
Original Paper

Use of Patient-Reported Symptoms from an Online Symptom
Tracking Tool for Dementia Severity Staging: Development and
Validation of a Machine Learning Approach

Aaqib Shehzad1*, BDS, MHI; Kenneth Rockwood1,2,3*, MD; Justin Stanley1*, BEng; Taylor Dunn1*, MSc; Susan E

Howlett1,3,4*, PhD
1DGI Clinical Inc, Halifax, NS, Canada
2Geriatric Medicine Research Unit, Nova Scotia Health Authority, Halifax, NS, Canada
3Division of Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
4Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
*all authors contributed equally

Corresponding Author:
Kenneth Rockwood, MD
Geriatric Medicine Research Unit
Nova Scotia Health Authority
5955 Veterans' Memorial Lane
Halifax, NS, B3H 2E9
Canada
Phone: 1 9024738687
Fax: 1 9024731050
Email: research@dgiclinical.com

Abstract

Background: SymptomGuide Dementia (DGI Clinical Inc) is a publicly available online symptom tracking tool to support
caregivers of persons living with dementia. The value of such data are enhanced when the specific dementia stage is identified.

Objective: We aimed to develop a supervised machine learning algorithm to classify dementia stages based on tracked symptoms.

Methods: We employed clinical data from 717 people from 3 sources: (1) a memory clinic; (2) long-term care; and (3) an
open-label trial of donepezil in vascular and mixed dementia (VASPECT). Symptoms were captured with SymptomGuide
Dementia. A clinician classified participants into 4 groups using either the Functional Assessment Staging Test or the Global
Deterioration Scale as mild cognitive impairment, mild dementia, moderate dementia, or severe dementia. Individualized symptom
profiles from the pooled data were used to train machine learning models to predict dementia severity. Models trained with 6
different machine learning algorithms were compared using nested cross-validation to identify the best performing model. Model
performance was assessed using measures of balanced accuracy, precision, recall, Cohen κ, area under the receiver operating
characteristic curve (AUROC), and area under the precision-recall curve (AUPRC). The best performing algorithm was used to
train a model optimized for balanced accuracy.

Results: The study population was mostly female (424/717, 59.1%), older adults (mean 77.3 years, SD 10.6, range 40-100)
with mild to moderate dementia (332/717, 46.3%). Age, duration of symptoms, 37 unique dementia symptoms, and 10
symptom-derived variables were used to distinguish dementia stages. A model trained with a support vector machine learning
algorithm using a one-versus-rest approach showed the best performance. The correct dementia stage was identified with 83%
balanced accuracy (Cohen κ=0.81, AUPRC 0.91, AUROC 0.96). The best performance was seen when classifying severe dementia
(AUROC 0.99).

Conclusions: A supervised machine learning algorithm exhibited excellent performance in identifying dementia stages based
on dementia symptoms reported in an online environment. This novel dementia staging algorithm can be used to describe dementia
stage based on user-reported symptoms. This type of symptom recording offers real-world data that reflect important symptoms
in people with dementia.
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Introduction

Background
People living with dementia experience a variety of symptoms.
These symptoms cross several domains beyond cognition,
including executive function (eg, planning [1]), behavior (eg,
agitation [2]), and physical manifestations (eg, mobility [3]).
This heterogeneity of symptoms is further increased by changes
in daily occurrence and manifestation. Furthermore, these
combinations can vary both between people and within people
across time [4-6]. This variability can be informative.
Hallucinations, for example, have been reported in all stages of
Alzheimer disease but most commonly at later stages [7]. In
contrast, in people with Lewy body dementia, they can be a
presenting feature [8]. The complex nature of dementia poses
diagnostic and management challenges for health care
professionals [9,10]. A key strategy is recognizing patterns,
which forms the basis of dementia staging. Pattern recognition
can be enhanced by tracking dementia symptoms early in the
course of progressive cognitive impairment. This is especially
useful when employing an approach that allows common but
under-studied symptoms (eg, verbal repetition [11] or misplacing
objects [12]), which may nevertheless be informative when
assembled in an accessible fashion [5,6] or respond to treatment
[13], to be recognized and evaluated.

Requirement for Dementia Staging Tools
To allow individual applicability, any treatment approach must
consider the person’s dementia stage [14]. Several
clinician-facilitated dementia tools allow face-to-face staging,
including the Global Deterioration Scale (GDS) [15], the
Functional Assessment Staging Test (FAST) [16], the
Dependence Scale [17], and the Clinical Dementia Rating Scale
Sum of Boxes [18]. Defining dementia from unadjudicated
online encounters (ie, where people living with dementia
symptoms or their care partners track their symptoms in a
web-based tool) is an important challenge that could improve
both early detection and treatment evaluation [19]. Even so,
dementia staging from solely online interactions has rarely been
explored [20-22].

Online symptom tracking tools are common ways to help health
care professionals understand dementia symptoms. They can
also be valuable as education tools. SymptomGuide Dementia
(DGI Clinical Inc) is an online dementia symptom tracking tool
that provides a library of common and distressing symptoms.
It serves as an educational tool and allows a user to identify
symptoms of concern and track their change over time [5,23].
Earlier, we developed an algorithm to stage dementia severity
into 4 levels of cognitive impairment for use with
SymptomGuide Dementia or other similar databases using
clinician-staged symptom profiles of 320 people [24]. Here, we
aimed to develop a new staging algorithm using machine
learning techniques with training data from a larger and more
diverse set of clinical data and to validate this approach with
well-established clinical dementia staging tools.

Methods

Participants and Procedure
Data for this study were obtained from a tertiary care memory
clinic in Halifax, Nova Scotia, Canada from 2007 to 2013 as
well as data from a study in long-term care, and an open-label
trial of donepezil in vascular and mixed dementia (VASPECT)
clinical trial [25,26]. Data from patients and family members
(care partners) were collected using SymptomGuide Dementia
in its electronic (web-based) or paper format. In addition,
participants (N=717) underwent standard clinical assessments,
including staging of dementia with one of two clinical tests, the
GDS or the FAST. Both GDS and FAST have excellent
reliability and validity [16,27]. Additionally, FAST stages have
been shown to be concordant with GDS stages, and a correlation
of 0.9 has been observed between them [28]. The GDS and
FAST scores were interpreted as follows: a score of 3 indicated
mild cognitive impairment, a score of 4 indicated mild dementia,
a score of 5 indicated moderate dementia, and a score of 6
indicated severe dementia. These stages were used as target
variables for classification prediction. All 4 stages were treated
as discrete; therefore, discriminative models were used to
perform the classification task. Only data collected at baseline
(first visit) for each participant were prepared and used to train
the models.

A web-based symptom tracking tool aimed to support caregivers
of persons living with dementia, SymptomGuide Dementia,
was used for data capture and storage for data obtained from
the 3 sources. The symptoms can be either selected from an
existing library of standardized symptoms or created by the
caregiver. For each of the standardized symptoms, several
plain-language descriptors are present. These provided another
submenu for selection by the user. For each symptom selected,
users were asked to indicate the frequency of the symptom and
rank all the symptoms from most to least important. Users were
also asked to input demographic information (eg, age and
gender) and health-related information (eg, duration since first
symptom), which was attached to their symptom profiles.
Symptom information for each participant in the 3 sources was
coded in the same format as represented in the online database.
We, therefore, refer to participants when describing their
characteristics and user profiles in relation to the representation
of their symptoms.

Data Preparation
Users who did not select at least one symptom from the existing
library of standardized symptoms were excluded from the
analysis. Any patient age reported as less than 40 years was
replaced with the group average for the respective stage. This
was done with the assumption that the survey question was
misinterpreted, and the reported age was the care partner’s age
not the age of the participant with dementia. Each symptom
was represented by the ratio of descriptors selected for that
symptom to the total number of descriptors selected across all
symptoms by the participant. In addition to individual
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symptoms, the ratio of selected descriptors and ratio of reported
frequency of all symptoms were grouped into the following 5
domains: Behavioral Function, Cognitive Function, Daily
Function, Executive Function, and Physical Manifestations for
each participant [29]. Finally, age and the duration of symptoms
were also included as features (variables used for prediction).
All features were continuous except for the duration of
symptoms which was treated as categorical data (I don't know,
1-3 months, 3-6 months, 6-12 months, 1-2 years, 1 year or
more). Of the 56 symptoms in the standardized menu in
SymptomGuide Dementia, 37 symptoms were selected to be
included in the final set of features. This was accomplished by
pruning symptoms based on a minimum occurrence of at least
15 times. As before in the algorithm developed with 320 users
[24], here we maintained the 4 common clinical classifications
of mild cognitive impairment, and mild dementia, moderate
dementia, and severe dementia. Of the 717 users, a majority
(332, 46.3%) were clinically staged as having mild dementia
with the FAST or GDS, 133 (18.5%) as having mild cognitive
impairment, 138 (19.2%) as having moderate dementia, and
114 (15.8%) as having severe dementia.

Since the different dementia stages were not equally represented
in the data set, the minority stages (eg, mild cognitive
impairment, moderate dementia, and severe dementia) were
oversampled and the most represented stage (mild dementia)
was undersampled in the machine learning pipeline.
Oversampling was done with the borderline variant of the
synthetic minority oversampling technique algorithm with a
target of increasing the minority stage sizes by approximately
1.45 times their original size [30]. Undersampling was done
with the neighborhood cleaning rule algorithm that focuses on

data cleaning rather than data reduction. This technique has
been previously shown to improve identification of minority
classes in machine learning [31].

Building the Model
The models were adjudicated and iterated using measures of
balanced accuracy, precision (also known as positive predictive
value), recall (also known as sensitivity), Cohen κ, area under
the receiver operating characteristics curve (AUROC), and area
under the precision-recall curve (AUPRC). Balanced accuracy
in this study was the average of individual accuracy for each
stage [32]. In a balanced data set, this score would represent the
accuracy. Data were stratified by stage and randomly split with
70% of the data used as a training data set (n=502) and 30% of
the data used as a test data set (n=215) for validation.

The use of a single set of data to conduct both model selection
and model training can lead to overfitting and selection bias
[33]. To address this, we used a nested cross-validation approach
as described in Figure 1. The average inner cross-validation
estimates of the primary selection criterion were maximized by
selecting optimal hyperparameters from a range of possible
values. The inner and outer cross-validation loops were repeated
3 times to account for variance arising from choice of data set
splits [34,35]. We used 5-fold cross validation for both the inner
and the outer loops. We used balanced accuracy here as the
primary selection criterion for the hyperparameter tuning in the
inner loop. Balanced accuracy was also used for the outer loop
to provide a measure of model performance. The following
machine learning algorithms were used to train models: support
vector machine, k-nearest neighbor, random forest, neural
network, logistic regression, stochastic gradient boosting.

Figure 1. Pseudocode representation of the nested cross-validation procedure used during model selection trials.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e20840 | p. 3http://www.jmir.org/2020/11/e20840/
(page number not for citation purposes)

Shehzad et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The best performing algorithm was then trained on the complete
training data set with nested cross-validated hyperparameter
tuning to model the data. To understand model performance
and guard against overfitting, the model was tested against the
test data set to obtain performance estimates of following
metrics: weighted precision, weighted recall, balanced accuracy,
Cohen κ, AUROC, and AUPRC. The final model was further
assessed with a permutation test, which measured the likelihood
of obtaining the observed accuracy by chance. This was done
by repeating the classification (training and testing) procedure
200 times after randomly shuffling the data and permuting the
labels in each iteration. The scores obtained with the permuted
data were compared with the scores from the original data. We
computed the probability of obtaining a score with permuted
data that was better than with original data. Obtaining a small
probability value rejects the null hypothesis that our model
performed better than random chance and that the model had
learned a real relationship between our data and dementia stages
[36]. In other words, this process estimates how likely it is to
obtain the observed classification performance on the test set
by chance [37].

All data processing, analysis, and visualization were performed
using Python (version 3.6; 64-bit) libraries (numpy, version
1.18.1; scipy, version 1.4.1; matplotlib, version 3.1.2; pandas,
version 0.25.3) [38-42]. Classification algorithms were
processed and analyzed using scikit-learn (version 0.22.1) and
scipy [39,43]. The synthetic minority oversampling technique
and neighborhood cleaning rule were implemented using
imbalanced-learn (version 0.6.1) [44].

Results

Participants
This study used data from memory clinic (n=420), a long-term
care study (n=169), and the VASPECT clinical trial (n=128)
for a participant sample that allows 717 user profiles in people
with clinical diagnosis and staging (Table 1) [25,26]. The mean
participant age was 77.3 years (SD 10.6 years), and 59.1% of
the participants were women. The mean FAST score was 4.0
(SD 0.9), and the mean GDS score was 4.8 (SD 1.9). The
participants identified a median of 5 symptoms (range 1-27).
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Table 1. Descriptive statistics of participants from clinical studies, by data source.

TotalVASPECTa open-label trialLong-term careMemory clinicCharacteristic

717 (100)128 (18.0)169 (23.5)420 (58.5)Sample size, n (%)

77.3 (10.6)75.4 (9.2)81.0 (19.1)74.6 (12.5)Age (in years), mean (SD)

4.1 (0.9)4.3 (0.5)5.3 (1.1)4.0 (0.9)FAST, mean (SD)

5.2 (1.1)—b5.2 (1.0)4.8 (1.9)GDS, mean (SD)

5 (1-27)6 (1-27)4 (1-12)5 (1-14)Reported symptoms, median (range)

Sex, n (%)

424 (59.1)67 (52.3)129 (76.3)228 (54.3)Female

293 (40.9)61 (47.7)40 (23.7)192 (45.7)Male

4.1 (0.9)4.3 (0.5)5.3 (1.1)4.0 (0.9)FAST, mean (SD)

5.2 (1.1)—5.2 (1.0)4.8 (1.9)GDS, mean (SD)

5 (1-27)6 (1-27)4 (1-12)5 (1-14)Reported symptoms, median (range)

Reported symptoms by dementia stage, median (range)

4 (1-14)—2 (2-4)3 (1-14)Mild cognitive impairment

5 (1-24)6 (1-24)3 (1-8)5 (1-11)Mild dementia

4.5 (1-27)7 (2-27)4 (1-7)5.5 (1-11)Moderate dementia

5 (1-13)10 (7-13)5 (2-12)5 (2-11)Severe dementia

Stage, n (%)

133 (18.5)—7 (4.1)126 (30.0)Mild cognitive impairment

332 (46.3)96 (75)33 (19.5)203 (48.3)Mild dementia

138 (19.2)30 (23.4)50 (29.6)58 (13.8)Moderate dementia

114 (15.8)2 (1.5)79 (46.7)33 (7.8)Severe dementia

Age (years), mean (SD)

73.2 (12.2)—87.5 (9.9)71.2 (14.3)Mild cognitive impairment

76.4 (9.8)74.7 (8.8)81.5 (16.3)75.3 (11.8)Mild dementia

80 (9.4)77.5 (9.9)83.6 (14.1)77.1 (10.1)Moderate dementia

81.2 (9.7)75 (16.9)78.5 (23)77.3 (10.7)Severe dementia

aAn open-label trial of donepezil in vascular and mixed dementia.
bNo data from this source.

Symptoms
Table 2 shows the frequency of dementia symptoms reported
for user profiles and classified by dementia stage as assessed
clinically with the FAST and GDS tools.

Table 2 illustrates the relationship between symptom frequency
and clinical dementia stage. There was a sharp increase in the
frequency of aggression, wandering, and incontinence in patients
with severe dementia. By contrast, symptoms such as memory
of recent events, repetitive questioning, and initiative declined
with increasing dementia severity.
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Table 2. Mean frequency of reported user profile symptoms of clinical study participants by clinically defined dementia stage.

Severe dementia, n (%)Moderate dementia, n (%)Mild dementia, n (%)Mild cognitive impairment, n (%)Symptom

32 (28.1)4 (2.9)7 (2.1)1 (0.8)Aggression

19 (16.7)23 (16.7)82 (24.7)35 (26.3)Anxiety & worry

9 (7.9)12 (8.7)28 (8.4)0 (0)Appetite

19 (16.7)13 (9.4)7 (2.1)5 (3.8)Balance

6 (5.3)11 (8.0)9 (2.7)0 (0)Bathing

19 (16.7)20 (14.5)29 (8.7)4 (3.0)Delusions & paranoia

18 (15.8)15 (10.9)28 (8.4)3 (2.3)Disorientation to place

23 (20.2)25 (18.1)41 (12.3)4 (3.0)Disorientation to time

7 (6.1)15 (10.9)13 (3.9)1 (0.8)Dressing

9 (7.9)3 (2.2)5 (1.5)0 (0)Eating

1 (0.9)11 (8.0)30 (9.0)5 (3.8)Financial management

2 (1.8)2 (1.4)12 (3.6)6 (4.5)Following instructions

12 (10.5)11 (8.0)15 (4.5)0 (0)Hallucinations

0 (0)5 (3.6)17 (5.1)2 (1.5)Hobbies & games

5 (4.4)13 (9.4)39 (11.7)4 (3.0)Household chores

23 (20.2)6 (4.3)6 (1.8)1 (0.8)Incontinence

2 (1.8)6 (4.3)19 (5.7)4 (3.0)Insight

19 (16.7)39 (28.3)148 (44.6)46 (34.6)Interest initiative

28 (24.6)24 (17.4)92 (27.7)19 (14.3)Irritability frustration

25 (21.9)24 (17.4)42 (12.7)13 (9.8)Judgment

21 (18.4)15 (10.9)59 (17.8)18 (13.5)Language difficulty

6 (5.3)13 (9.4)44 (13.3)3 (2.3)Low mood

2 (1.8)19 (13.8)57 (17.2)10 (7.5)Meal preparation cooking

12 (10.5)24 (17.4)29 (8.7)2 (1.5)Memory for names faces

1 (0.9)16 (11.6)37 (11.1)0 (0)Memory of future events

13 (11.4)21 (15.2)33 (9.9)8 (6.0)Memory of past events

30 (26.3)81 (58.7)233 (70.2)100 (75.2)Memory of recent events

5 (4.4)11 (8)53 (16.0)21 (15.8)Misplacing or losing objects

30 (26.3)16 (11.6)14 (4.2)4 (3.0)Mobility

4 (3.5)24 (17.4)76 (22.9)8 (6.0)Operating gadgets/appliances

28 (24.6)36 (26.1)26 (7.8)7 (5.3)Personal care hygiene

4 (3.5)7 (5.1)15 (4.5)2 (1.5)Physical complaints

18 (15.8)50 (36.2)169 (50.9)51 (38.3)Repetitive questions stories

4 (3.5)8 (5.8)8 (2.4)1 (0.8)Shadowing

11 (9.6)22 (15.9)64 (19.3)20 (15.0)Social interaction/withdrawal

29 (25.4)10 (7.2)2 (0.6)0 (0)Wandering

Model Selection
Six machine learning models were tested on the training data
set. Table 3 illustrates the models used and the validation data
obtained for each model in terms of accuracy, precision, and
recall when predicting dementia stage. The table also indicates

values for the Cohen κ, which measures the agreement between
the dementia stage predicted by the model and the dementia
stage as determined clinically. At the end of the model selection
process, the model trained with a support vector machine was
selected as the best performing model when used with the
training data set (Table 3).
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Table 3. Performance of candidate models with the training data set.

Cohen κ, mean (SD)Recall (weighted),
mean (SD)

Precision (weighted),
mean (SD)

Balanced accuracy,
mean (SD)

Model

0.65 (0.09)0.75 (0.06)0.75 (0.07)0.73 (0.07)Support vector machine

0.62 (0.10)0.72 (0.07)0.73 (0.07)0.72 (0.08)k-nearest neighbor

0.62 (0.09)0.73 (0.07)0.74 (0.08)0.70 (0.07)Random forest

0.54 (0.13)0.66 (0.09)0.67 (0.11)0.66 (0.10)Neural network

0.53 (0.10)0.66 (0.08)0.66 (0.08)0.65 (0.08)Logistic regression

0.58 (0.10)0.70 (0.07)0.70 (0.07)0.68 (0.07)Gradient boosting

Next, the support vector machine was trained and optimized
with a nested cross-validated grid search on the complete
training set. The final trained model was used with the test data
set to obtain performance metrics for this new data subset
(balanced accuracy 0.85; AUROC 0.96, weighted precision
0.87; weighted recall 0.86; AUPRC 0.91), indicating excellent
model performance.

Final Model Prediction Based on Dementia Stage
The ability of the support vector machine model to predict each
of the 4 dementia stages showed excellent precision and recall
for all dementia stages (Table 4).

To better demonstrate predictions made across the dementia
stages by the model, a confusion matrix is presented in Figure
2.

To determine the relationship between the true positives and
false positives identified by the model, receiver operating
characteristic curves of the model’s output were plotted (Figure
3). The AUROC for the overall model was high (AUROC 0.96).
The final model achieved the best results when classifying
severe dementia (AUROC 0.98) and mild cognitive impairment
(AUROC 0.97).

Table 4. Precision and recall of model prediction by dementia stage.

RecallPrecisionStage

0.870.85Mild cognitive impairment

0.890.82Mild dementia

0.800.91Moderate dementia

0.860.93Severe dementia
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Figure 2. Confusion matrix of the trained model. Each row of the matrix represents the instances of actual dementia stage while each column represents
the instances of predicted dementia stage. Counts are colored from the highest cell (darker) to the lowest (lighter). The top-left to bottom-right diagonal
cells count correctly predicted dementia stages.

Figure 3. Receiver operating characteristic curves for each dementia stage predicted by the model. AUC: area under the curve; ROC: receiver operating
characteristics.

Another way to assess the relationship between false positives
and false negatives is to use a precision-recall curve, where high
precision indicates a low false positive rate, and high recall
denotes a low false negative rate. Figure 4 shows precision-recall
curves of the overall model output by dementia stage. The

overall model performed well (AUPRC 0.91). When AUPRC
metrics were compared for individual dementia stages, the model
performed best when classifying severe dementia (AUPRC
0.95) and mild cognitive impairment (AUPRC 0.93). It was
somewhat less able to discriminate between mild and moderate

J Med Internet Res 2020 | vol. 22 | iss. 11 | e20840 | p. 8http://www.jmir.org/2020/11/e20840/
(page number not for citation purposes)

Shehzad et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


dementia (Figure 4). These observations are similar to those
seen when these relationships were evaluated with receiver
operating characteristic curves as shown in Figure 3.

To confirm that the model could accurately predict dementia
stage, we performed a permutation test, where we used randomly

mislabeled data in several iterations, grouped about the level
expected by chance (Figure 5). The random permutation scores
had a balanced accuracy between 0.2 and 0.3. This was well
short of the classification score for the actual data, which had
a balanced accuracy of 0.85, and a probability of obtaining this
by chance <.005.

Figure 4. Precision-recall curves for each dementia stage as predicted by the model. AUC: area under the curve; PRC: precision-recall curve.

Figure 5. The classification scores obtained from models trained on permuted data were well short of scores obtained with the model trained on original
data.
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Discussion

This study aimed to stage dementia severity based on symptom
profiles constructed with a standardized symptom menu from
an online symptom tracking tool. We found that a support vector
machine model consistently predicted each of the 4 dementia
stages based on online symptom data reported by caregivers of
persons with dementia. This approach to staging dementia
severity will allow us to gain insights from online reported
symptom data that can be collected by SymptomGuide Dementia
and other similar platforms. In this way, symptom reporting can
facilitate understanding dementia progression. For example,
earlier work from this database suggests important qualitative
differences in symptoms such as misplacing objects (eg, with
dementia progression, less instances of simply forgetting where
an item might be and more instances of placing items in an odd
place [6]) or verbal repetition (eg, repetitive questioning, most
often seen in mild dementia; it is characteristically
dementia-defining when seen with early functional
decline—difficulty operating familiar gadgets or appliances
[5]). In this way, allowing the patients and carer voices to
contribute to our understanding of dementia phenomenology
can lead to recognizing patterns of both progression—as
above—and of treatment [13]. The updated staging algorithm
described here will further such inquiries.

We trained multiple machine learning algorithms and selected
the best performing algorithm to use for our dementia stage
classification task. A support vector machine model using a
one-versus-rest approach demonstrated the best performance
during model selection trials. The selected algorithm was then
trained on the complete training data and validated using a test
data set. The final model demonstrated excellent performance
in discriminating dementia stages (balanced accuracy 0.85,
AUROC 0.96). Receiver operating characteristic curves tend
to present an optimistic picture of performance when the data
set has a skewed distribution of the target variable [45]. For this
reason, the performance of the model was also assessed with
precision-recall curves. These too demonstrated that the model
performed well, especially when classifying severe dementia.
Since mild cognitive impairment and severe dementia can be
considered bookends to the dementia spectrum, we can be
reassured of both the model’s precision and recall in classifying
these extremes. For example, our model correctly classified a
75-year-old participant who reported 4 symptoms (social
interaction/withdrawal, irritability and frustration, interest and
initiative, aggression) as having mild cognitive impairment and
a 76-year-old participant as having severe dementia based on a
different set of 3 symptoms (wandering, delusions and paranoia,
and aggression). The model was somewhat less accurate when
classifying mild and moderate dementia. This is perhaps not
surprising as symptom profiles in the middle of the dementia
spectrum can exhibit a higher degree of overlap and can be
difficult to distinguish clinically as well [46].

The very low probability value from the permutation tests
(<.005) reassures us that the model learned a real relationship
between the data and dementia stages. It demonstrates that the
classification performance of the model with respect to the test
set is unlikely to have occurred as a result of chance.

Our data must be interpreted with caution. For model stability,
symptoms were eliminated based on a set threshold of
occurrence. While this worked well here, it might not hold in
a larger data set. In addition, we used 3 separate data sets that
used variations of our standardized symptom menu, with
differences in the composition and order of presentation of the
symptoms. Since most of these patient symptom profiles were
constructed with the supervision of a clinician or a rater, the
model may be less generalizable to web-based symptom profiles
constructed without clinician facilitation or guidance.

Several other recent studies have applied machine learning
algorithms for dementia research [47-51]. Most have used
neuroimaging or biomarker data to train these models. Most
models trained with neuroimaging data focus on distinguishing
individual patients from healthy controls, whereas our model
distinguished between different stages of dementia severity
[52]. Extraction of image characteristics from neuroimaging
data can be susceptible to variations in the scanner hardware
and image acquisition protocols. This can produce models that
may not be generalizable when applied to data acquired from
different imaging sources [52]. Additionally, scans such as
amyloid positron emission tomography imaging, used for
diagnostic certainty regarding Alzheimer disease, can cost
upward of US $4000. Machine learning models that do not rely
neuroimaging data to stage or diagnose dementia, if used
clinically, can potentially reduce the number of participants that
require expensive neuroimaging tests [53].

More recent studies have also used data extracted from
electronic health records which may include structured and
unstructured data such as clinical notes, drug prescriptions, and
diagnosis codes to develop predictive models [54-60]. These
models have been trained to predict future onset of dementia
[53-56] or diagnose undetected dementia [57,58,60] with varying
levels of accuracy and can potentially serve as case-finding
algorithms to target high-risk patients with further clinical
assessments to confirm dementia diagnosis [58]. However, these
models are contingent on the availability of consolidated
electronic health records, sufficient health care interactions by
the patient, and correctly transcribed notes and diagnosis codes
[55,57,61]. In contrast, the model developed here does not use
data extracted from electronic health records, rather it predicts
dementia severity based on self-reported caregiver data and can
be used to potentially unlock insights from online self-reported
symptoms.

Few studies have used machine learning models to stage the
severity of dementia or differentiate types of dementia [62].
One such study uses a combination of cognitive function tests
and clinicians’ assessments of patients to assess dementia
severity on the Clinical Dementia Rating Scale [63]. On the
other hand, a combination of neuropsychiatric assessment,
mental status examination, and laboratory investigations have
also been used to classify dementia severity with a high degree
of accuracy [64]. Such approaches require trained interviewers
and clinician assessment to obtain input data for the predictive
models. This is in contrast to the model developed here, which
is designed to stage dementia severity based on self-reported
data thereby potentially offering a more economically viable
screening tool for dementia severity.
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Even though our sample size (n=717) is relatively small, it is
larger than that of other machine learning studies in dementia,
except for a 2019 report that used administrative data to
diagnose incident dementia [47]. The advantage of utilizing
patient reported outcomes such as SymptomGuide is that it
reflects the lived experience of the patient or caregiver and
focuses on what is meaningful to them. It is easier to source
and computationally less expensive to train models when
compared to imaging data or complex biomarkers [48,49].
Interestingly, Chiu et al [50] reported that a machine learning
algorithm could be used to derive a screening instrument to
distinguish normal cognition, mild cognitive impairment, and
dementia. This further emphasizes that dementia symptoms can
be used with machine learning to characterize various stages of
dementia. On the other hand, our approach used a
patient-derived library of symptoms to train a machine learning
model, whereas Chui et al used machine learning to reduce the
dimensionality of their screening instrument [50]. It is likely
that, given the high dimensionality of late-life dementia,
different machine learning approaches may be useful in
dementia research. In our earlier work, we developed a model
based on a neural network trained on 320 symptom profiles

reported by caregivers of persons with dementia [24]. This study
expands on our previous work by increasing the sample size
and diversity of the training data. We also examined the
performance of multiple machine learning algorithms on the
available data to maximize our interpretation. The support vector
machine outperformed the neural network approach, highlighting
the advantage of the current approach.

Future studies could include integrating the model developed
here with an electronic interface by which end users could build
a symptom profile and obtain the dementia stage. This
instrument also has the potential to facilitate physician-patient
discussions or to aid screening patients before their in-person
memory clinic visit. This model can potentially be applied on
other web-based data sets that contain symptom profiles of
persons affected with dementia.

The model presented here can classify dementia stages from
individualized symptom data. This real-world evidence will
enable us to better understand the symptoms that matter most
to people affected by dementia at each dementia stage. That
information can greatly expand access to understanding the
lived experience of dementia.
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