
wish to create a synthetic dataset S from. Without loss of
generality, the real and synthetic samples are assumed to be the
same size, n.

Figure 1. The relationships between the different datasets under consideration. Matching between a synthetic sample record and someone in the
population goes through the real sample and can occur in 2 directions.

The data custodian makes the synthetic sample available for
secondary purposes but does not share the generative model
that is used to produce the synthetic sample. Therefore, our risk
scenario is when the adversary only has access to the synthetic
data.

Synthetic records can be identified by matching them with
individuals in the population. When matching is performed to
identify synthetic records, that matching is done on the
quasi-identifiers, which are a subset of the variables and are
known by an adversary [49]. For example, typically, a date of

birth is a quasi-identifier because it is information about
individuals that is known or that is relatively easy for an
adversary to find out (eg, from voter registration lists [50]).
More generally, an adversary may know the quasi-identifiers
about an individual because that individual is an acquaintance
of the adversary or because the adversary has access to a
population database or registry of identifiable information.

The variables that are not quasi-identifiers will be referred to
as sensitive variables. For example, if a dataset has information
about drug use, that would be a sensitive variable that could
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cause harm if it was known. In general, we assume that sensitive
values would cause some degree of harm if they become known
to an adversary.

To illustrate the privacy risks with fully synthetic data, consider
the population data in Table 1. Individuals in the population are
identifiable through their national IDs. We will treat the variable
of one’s origin as a quasi-identifier and one’s income as the
sensitive value. Table 2 displays the records from the real
sample, and Table 3 presents records for the synthetic sample.

As can be seen, there is only one North African individual and
one European individual in the population, and they both are
in the real sample. Therefore, these unique real sample records

would match 1:1 with the population and, therefore, would have
a very high risk of being identified. The population-unique
European and North African records are also in the synthetic
data, and thus, here we have a 1:1 match between the synthetic
records and the population.

The sensitive income value in the synthetic sample is very
similar to the value in the real sample for the North African
record. Therefore, arguably, we also learn something new about
that individual. The sensitive income value is not so close for
the European record, and therefore, even though we are able to
match on the quasi-identifier, we will not learn meaningful
information about that specific individual from synthetic data.

Table 1. Example of a population dataset, with one’s origin as the quasi-identifier and one’s income as the sensitive variable.

Income ($)OriginNational ID

110kJapanese1

100kJapanese2

105kJapanese3

95kNorth African4

70kEuropean5

100kHispanic6

130kHispanic7

65kHispanic8

Table 2. Example of a real sample, with one’s origin as the quasi-identifier and one’s income as the sensitive variable.

Income ($)Origin

70kEuropean

100kJapanese

130kHispanic

65kHispanic

95kNorth African

Table 3. Example of a synthetic sample, with one’s origin as the quasi-identifier and one’s income as the sensitive variable.

Income ($)Origin

115kJapanese

120kJapanese

100kNorth African

110kEuropean

65kHispanic

This example illustrates that it is plausible to match synthetic
sample records with individuals in the population and thus
identify these individuals, since a synthesized record can have
the same value as a real record on quasi-identifiers. However,
such identification is only meaningful if we learn somewhat
correct sensitive information about these matched individuals.
Learning something new is considered when evaluating
identifiability risks in practical settings [51] and is part of the
definition of identity disclosure [52]. Learning something new

is also similar to the concept of attribution risk as it has been
operationalized in the data synthesis literature [42,47].

Counting Matches
To formulate our model, we first need to match a synthetic
sample record with a real sample record. Consider the synthetic
sample in Table 3 with a single quasi-identifier, one’s origin;
we want to match the record with the “Hispanic” value with the
real sample in Table 2. We find that there are 3 matching records
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in the real sample. Without any further information, we would
select one of the real sample records at random, and therefore,
the probability of selecting any of the records is one-third.
However, there is no correct selection here. For example, we
cannot say that the third record in the real sample is the correct
record match, and therefore the probability of a correct match
is one-third; there is no 1:1 mapping between the fully synthetic
sample records and the real sample records.

The key information here is that there was a match—it is a
binary indicator. If there is a match between real sample record
s and a synthetic sample record, we can use the indicator Is

(which takes on a value of 1 if there is at least one match, and
0 otherwise).

Direction of Match
A concept that is well understood in the disclosure control
literature is that the probability of a successful match between
someone in the population and a real record will depend on the
direction of the match [53]. A randomly selected person from
the real sample will always have an equivalent record in the
population. However, a randomly selected record in the
population may not match someone in the real sample due to
sampling. The former is referred to as a sample-to-population
match, and the latter as a population-to-sample match.

In our hypothetical example, an adversary may know Hans in
the population and can match that with the European record in
the synthetic sample through the real sample. Or the adversary
may select the European record in the synthetic sample and
match that with the only European in a population registry
through the real sample, which happens to be Hans. Both
directions of attack are plausible and will depend on whether
the adversary already knows Hans as an acquaintance or not.

Now we can combine the 2 types of matching to get an overall
match rate between the synthetic record and the population: the
synthetic sample–to–real sample match and the real
sample–to–population match, and in the other direction. We
will formalize this further below.

Measuring Identification Risk
We start off by assessing the probability that a record in the real
sample can be identified by matching it with an individual in
the population by an adversary. The population-to-sample attack
is denoted by A and the sample-to-population attack by B.

Under the assumption that an adversary will only attempt one
of them, but without knowing which one, the overall probability
of one of these attacks being successful is given by the
maximum of both [49]:

max(A,B) (1)

The match rate for population-to-sample attacks is given by El
Emam [49] (using the notation in Table 4):

This models an adversary who selects a random individual from
the population and matches them with records in the real sample.
A selected individual from the population may not be in the real
sample, and therefore, the sampling does have a protective
effect.

Under the sample-to-population attack, the adversary randomly
selects a record from the real sample and matches it to
individuals in the population. The match rate is given by El
Emam [49]:

We now extend this by accounting for the matches between the
records in the synthetic sample and the records in the real
sample. Only those records in the real sample that match with
a record in the synthetic sample can then be matched with the
population. We define an indicator variable, Is=1, if a real
sample record matches a synthetic sample record. Therefore,
we effectively reduce the real sample to those records which
match with at least 1 record in the synthetic sample. The
population-to-synthetic sample identification risk can thus be
expressed as

And similarly, the synthetic sample-to-population identification
risk can be expressed as

And then we have the overall identification risk from equation
(1):

The population value of 1/F can be estimated using methods
described in various disclosure control texts [49,54-59].
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Table 4. Notation used in this paper.

InterpretationNotation

An index to count records in the real samples

An index to count records in the synthetic samplet

The number of records in the true populationN

The equivalence class group size in the real sample for a particular record s in the real sample. The equivalence class is defined
as the set of records with the same values on the quasi-identifiers.

fs

The equivalence group size in the population that has the same quasi-identifier values as record s in the real sample. The
equivalence class is defined as the set of records with the same values on the quasi-identifiers.

Fs

The number of records in the (real or synthetic) samplen

A binary indicator of whether record s in the real sample matches a record in the synthetic sampleIs

A binary indicator of whether the adversary would learn something new if record s in the real sample matches a record in the
synthetic sample

Rs

Number of quasi-identifiersk

Adjustment to account for errors in matching and a verification rate that is not perfectλ

The minimal percentage of sensitive variables that need to be similar between the real sample and synthetic sample to consider
that an adversary has learned something new

L

Adjusting for Incorrect Matches
In practice, 2 adjustments should be made to equation (6) to
take into account the reality of matching when attempting to
identify records [60]: data errors and the likelihood of
verification. The overall probability can be expressed as:

pr(a)pr(b|a)pr(c|a,b)

pr(a) is the probability that there are no errors in the data, pr(b|a)
is the probability of a match given that there are no errors in
the data, and pr(c|a,b) is the probability that the match can be
verified given that there are no errors in the data and that the
records match.

Real data has errors in it, and therefore, the accuracy of the
matching based on adversary knowledge will be reduced [53,61].
Known data error rates not specific to health data (eg, voter
registration databases, surveys, and data from data brokers) can
be relatively large [62-65]. For health data, the error rates have
tended to be lower [66-70], with a weighted mean of 4.26%.
Therefore, the probability of at least one variable having an

error in it is given by 1–(1–0.0426)k, where k is the number of
quasi-identifiers. If we assume that the adversary has perfect
information and only the data will have an error in it, then the

probability of no data errors is pr(a)=(1–0.0426)k.

A previous review of identification attempts found that when
there is a suspected match between a record and a real
individual, the suspected match could only be verified 23% of
the time [71], pr(c|a,b)=0.23. This means that a large proportion
of suspected matches turn out to be false positives when the
adversary attempts to verify them. A good example from a
published re-identification attack illustrating this is when the
adversary was unable to contact the individuals to verify the
matches in the time allotted for the study [11] (there are
potentially multiple reasons for this, such as people moved,
died, or their contact information was incorrect), which was
23%. It means that even though there is a suspected match,

verifying it is not certain, and without verification, it would not
be known whether the match was correct. In some of these
studies, the verification ability is confounded with other factors,
and therefore, there is uncertainty around this 23% value.

We can now adjust equation (6) with the λ parameter:

λ=0.23×(1–0.0426)k (8)

However, equation (8) does not account for the uncertainty in
the values obtained from the literature and assumes that
verification rates and error rates are independent. Specifically,
when there are data errors, they would make the ability to verify
less likely, which makes these 2 effects correlated. We can
model this correlation, as explained below.

The verification rate and data error rate can be represented as
triangular distributions, which is a common way to model
phenomena for risk assessment where the real distribution is
not precisely known [72]. The means of the distributions are
the values noted above, and the minimum and maximum values
for each of the triangular distributions were taken from the
literature (cited above).

We can also model the correlation between the 2 distributions
to capture the dependency between (lack of) data errors and
verification. This correlation was assumed to be medium,
according to Cohen guidelines for the interpretation of effect
sizes [73]. We can then sample from these 2 triangular
distributions inducing a medium correlation [74]. The 2 sampled
values can be entered into equation (8) instead of the mean
values, and we get a new value, λs, based on the sampled values.
We draw from the correlated triangular distributions for every
record in the real sample.

We can use the λs value directly in our model. However, to err
on the conservative side and avoid this adjustment for data errors
and verification over-attenuating the actual risk, we use instead
the midpoint between λs and the maximum value of 1. We define
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This more conservative adjustment can be entered into equation
(6) as follows:

Learning Something New
We now extend the risk model in equation (10) to determine if
the adversary would learn something new from a match. We let
Rs be a binary indicator of whether the adversary could learn
something new:

Because a real sample record can match multiple synthetic
sample records, the Rs is equal to 1 if any of the matches meets
the “learning something new” threshold.

In practice, we compute Is first, and if that is 0, then there is no
point in computing the remaining terms for that s record: we
only consider those records that have a match between the real
and synthetic samples since the “learning something new” test
would not be applicable where there is no match.

Learning something new in the context of synthetic data can be
expressed as a function of the sensitive variables. Also note that
for our analysis, we assume that each sensitive variable is at the

same level of granularity as in the real sample since that is the
information that the adversary will have after a match.

The test of whether an adversary learns something new is
defined in terms of 2 criteria: (1) Is the individual’s real
information different from other individuals in the real sample
(ie, to what extent is that individual an outlier in the real
sample)? And (2) to what extent is the synthetic sample value
similar to the real sample value? Both of these conditions would
be tested for every sensitive variable.

Let us suppose that the sensitive variable we are looking at is
the cost of a procedure. Consider the following scenarios: If the
real information about an individual is very similar to other
individuals (eg, the value is the same as the mean), then the
information gain from an identification would be low (note that
there is still some information gain, but it would be lower than
the other scenarios). However, if the information about an
individual is quite different, say the cost of the procedure is 3
times higher than the mean, then the information gain could be
relatively high because that value is unusual. If the synthetic
sample cost is quite similar to the real sample cost, then the
information gain is still higher because the adversary would
learn more accurate information. However, if the synthetic
sample cost is quite different from the real sample cost, then
very little would be learned by the adversary, or what will be
learned will be incorrect, and therefore, the correct information
gain would be low.

This set of scenarios is summarized in Figure 2. Only 1 quadrant
(top right) would then represent a high and correct information
gain, and the objective of our analysis is to determine whether
a matched individual is in that quadrant for at least L% of its
sensitive variables. A reasonable value of L would need to be
specified for a particular analysis.

Figure 2. The relationship between a real observation to the rest of the data in the real sample and to the synthetic observation, which can be used to
determine the likelihood of meaningful identity disclosure.

We propose a model to assess what the adversary would learn
from each sensitive variable. If the adversary learns something
new for at least L% of the sensitive variable, then we set R2=1;
otherwise, it is 0.

Nominal and Binary Sensitive Variables
We start off with nominal/binary sensitive variables and then
extend the model to continuous variables. Let Xs be the sensitive
variable for real record s under consideration, and let J be the
set of different values that Xs can take in the real sample.
Assume the matching record has value Xs=j where j∈J, and that
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pj is the proportion of records in the real sample that have the
same j value.

We can then determine the distance that the Xs value has from
the rest of the real sample data as follows:

dj=1–pj (12)

The distance is low if the value j is very common, and it is large
if the value of j is very different than the rest of the real sample
dataset.

Let the matching record on the sensitive variable in the synthetic
record be denoted by Yt=z, where z∈Z and Z is the set of
possible values that Yt can take in the synthetic sample; in
practice, Z⊆J. For any 2 records that match from the real sample
and the synthetic sample, we compare their values. The measure
of how similar the real value is to the rest of the distribution
when it matches is therefore given by dj×[Xs=Yt], where the
square brackets are Iverson brackets.

How do we know if that value indicates that the adversary learns
something new about the patient?

We set a conservative threshold; if the similarity is larger than
1 standard deviation, assuming that taking on value j follows a
Bernoulli distribution, we then have the inequality for nominal
and binary variables that must be met to declare that an
adversary will learn something new from a matched sensitive
variable.

The inequality compares the weighted value with the standard
deviation of the proportion pj.

Continuous Sensitive Variables
Continuous sensitive variables should be discretized using
univariate k-means clustering, with optimal cluster sizes chosen
by the majority rule [75]. Again, let X be the sensitive variable
under consideration, and Xs be the value of that variable for the
real record under consideration. We define the cluster's size in
the real sample with the value of the sensitive variable that
belongs to the matched real record under consideration as Cs.
For example, if the sensitive variable is the cost of a procedure
and it is $150, and if that specific value is in a cluster of size 5,
then Cs=5. The proportion of all patients that are in this cluster
compared to all patients in the real sample is given by ps.

In the same manner as for nominal and binary variables, the
distance is defined as

ds=ps (14)

Let Yt be the synthetic value on the continuous sensitive variable
that matched with real records. The weighted absolute difference
expresses how much information the adversary has learned,
ds×|Xs-Yt|.

We need to determine if this value signifies learning too much.
We compare this value to the median absolute deviation (MAD)

over the X variable. The MAD is a robust measure of variation.
We define the inequality:

ds×|Xs–Yt|<1.48×MAD (15)

When this inequality is met, then the weighted difference
between the real and synthetic values on the sensitive variable
for a particular patient indicates that the adversary will indeed
learn something new.

The 1.48 value makes the MAD equivalent to 1 standard
deviation for Gaussian distributions. Of course, the multiplier
for MAD can be adjusted since the choice of a single standard
deviation equivalent was a subjective (albeit conservative)
decision.

Comprehensive Evaluation of Attacks
An adversary may not attempt to identify records on their
original values but instead generalize the values in the synthetic
sample and match those. The adversary may also attempt to
identify records on a subset of the quasi-identifiers. Therefore,
it is necessary to evaluate generalized values on the
quasi-identifiers and subsets of quasi-identifiers during the
matching process.

In Multimedia Appendix 1, we describe how we perform a
comprehensive search for these attack modalities by considering
all generalizations and all subsets, and then we take the highest
risk across all combinations of generalization and
quasi-identifier subsets as the overall meaningful identity
disclosure risk of the dataset.

Methods

We describe the methods used to apply this meaningful identity
disclosure risk assessment model on 2 datasets.

Datasets Evaluated
We apply the meaningful identity disclosure measurement
methodology on 2 datasets. The first is the Washington State
Inpatient Database (SID) for 2007. This is a dataset covering
population hospital discharges for the year. The dataset has 206
variables and 644,902 observations. The second is the Canadian
COVID-19 case dataset with 7 variables and 100,220 records
gathered by Esri Canada [76].

We selected a 10% random sample from the full SID and
synthesized it (64,490 patients). Then, meaningful identity
disclosure of that subset was evaluated using the methodology
described in this paper. The whole population dataset was used
to compute the population parameters in equation (5) required
for calculating the identity disclosure risk values according to
equation (11). This ensured that there were no sources of
estimation error that needed to be accounted for.

The COVID-19 dataset has 7 variables, with the date of
reporting, health region, province, age group, gender, case status
(active, recovered, deceased, and unknown), and type of
exposure. A 20% sample was taken from the COVID-19 dataset
(20,045 records), and the population was used to compute the
meaningful identity disclosure risk similar to the Washington
SID dataset.
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Quasi-identifiers
State inpatient databases have been attacked in the past, and
therefore, we know the quasi-identifiers that have been useful
to an adversary. One attack was performed on the Washington

SID [11], and a subsequent one on the Maine and Vermont
datasets [10]. The quasi-identifiers that were used in these
attacks and that are included in the Washington SID are shown
in Table 5.

Table 5. Quasi-identifiers included in the analysis of the Washington State Inpatient Database (SID) dataset.

DefinitionVariable

patient's age in years at the time of admissionAGE

age in days of a patient under 1 year of ageAGEDAY

age in months for patients under 11 years of ageAGEMONTH

patient's state/county federal information processing standard (FIPS) codePSTCO2

patient's zip codeZIP

sex of the patientFEMALE

hospital admission yearAYEAR

admission monthAMONTH

admission date was on a weekendAWEEKEND

For the COVID-19 dataset, all of the variables, except exposure,
would be considered quasi-identifiers since they would be
knowable about an individual.

Data Synthesis Method
For data synthesis, we used classification and regression trees
[77], which have been proposed for sequential data synthesis
[78] using a scheme similar to sequential imputation [79,80].
Trees are used quite extensively for the synthesis of health and

social sciences data [34,81-88]. With these types of models, a
variable is synthesized by using the values earlier in the
sequence as predictors.

The specific method we used to generate synthetic data is called
conditional trees [89], although other tree algorithms could also
be used. A summary of the algorithm is provided in Textbox 1.
When a fitted model is used to generate data, we sample from
the predicted terminal node in the tree to get the synthetic values.

Textbox 1. Description of the sequential synthesis algorithm.

Let us say that we have 5 variables, A, B, C, D, and E. The generation is performed sequentially, and therefore, we need to have a sequence. Various
criteria can be used to choose a sequence. For our example, we define the sequence as A→E→C→B→D.

Let the prime notation indicate that the variable is synthesized. For example, A’ means that this is the synthesized version of A. The following are the
steps for sequential generation:

• Sample from the A distribution to get A’

• Build a model F1: E ∼ A

• Synthesize E as E’ = F1(A’)

• Build a model F2: C ∼ A + E

• Synthesize C as C’ = F2(A’, E’)

• Build a model F3: B ∼ A + E + C

• Synthesize B as B’ = F3(A’, E’, C’)

• Build a model F4: D ∼ A + E + C + B

• Synthesize D as D’ = F4(A’, E’, C’, B’)

The process can be thought of as having 2 steps, fitting and synthesis. Initially, we are fitting a series of models (F1, F2, F3, F4). These models make
up the generator. Then these models can be used to synthesize data according to the scheme illustrated above.

Risk Assessment Parameters
As well as computing the meaningful identity disclosure risk
for the synthetic sample, we computed the meaningful identity
disclosure risk for the real sample itself. With the latter, we let
the real sample play the role of the synthetic sample, which
means we are comparing the real sample against itself. This
should set a baseline to compare the risk values on the synthetic

data and allows us to assess the reduction in meaningful identity
disclosure risk due to data synthesis. Note that both of the
datasets we used in this empirical study were already
de-identified to some extent.

For the computation of meaningful identity disclosure risk, we
used an acceptable risk threshold value of 0.09 to be consistent
with values proposed by large data custodians and have been
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suggested by the European Medicines Agency and Health
Canada for the public release of clinical trial data (Multimedia
Appendix 1). We also set L=5%.

Ethics
This study was approved by the CHEO Research Institute
Research Ethics Board, protocol numbers 20/31X and 20/73X.

Results

The meaningful identity disclosure risk assessment results
according to equation (11) for the Washington hospital discharge
data are shown in Table 6. We can see that the overall
meaningful identity disclosure risk for the synthetic data is
significantly lower than the threshold of 0.09. We compare this
to the real data, where the overall reduction in risk due to
synthesis is approximately 5 times. The synthetic data is 4.5
times below the threshold.

The risk result on the real dataset is consistent with the empirical
attack results [11]: An attempt to match 81 individuals resulted
in verified, correct matches of 8 individuals, which is a risk
level of 0.099 and is more or less the same as the value that was
calculated using the current methodology. The real data risk
was higher than the threshold, and therefore, by this standard,
the original dataset would be considered to have an unacceptably
high risk of identifying individuals.

The results for the synthetic Canadian COVID-19 case data are
also below the threshold by about 10 times, and 4 times below
risk values for the real data, although the original data has a risk
value that is also below the threshold.

However, it is clear that the synthetic datasets demonstrate a
significant reduction in meaningful identity disclosure risk
compared to the original real dataset.

Table 6. Overall meaningful identity disclosure risk results. (The italicized values are the maximum risk values.)

Real data riskSynthetic data riskParameter

Sample-to-population riskPopulation-to-sample riskSample-to-population riskPopulation-to-sample risk

0.0980.0160.01970.00056Washington State Inpatient
Database

0.0340.0120.00860.0043Canadian COVID-19 cases

Discussion

Summary
The objective of this study was to develop and empirically test
a methodology for the evaluation of identity disclosure risks
for fully synthetic health data. This methodology builds on
previous work on attribution risk for synthetic data to provide
a comprehensive risk evaluation. It was then applied to a
synthetic version of the Washington hospital discharge database
and the Canadian COVID-19 cases dataset.

We found that the meaningful identity disclosure risk was below
the commonly used risk threshold of 0.09 between 4.5 times
and 10 times. Note that this reduced risk level was achieved
without implementing any security and privacy controls on the
dataset, suggesting that the synthetic variant can be shared with
limited controls in place. The synthetic data also had a lower
risk than the original data by between 4 and 5 times.

These results are encouraging in that they provide strong
empirical evidence to claims in the literature that the identity
disclosure risks from fully synthetic data are low. Further tests
and case studies are needed to add more weight to these findings
and determine if they are generalizable to other types of datasets.

Contributions of this Research
This work extends, in important ways, previous privacy models
for fully synthetic data. Let R’s be an arbitrary indicator of
whether an adversary learns something new about a real sample
record s. An earlier privacy risk model [42,47] focused on
attribution risk was defined as:

This is similar to our definition of learning something new
conditional on identity disclosure. Our model extends this work
by also considering the likelihood of matching the real sample
record to the population using both directions of attack,
including a comprehensive search for possible matches between
the real sample and synthetic sample. We also consider data
errors and verification probabilities in our model, and our
implementation of R’s allows for uncertainty in the matching
beyond equality tests.

Some previous data synthesis studies examined another type of
disclosure: membership disclosure [28,48]. The assessment of
meaningful identity disclosure, as described in this paper, does
not preclude the evaluation of membership disclosure when
generating synthetic data, and in fact, both approaches can be
considered as complementary ways to examine privacy risks in
synthetic data.

Privacy risk measures that assume that an adversary has
white-box or black-box access to the generative model [29] are
not applicable to our scenario, as our assumption has been that
only the synthetic data is shared and the original data custodian
retains the generative model.

Applications in Practice
Meaningful identity disclosure evaluations should be performed
on a regular basis on synthetic data to ensure that the generative
models do not overfit. This can complement membership
disclosure assessments, providing 2 ways of performing a broad
evaluation of privacy risks in synthetic data.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e23139 | p. 9http://www.jmir.org/2020/11/e23139/
(page number not for citation purposes)

El Emam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


With our model, it is also possible to include meaningful identity
disclosure risk as part of the loss function in generative models
to simultaneously optimize on identity disclosure risk as well
as data utility, and to manage overfitting during synthesis since
a signal of overfitting would be a high meaningful identity
disclosure risk.

Limitations
The overall risk assessment model is agnostic to the synthesis
approach that is used; however, our empirical results are limited
to using a sequential decision tree method for data synthesis.

While this is a commonly used approach for health and social
science data, different approaches may yield different risk values
when evaluated using the methodology described here.

We also made the worst-case assumption that the adversary
knowledge is perfect and is not subject to data errors. This is a
conservative assumption but was made because we do not have
data or evidence on adversary background knowledge errors.

Future work should extend this model to longitudinal datasets,
as the current risk model is limited to cross-sectional data.
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