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Abstract

Background: Machine learning applications in health care have increased considerably in the recent past, and this review
focuses on an important application in psychiatry related to the detection of depression. Since the advent of computational
psychiatry, research based on functional magnetic resonance imaging has yielded remarkable results, but these tools tend to be
too expensive for everyday clinical use.

Objective: This review focuses on an affordable data-driven approach based on electroencephalographic recordings. Web-based
applications via public or private cloud-based platforms would be a logical next step. We aim to compare several different
approaches to the detection of depression from electroencephalographic recordings using various features and machine learning
models.

Methods: To detect depression, we reviewed published detection studies based on resting-state electroencephalogram with final
machine learning, and to predict therapy outcomes, we reviewed a set of interventional studies using some form of stimulation
in their methodology.

Results: We reviewed 14 detection studies and 12 interventional studies published between 2008 and 2019. As direct comparison
was not possible due to the large diversity of theoretical approaches and methods used, we compared them based on the steps in
analysis and accuracies yielded. In addition, we compared possible drawbacks in terms of sample size, feature extraction, feature
selection, classification, internal and external validation, and possible unwarranted optimism and reproducibility. In addition, we
suggested desirable practices to avoid misinterpretation of results and optimism.

Conclusions: This review shows the need for larger data sets and more systematic procedures to improve the use of the solution
for clinical diagnostics. Therefore, regulation of the pipeline and standard requirements for methodology used should become
mandatory to increase the reliability and accuracy of the complete methodology for it to be translated to modern psychiatry.

(J Med Internet Res 2020;22(11):e19548) doi: 10.2196/19548
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Introduction

As the World Health Organization has warned since 2007,
depression may become the most frequent cause of global

disability by 2030 [1]. Only 11% to 30% of all patients
diagnosed with depression reach remission within their first
year of treatment [2,3]. It is possible that an individual may be
diagnosed with more than one disorder (or 2 individuals showing
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completely different symptoms may be labeled with the same
disorder), according to the current Diagnostic and Statistical
Manual of Mental Disorders, fourth edition (DSM-IV) manual.
Unlike many other medical specializations, psychiatry does not
use objective physiological tests in its diagnostic process [4].
Many clinicians, health care providers, and researchers are aware
that this diagnostic process needs improvement. Matching
patients with interventions, finding specific biomarkers, and
identifying various technical solutions can provide the
much-needed improvement in clinical care.

Combining the knowledge and methodology used in
computational neuroscience and psychiatry results in a discipline
known as computational psychiatry. This field aims to determine
the neurobiological underpinnings behind clusters of clinical
symptoms, making it easier to adjust the treatment to patients
on an individual level [5-7]. Among other studies applying this
combination of approaches to resolve current issues with
psychiatric diagnostics, Tokuda et al [8] offered impressive
findings in their work in 2018. They combined demographic
data, magnetic resonance imaging (MRI), and previous medical
information on patients with applied statistical learning
approaches to differentiate the 3 subtypes of depression.

Computational psychiatry may be divided into 2 approaches:
theory driven and data driven. The data-driven approach
typically involves some type of machine learning and appears
to be much more applicable than the theory-driven approach
owing to the comparably lower data collection costs. Although
the most popular work published over the last period applies
the data-driven approach through the use of MRI or functional
MRI (fMRI) data, the drawbacks of this approach are the subject
of debate among researchers. In our opinion, it would be much
more appropriate to rely on electroencephalographic data, given
the lower costs and higher patient accessibility.
Electroencephalogram (EEG) is the oldest form of neuroimaging
(1924, Hans Berger) and is noninvasive and solidly based on
neurology and neuroscience. In psychiatry, it is only used to
confirm the existence of epileptiform. As compared with fMRI,
for example, EEG is more suitable for frequent testing owing
to the lesser time required for recording and the lower price of
processing. Witten and Frank [9] described data mining as “the
extraction of implicit, previously unknown, and potentially
useful information from the data,” and at present, popular
machine learning forms a part of that discipline. A typical
pipeline in this framework includes recording the EEG,
managing artifact removal (manually, using software, or using
artifact-free epochs), linear or nonlinear electroencephalographic
analysis, feature extraction, feature selection, and the application
of the machine learning (both training and testing phases)
method of choice. As it contains highly structured data, the EEG
(a matrix of voltage values as columns/recorded from different
electrode voltage and time) is highly suitable for machine
learning [10].

Another research area, physiological complexity, continues to
be considered novel by many medical professionals. It is based
on a complex systems dynamic theory (commonly called the
chaos theory) and is made up of vast families of distinct analysis
approaches in a mathematical sense. Many researchers currently
use these methods given that physiological signals are known

to be nonlinear and nonstationary and generated from a highly
complex system that tends to operate far from the equilibrium
state. The application of a mechanistic approach (suitable for
stationary signals) for the analysis of electrophysiological data,
which are nonlinear, nonstationary, and noisy (3N), runs the
risk of flawed interpretation. Recently, research has suggested
that a mathematical link exists between the commonly applied
Fourier analysis and fractal analysis [11], and the use of Fourier
before the latter seems to be redundant. Klonowski [12] showed
that the omnipresent classical spectral analysis in
electrophysiology is based on its deeply rooted use in medicine;
nonlinear analysis tends to be applied in research areas only.
For a review of the varying nonlinear methodologies in detecting
depression based on EEG, refer to the study by de la
Torre-Luque and Bornas [13,14].

Over the past 10 years, the number of research studies using
some form of machine learning on an EEG data set to detect
depression or predict treatment outcomes related to the same is
booming. This study aims to review the literature to offer a
cross-section that is useful for determining current best practices.
We have chosen to focus on the combination of physiological
complexity (the application of nonlinear measures of analysis
of EEG) and data-driven computational psychiatry approaches,
as we believe that this combination may offer faster
improvement in current clinical practices focusing on the
treatment of depression.

Methods

This systematic literature review aims to find and compare
published studies using nonlinear (and spectral) methods of
analysis in combination with various machine learning methods
for the detection of depression. Therefore, we established an
inclusion criteria, as we were aware that many studies were
published over the past decade. As we followed the literature
for a significant amount of time, we established a start date of
2008 and an end date of May 2019.

Search Method
Given the rapid development in this research area because of
faster computers, cloud utilization, and improved internet
performance, we believe that this is a sufficient inclusion period.
We systematically searched the Web of Science and PubMed
databases on May 24, 2019, using the following combination
of keywords: (“Data mining” OR “machine learning”) AND
(“EEG” OR “Electroencephalography”) AND (“Depression”
OR “MDD”).

In addition, databases indexing both fields, such as Springer,
Scopus, and ScienceDirect, were searched for relevant literature,
including the Cornell repository.

After an original search yielding 197 papers, we reviewed all
the titles and abstracts to determine which were in line with our
search criteria.

Inclusion Criteria
Our eligibility criteria (eligibility testing) consisted of the
following requirements: a study published between 2008 and
2019, detection of depression or predicting the outcome of
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treatment for depression, sample consisting of patients diagnosed
with depression (major depressive disorder [MDD]) and healthy
controls (HCs), EEG data set (preferably resting-state EEG),
use of fractal and nonlinear analysis as features for machine
learning, and use of machine learning for detection of
depression. After a primary selection phase (in which we read
all the publications independently), our sample consisted of 32
publications, which was decreased to 26 based on internal
discussion and comparative analysis. After reading the entire
text of each publication, we decided to include 14 detection
studies and 12 interventional studies. In short, we only included
EEG studies that were published over the past 12 years, using
task classification performed by humans with
electroencephalographic signals (excluding power analyses
only, nonhuman feature selection, or those with no end
classification studies) that carried out a machine-based learning
task aimed at detecting depression. Many studies described
mobile phone apps and web-based data collection (web-based
psychiatry) using machine learning, but this has already been
reviewed in another work [15].

Comparisons Considered
Before conducting this systematic search, we created a list of
study characteristics for comparison and to discuss the best
practices and results. First, we compared the sample sizes, with
only 1 intervention study being sufficiently large to analyze a
sample of over 100 participants (and only 1 study consisted of
only female subjects [16]). As we chose to only include EEG
studies, we divided these based on resting-state EEG (employed
in diagnostics) and those using any type of stimulus during the
recording.

Our idea, from a nonlinear analysis perspective, is useful for
analyzing resting-state records, as previous research has shown
that they are the most information-rich [17]. Berman et al [18]
showed that in depression, ruminative activities may only be
detected in task-free and resting-state EEG recordings. Studies
also varied in the number of electrodes used for recording as
well as the standards used.

The next stage of comparison considered the method used for
data preprocessing, some of which used standard subbands
(although there is yet to be any published data or evidence that
dividing EEG into subbands has any physiological significance
[19]) and others used the broadband signal. Some used

reductionist approaches (such as Fourier analysis or wavelet or
cosine transform) and others analyzed the raw signal. Some
removed the artifact manually (probably introducing other
sources of artifacts in that way), removed the artifact
(automatically) with some software, or chose to analyze the
epochs from artifact-free sections of recorded signal (ie, no
artifact removal). Another point of discussion referred to the
extent to which filtering and preprocessing were performed and
whether researchers focused on any specific part of the signal’s
spectral content. We also compared the sampling frequency that
was applied to the raw signals, an important factor for the
interpretation of results. The next stage considered the type of
analysis performed on previously preprocessed data and the
chosen features for further machine learning.

Studies also differed in how they chose to extract or select the
features.

We also noted whether internal and external cross-validation
was performed (and reported) and whether the study could
potentially be replicated. Finally, we compared the methods of
machine learning used in each work as well as their accuracy
after the testing phase and their sensitivity and specificity.
Another question considered was whether the studies used
receiver operating characteristic (ROC) curves to verify their
accuracy. We attempted to carry out an exhaustive analysis of
those publications that complied with our eligibility criteria.

Results

Diagnostic Studies
We reviewed 14 studies (classified as detection studies)
published between 2008 and 2019. The problem with this cohort
of studies is similar to that of studies trying to elucidate changes
in complexity from the EEG of a patient who has depression;
making a direct comparison is challenging because of the distinct
methodologies employed. As we wished to draw conclusions
regarding the possible practical significance of these studies
and found their methodologies to be quite different in many
technical aspects, we compared several basic characteristics
that could potentially affect their outcomes [20]. In general, the
combination of the choice of features and classification model
is considered to be the most important. Nevertheless, all the
studies discussed here used common processing stages, as
illustrated in Figure 1.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e19548 | p. 3https://www.jmir.org/2020/11/e19548
(page number not for citation purposes)

Čukić et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Flow diagram showing common stages in the analysis of resting-state EEG in all studies with varying approaches to classification. EEG:
electroencephalogram.

After recording the EEG (based on the previously specified
method on resting-state EEG recorded with open or closed eyes,
the method used to confirm the depression status, whether
patients were medicated, what EEG recording standard was
used, and how many electrode positions were involved), the
preprocessing phase followed. Apart from standard filtering
and the selection of sampling frequency, in physiological terms,
the most important part involved artifact removal (manual,
automatic, or no removal at all). After defining exact epochs
for analysis (or better time series for further analysis), the
following steps were discussed: feature extraction, feature
selection (or dimensionality reduction phase), classification,
validation, and the accuracy achieved in the machine learning
testing phase. We also compared the conditions for study
reproducibility.

Sample Size
One of the first studies using resting-state EEG to classify
individuals with depression and HCs was carried out by
Ahmadlou et al [21]. Their sample was quite modest (analyzing
EEG recordings of 12 patients with MDD and 12 HCs). In the
same year, Puthankattil and Joseph published their research
[22,23] using a slightly larger sample, with 30 patients with
MDD (16 males and 14 females) and 30 controls. In 2014,
Hosseinifard et al [24] and Faust et al [25] published their
studies based on analyses of 90 (45 MDD+45 HC) and 60 (30
MDD+30 HC) individuals. Three studies published in 2015 had
similar samples: Acharya et al [26] with 30 (15 MDD+15 HC)
and Bairy et al [27] with 60 (30 MDD+30 HC, probably the
same or overlapping sample as in Puthankattil and Joseph
[22,23] and Faust et al [25], as it has the same group of authors
and the sample description was strikingly similar), whereas
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Mohammadi et al [28] used a sample of 53 patients with MDD
and 43 controls. A study published by Liao et al [29] also had
a modest sample of 12 patients with MDD and 12 controls,
whereas Mumtaz et al reported only 1 sample size used in 3
published studies with similar methodologies in 2017 [30] and
2 studies in 2018 (33 MDD+30 HC) [31,32]. Although they
published their first study on spectral and fractal measures as
potential markers of depression in 2013, Bachmann et al [16]
added machine learning methodology to previous fractal and
novel spectral (spectral asymmetry index [SASI]) analysis in
their 2018 study, where their sample comprised 13 patients with
MDD and 13 HCs. The study by Bachmann et al [16] is the
only study that analyzed a sample consisting exclusively of
female participants (which makes sense given that women
present a 50% higher risk of depression). Our study [33,34]
from the same year described the results of an analysis carried
out on a sample of 21 patients with MDD and 20 controls.
Overall, there were 362 patients with MDD and 340
age-matched HCs.

The differences between samples vary in terms of the tests used
to confirm the status of the patients with MDD (DSM-IV,
International Classification of Diseases, Beck Depression Scale,
and Montgomery-Asberg Scale) as well as the state when
recording (open or closed eyes or both). Studies also differed
in terms of medication status of patients with MDD, with some
being all unmedicated participants [24] with defined medication
washout at 6 weeks, others being medication naïve, others
stating that their patients were medicated [33], and others that
did not even report on the medication status [27].

Method of Recording the EEG
Another important aspect when comparing the selected studies
was how the researchers recorded the resting-state EEG, under
what conditions, and using how many electrodes (concerning
the standard used in the Methods section). Ahmadlou et al [21]
analyzed a 3-min resting-state EEG, with closed eyes, from
only frontal positions (using 7 out of 19 electrodes in the 10/20
standard; namely, Fp1, Fp2, Fz, F3, F4, F7, and F8), as they
focused on previous findings on stable frontal asymmetry in
depression. They separately analyzed the left and the right
hemisphere positions and used a sampling rate of 256 Hz.
Puthankattil and Joseph [22,23], Faust et al [25], and Acharya
et al [26] analyzed only 4-position EEG recordings, 2 on the
left hemisphere and 2 on the right hemisphere: FP1-T3 and
FP2-T4; Bairy et al [27] did not report on the positions used for
analyses in the Methods section, simply stating that only
positions from the left side of the brain were taken into account.
Puthankattil and Joseph [22] reported that the recording lasted
for 5 min, but information on eye condition was not included;
they (similar to Faust et al [25] and Acharya et al [26]) used a
sampling frequency of 256 Hz. Alternately, Hosseinifard et al
[24] analyzed recordings from all 19 electrodes (10/20 standard),
with a sampling frequency of 1 kHz. Liao et al [29] analyzed
recordings from 30 electrodes recorded for 5 min. In our
research, we also analyzed all the positions on the cap and used
a 1 kHz sampling rate. It is important to stress here that
Bachmann et al [35], in their work from 2013, stated that they
found that physiological complexity is elevated on all electrodes;
therefore, they decided to use only 2 electrodes for further

analysis (and in their 2018 work [16], they focused on detection
of the EEG signal from just 1 electrode). In comparison with
previously mentioned studies that also used resting-state EEG,
we confirmed that the number of electrodes is important, as
principal component analysis (PCA) readings reveal that each
electrode offers its own contribution to the results [34].

Subbands Versus Broadband
Ahmadlou et al [21] used wavelets to decompose the raw EEG
signal into 5 standard subbands (gamma, beta, alpha, theta, and
delta), but they also analyzed the broadband signal. Furthermore,
they attempted to separately analyze the left- and right-side
brain recordings but confirmed that previously significant
differences disappeared when the left-right series were
combined. Bachmann et al [16,35] used their own previously
tested novel spectral index (SASI; based on standard subbands),
and Hosseinifard et al [24] also used standard subbands.
Puthankattil and Joseph [22,23] used wavelet for signal
decomposition, as did Faust et al [25], whereas Acharya et al
[26] (like Čukić et al [33]) used the broadband signal for
analysis. Bairy et al [27] used cosine transform to decompose
the signal before further analysis, although wavelets and cosine
transform are also considered to be reductionist approaches, as
is the Fourier approach [12]. It is not clear whether all the
researchers are aware that until now no physiological
significance of standard subbands of EEG use is confirmed, but
their use in electrophysiology is so deeply rooted that it remains
inevitable [12].

Preprocessing
Of the numerous potential options for preprocessing the signal,
some common practices may be found in all the papers that
were reviewed. For example, artifact removal may be performed
either automatically or manually [24]. As EEG signals are
always nonstationary, nonlinear, and noisy, researchers usually
determine the trade-off in every aspect of the stages of analysis.
For example, if the artifacts are manually removed, another type
of artifact is immediately introduced into the signal. In addition,
if independent component analysis (ICA) or other artifact
removal techniques are used, the intrinsic signal dynamics could
be changed. As stated by Goldberger et al [17], physiological
signals are the richest in information when minimally
preprocessed. Another option is to observe every trace and locate
where the artifacts are present and subsequently select epochs
for analysis from artifact-free sections (minimally changing the
signal under study, as in the study by Čukić et al [33]).

We are aware that a mathematical connection exists between
the Fourier transform and, for example, the Higuchi fractal
dimension [11]; thus, it is clear that if one wants to calculate
the fractal dimension on time series, the use of Fourier before
this calculation is redundant. ICA also affects the
electrophysiological signal if used for artifact removal. Perhaps
those who are applying several methods of preprocessing of
electrophysiological signals are unaware of some details of the
consequences of signal processing.

Feature Extraction and Feature Selection
Feature extraction refers to the creation of features, such as
calculating various fractal and nonlinear measures from chosen
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epochs (time series) of raw signal traces. On the other hand,
feature selection (or reduction of the problem dimensionality)
helps to remove those features that are redundant or irrelevant.
In this group of publications, different authors used different
combinations of the two: Ahmadlou et al [21] used 2 different
algorithms for fractal dimension calculations, whereas Higuchi
and Katz used features and later attempted to compare them in
terms of final accuracy. After averaging both the Higuchi fractal
dimension (HFD) and the Katz fractal dimension (KFD) values,
they applied the analysis of variance to assess the ability of a
feature to discriminate between groups based on variations both
between and within groups. Puthankattil and Joseph [22] used
wavelet entropy as a feature (8-level multiresolution
decomposition method of discrete wavelet transform [DWT]
was used), and relative wavelet energy (RWE) analysis provided
information about the signal energy distribution at different
decomposition levels; 12 features were extracted for training
and testing. An additional 9 features included RWE values for
different frequency bands and 2 were obtained by observing the
trend of the variation of the average RWE of EEG signals (RWE
is higher in depression). Hosseinifard et al [24] used spectral
power together with HFD, correlation dimension, and the largest
Lyapunov exponent (LLE) as EEG features. Faust et al [25]
used wavelet packet decomposition (WPD; Db8 wavelet) to
extract appropriate subbands from the raw signal.

The results of our cross-section analysis are summarized in
chronological order in Table 1.

The extracted subbands were input to calculate several entropy
measures: bispectral entropy (Ph, including higher order spectra
technique, from Fourier analysis), Renyi entropy, approximate
entropy, and sample entropy (SampEn).

The extraction of the subband process consisted of sending the
original data through a sequence of down-sampling and low-pass
filters that defined the transfer function (similar to classical
spectra analysis, which distorts the information content of the
signal, according to Klonowski [12]). In addition, before that
extraction, researchers claim that high-frequency components
did not contribute relevant information (contrary to our findings
[33,34]), and they were also removed. After using the Student
t test to evaluate features, several classification algorithms were
applied. Acharya et al [26] applied 15 different spectral and
nonlinear measures for feature extraction: fractal dimension
(HFD), LLE, SampEn, detrended fluctuation analysis (DFA),

Hurst exponent, higher order spectra features (weighted center
of bispectrum, W_Bx and W_By), bispectrum phase entropy,
normalized bispectral entropy and normalized bispectral squared
entropies (Ent2 and Ent3), and recurrence quantification analysis
parameters (determinism, entropy, laminarity [LAM], and
recurrent times). These extracted features are ranked by the t
value. There is no information as to whether they were
calculated with standard EEG subbands or broadband signals
(similar to the classical spectral measure or high-order spectra
using Fourier analysis, they must have been computed in
subbands, but this was not mentioned). After numerous trials,
the authors, based on a comparison of values to formulate the
Depression Diagnosis Index, decided to only consider LAM,
W_By, and SampEn, without proper justification. They declared
that “DDI is a unique formula that yields non-overlapping ranges
for normal and depression classes.” This (probably) heuristically
obtained index is used here instead of the more commonly
utilized classifiers [26]. Mohammadi et al [28] applied linear
discriminant analysis (LDA) to map features into a new feature
space (data evaluation phase) and genetic algorithm (GA) to
identify the most significant features. Hosseinifard et al [24]
used the leave-one-out cross-validation (LOOCV) method for
the training data set. A GA was used for feature selection. The
population size was established at 50 and cross-over at 80%
(they also attempted PCA, but the GA significantly
outperformed it). Bachmann et al [16] used the SASI spectral
measure but also calculated the HFD, DFA, and Lempel-Ziv
complexity (LZC) as features. In our research, we combined 2
nonlinear measures as features extracted from the signal (HFD
and SampEn). Later, we decorrelated them and used PCA to
reduce the dimensionality of the problem [33]. Bairy et al [27]
calculated the SampEn, correlation dimension, fractal dimension,
Lyapunov exponent, Hurst exponent, and DFA on DWT
coefficients, and the characteristic features were ranked by t
value. Liao et al [29] proposed a method based on scalp EEG
and robust spectral spatial EEG feature extraction based on the
kernel eigen-filter-bank common spatial pattern (KEFB-CSP).
They first filter the multichannel EEG signals (30 electrode
traces) of each subband from the original sensor space to a new
space where the new signals (ie, CSPs) are optimal for the
classification between patients with MDD and HCs. Finally,
they implement kernel PCA to transform the vector containing
the CSPs from all frequency subbands to a lower-dimensional
feature vector called KEFB-CSP.
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Table 1. A comparison of the previously mentioned studies comparing several characteristics, including their accuracy on the classification task.

Accuracy
(%)

MLc modelsFeaturesPreprocessingElectrodes, fre-
quency (Hz)

Sample

(MDDa+HCb)

Study

91.30Enhanced probabilis-
tic neural networks

Higuchi and Katz FDdWavelets and spec-
tral bands (Fourier),
bootstrap

7, 25612+12Ahmadlou et al,
2012 [21]

98.11RWEg, artificial
feed forward net-
works

Wavelet entropyWavelet, total varia-
tion filtering, mul-
tiresolution decom-
position

4, 25630 (16 Me+14

Ff)+30

Puthankattil and
Joseph, 2012 [22]

90KNNi, LRj, linear
discriminant

Power, DFAh, Higuchi,
correlation dimension,
Lyapunov exponent

Standard spectral
bands

19, 1 kHz45+45Hosseinifard et al,
2014 [24]

99.50PNNn, SVMo, DTp,

KNN, NBq, GMMr,

ApEnk, SampEnl, RENm,
bispectral phase entropy

Wavelet package de-
composition

4 (2 left, 2 right),
256

30+30Faust et al, 2014
[25]

Fuzzy Gueno Classi-
fier

93.80DT, KNN, NB,
SVM

SampEn, FD, CDt, Hurst

exp, LLEu, DFA

Discrete cosine
transform

N/As30+30 (left brain
only)

Bairy et al, 2015
[27]

98SVM, KNN, NB,
PNN, DT

FD, LLE, SampEn, DFA,

Hv, W-Bxw, W_Byx,

Broadband2 left, 2 right,
256

15+15Acharya et al, 2015
[26]

EntPhy, Ent1z, DET aa,

ENTRab, LAMac, T2

(DDI)ad

80DTSpectral onlyStandard

bands/FFTae,

28 (10/10), 50053+43Mohammadi et al,
2015 [28]

LDAaf, genetic algo-
rithm

98NNagWavelet entropy, approx-
imate entropy

Wavelet package de-
composition

4, 25630+30Puthankattil and
Joseph, 2014 [23]

80KEFB-CSPahSpectral (common spatial
pattern)

Common spatial pat-
tern

30, 50012+12Liao et al, 2017 [29]

87.50SVM, LR, NBSynchronization likeli-
hood

RESTaj19, 25634/18 F+30/9 FaiMumtaz et al, 2018
[30]

98.40LR, SVM, NBAlpha interhemispheric
asymmetry

Fourier19 (EOak, ECal),
256

33+30Mumtaz et al, 2017
[31]

94LRPower, asymmetry,
wavelet coefficients, Z-
score

10-fold cross-valida-
tion

19, 25634+30Mumtaz et al, 2018
[32]

88Logistic regressionHFDam, DFA, Lempel-
Ziv complexity, and

SASIan

Fourier1, 1 kHz13+13Bachmann et al,
2018 [35]

97.50MPaq, LR, SVM
(with linear and

HFD+SampEnBroadband EEGao,
10-fold cross-valida-

tion, PCAap

19, 1 kHz26+20Čukić et al,
2018/2020 [33,34]

polynomial kernel),

DT, RFar, NB

aMDD: major depressive disorder.
bHC: healthy control.
cML: machine learning.
dFD: fractal dimension.
eM: male.
fF: female.
gRWE: relative wavelet energy.
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hDFA: detrended fluctuation analysis.
iKNN: K-nearest neighbor.
jLR: linear regression.
kApEn: approximate entropy.
lSampEn: sample entropy.
mREN: Renyi entropy.
nPNN: probabilistic neural network.
oSVM: support vector machine.
pDT: decision tree.
qNB: naïve Bayes.
rGMM: Gaussian mixture model.
sN/A: not applicable.
tCD: correlation dimension.
uLLE: largest Lyapunov exponent.
vH: Hurst exponent.
wW-Bx: higher order spectra features (weighted center of bispectrum [W_Bx]; Acharya et al [26]).
xW_By: higher order spectra features (weighted center of bispectrum [W_By]; Acharya et al [26]).
yEntPh: bispectrum phase entropy.
zEnt1: normalized bispectral entropy.
aaDET: determinism.
abENTR: entropy.
acLAM: laminarity.
adT2 (DDI): recurrent times.
aeFFT: fast Fourier transform.
afLDA: linear discriminant analysis.
agNN: neural network.
ahKEFB-CSP: kernel eigen-filter-bank common spatial pattern.
ai34 depression patients (among them 18 females) and 30 healthy controls (of those 9 were female).
ajREST: reference electrode standardization technique.
akEO: eyes opened.
alEC: eyes closed.
amHFD: Higuchi fractal dimension.
anSASI: spectral asymmetry index.
aoEEG: electroencephalogram.
apPCA: principal component analysis.
aqMP: multilayer perceptron.
arRF: random forest.

Classifiers Used and Validation
Ahmadlou et al [21] used averaged, calculated KFD and HFD
values (dividing it between the left and right electrodes and
averaging it) as features for enhanced probabilistic neural
networks. Puthankattil and Joseph [22] used the RWE and
artificial feedforward neural network, and Hosseinifard et al
[24] used K-nearest neighbor (KNN), LDA, and linear
regression (LR) classifiers. Two-thirds of the sample was used
for the training phase and the remainder was used for the test
set. Faust et al [25] used WPD (Db8 wavelet) to extract
appropriate subbands from the raw signal. The extracted
subbands were input for calculating the entropy measures. They
used a Gaussian mixture model, decision trees (DTs), KNN,
naïve Bayes classifier (NBC), probabilistic neural networks,
fuzzy Sugeno classifier, and support vector machine (SVM)
and 10-fold cross-validation. Acharya et al [26] used SVM with
a polynomial kernel of order 3, but the validation method was
not reported. Mohammadi et al [28] built predictive models

using a DT. The classifiers used in the research by Bairy et al
[27] were DT, SVM, KNN, and naïve Bayes (NB). SVM
employs a radial basis function. The model applied in the study
by Mohammadi et al [28] revealed an average accuracy of 80%
(MDD vs HC). There is no clear information regarding the
verification of reliability of their high accuracy or internal and
external validation (in terms of good generalization). Bachmann
et al [16] used features for classification via logistic regression
with LOOCV. As evident that characterization of the
resting-state EEG with nonlinear measures leads to very accurate
classification, we applied the 7 most popular classifiers in our
research: multilayer perceptron, LR, SVM with a linear and
polynomial kernel, DT, random forest, and NBC, discriminating
EEG between HC subjects and patients diagnosed with
depression [33]; 10-fold cross-validation was used in that work.

Classification Accuracy
Ahmadlou et al [21] found that MDD and non-MDD are more
separable in the beta band based on HFD (contrary to previous

J Med Internet Res 2020 | vol. 22 | iss. 11 | e19548 | p. 8https://www.jmir.org/2020/11/e19548
(page number not for citation purposes)

Čukić et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


belief that differentiation is best in the alpha band) and that
HFD in both beta and gamma bands is higher in patients with
MDD than in healthy participants. This implied a higher
complexity of signal recorded from the frontal cortices
(according to their data, the left frontal lobe is more affected).
On the basis of HFD (which performed better than KFD), they
obtained a high accuracy of 91.3%. Puthankattil and Joseph
[22] obtained artificial neural network performance with an
accuracy of 98.11% (normal and depression signals). Sensitivity
was 98.7%, selectivity was 97.5%, and specificity was 97.5%.
In the study by Hosseinifard et al [24], classification accuracy
was the highest in the alpha band for LDA and LR, both of
which reached 73.3% (the worst was KNN in the delta and beta
bands and LDA in the delta band with 66.6%). The highest
accuracy in the experiment was obtained using the LR and LDA
classifiers. The accuracy of all classifiers increased when the
signal was characterized by nonlinear features, not classical
power (LR reached 90% with the correlation dimension). The
conclusion was that “nonlinear features give much better results
in the classification of depressed patients and normal subjects,”
as opposed to the classical features. It was also concluded that
patients with depression and controls differ more in the alpha
band than in the other bands, especially in the left hemisphere
[24]. Faust et al [25] applied 10-fold stratified cross-validation.
The accuracy was 99.5%, sensitivity was 99.2%, and specificity
was 99.7%. Contrary to Hosseinifard et al [24], they claim that
the EEG signals from the right part of the brain are better at
discriminating individuals with depression. In the study by
Acharya et al [26], features are ranked by the t value and are
fed to classifiers one by one, obtaining an accuracy of >98%,
sensitivity of >97%, and specificity of >98.5%. This best result
is reportedly obtained through the use of SVM with a
polynomial kernel of order 3 (for both left and right
hemispheres; they used averaged values for the left and right
hemispheres), although SVM was discarded in previous papers
by the same authors. The text is ambiguous when stating
“features are fed to SVM classifier” and the following sentence
“SVM classifier yielded the highest classification performance

with the average accuracy...” [26]. In the study by Faust et al
[25], the accuracy was 99.5%, sensitivity was 99.2%, and
specificity was 99.7%. Unlike Hosseinifard et al [24], they claim
that EEG signals from the right part of the brain better
discriminate individuals with depression. Bairy et al [27]
reported an accuracy of 93.8%, sensitivity of 92%, and
specificity of 95.9%. It is impossible to determine whether
internal or external validation was performed or determine the
details, for example, the method used to calculate the fractal
dimension (that description was not reported, limiting
comparisons with our work on HFD). Thus, this study, which
claims such high accuracy, has limited reproducibility. Liao et
al [29] achieved 80% accuracy using KEFB-CSP, and Mumtaz
et al [30] reported an SVM classification accuracy of 98%, LR
classification accuracy of 91.7%, and NB classification accuracy
of 93.6%. Bachmann et al [35] reached a maximum accuracy
of 85% with HFD and DFA and also with HFD and LZC and,
for only 1 nonlinear measure, a maximum accuracy of 77%.
The average accuracy among classifiers reported by Čukić et
al [33] ranged from 90.24% to 97.56%. Among the 2 measures,
SampEn demonstrated better performance. When compared
with the previously mentioned studies that also used resting-state
EEG, it was possible to confirm that the number of electrodes
is an important factor, as PCA readings demonstrate that every
electrode offers its own contribution to the results [33,34].

In conclusion, we cannot state that all the mentioned studies
provide sufficient information for replication, as it is clearly
not the case with Bairy et al [27], who did not mention the
method used to calculate the fractal dimension and the
algorithm. Others concentrated on classification improvement
but did not implement all the measures necessary to reach
unwarranted optimism in their results. Finally, all the studies
(including ours, although as declared, it was a pilot study) had
very modest sample sizes, affecting the model’s generalizability.
A summary of comparisons of analysis of signals in the literature
has been illustrated in Table 2, and a summary of comparisons
with regard to the classifications applied is provided in Table
3.

Table 2. Summary of the abovementioned comparisons of analysis of signals in the literature.

Feature extractionMethod of analysisFilteringSubbandsNumber of electrodesAnalysis of signal

t test or ANOVAaFourier and its derivativesPreprocessing on siteStandard subbands1, 3, or 7 (prefrontal)Common

PCAb or GAcFractal and nonlinearMinimal preprocessingBroadband19+ (all electrodes)Recommended

aANOVA: analysis of variance.
bPCA: principal component analysis.
cGA: genetic algorithm.
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Table 3. Summary of the abovementioned comparisons with regard to the classifications applied.

AccuracyModelValidationFeature selec-
tion

Data collectionSample
size

Classification

Typically >95% or 99%SVMaOften missingSpectral analy-
sis

1 site12-40Common

ROCd curve applica-
tion/more realistic results

LASOc, embedded
regularization

Internal plus exter-
nal validation on
unseen data

Nonlinear
analysis

Multiple sites/collaborative
(possible extraction from

MRIb sets)

>50-100Recommended

aSVM: support vector machine.
bMRI: magnetic resonance imaging.
cLASO: the name of the algorithm; a type of linear regression that uses shrinkage.
dROC: receiver operating characteristic.

Interventional EEG Studies
Studies have also been published during the same time interval
(2008-2019) based on EEG registration, but unlike the
previously mentioned work, they opted to use a stimulus (so,
not resting-state EEG), a sound stimulation, or evoked response
potentials (ERPs). Therefore, we briefly discuss their results.
Kalatzis et al [36] published the first study on the SVM-based
classification system to discriminate depression using the P600
component of ERP signals. EEG was recorded on 15 electrodes,
and the sample consisted of 25 patients and an equal number
of HCs. The outcomes of SVM classification were selected by
the majority vote engine. Classification accuracy was reportedly
94% when using all leads and between 92% and 80% when
using only the right or left electrode positions for classification.
They concluded that their findings support the hypothesis that
depression is associated with the dysfunction of right hemisphere
mechanisms mediating the processing of information that assigns
a specific response to a particular stimulus. Lee et al [37]
attempted to predict the treatment response of MDD. Their
study was designed to verify whether the connectivity strength
of resting-state EEG could be a potential biomarker (ROC curve
was 0.6 to 0.8) used to answer this question. They concluded
that “...the stronger the connectivity strength, the poorer the
treatment response.” The experiment also suggested that
frontotemporal connectivity strength could be a potential
biomarker to differentiate between responders and slow
responders or nonresponders in MDD. We attempted to compare
our results, but their sampling frequency was as low as 100 Hz,
making this comparison difficult. In a 2011 study, Cavanagh et
al [38] analyzed EEG recordings from 21 medication-free
patients with MDD and 24 HCs when performing a probabilistic
reinforcement learning task. They measured the EEG response
to error feedback, which may demonstrate selective alteration
of avoidance learning, which is important in MDD.
Khodayari-Rostamabad et al [39,40] probed machine learning
methodology as a prediction model for a successful outcome
of SSRI medication in MDD based on resting-state EEG
recorded before the treatment. The sample consisted of 22
participants (11 males and 11 females). For the experiment,
only 16 electrodes were used (10/20 standard) in open and
closed eyes, recording for 6.5 min and combining sections into
6 files per person. The Welch model analysis yielded various
spectral measures but mentioned only as candidate features
because they did not wish to state which feature would have

predictive power in advance. After selecting the features
extracted from the EEG, the authors included them in the factor
analysis model, whose output is the predicted response in the
form of a likelihood value; the leave-one-out randomized
permutation cross-validation procedure was used for validation.
For visualization (and reduction of dimensionality), they used
kernelized PCA. The authors did not perform assessment on
unseen samples, and they did not compare the features with
HCs, relying solely on spectral measures of their modest sample.
They reported an overall prediction accuracy of 87.9%.

A study from 2014 attempted to predict the depression treatment
response [41]. The authors claimed that no difference exists
between MDD and HC in nonlinear EEG measures (using LZC),
but they somehow came to the conclusion that nonlinear
measures add value to their research. They claim that theirs is
the first study to use nonlinear metrics to predict the outcome
of depression treatment (repetitive transcranial magnetic
stimulation [rTMS] in their case). According to their reported
method, the potential cause could be the focus on only one
specific band and not on the analysis of broadband signals.
Many subsequent researchers (and previous ones) managed to
find significant differences through the use of nonlinear
measures for this type of detection task [16,21,24,28,30,33].
They also claimed that they were the first to use complexity
measures in this task. Nandrino and Pezard [41] used this
approach in the analysis of EEG in depression in 1994, as did
several other research groups. Bachmann et al [16] applied the
same methodology (LZC) and demonstrated significant
differentiation between patients and controls. Mumtaz et al
[30,31] used spectral measures in several papers but found a
useful difference in predicting treatment outcome in depression.

Similar to Shahaf et al [42], Etkin et al [43] applied machine
learning in the task of predicting medication therapy outcomes
in MDD through cognitive testing. They used pattern
classification with cross-validation to determine individual
patient-level composite predictive biomarkers of antidepressant
outcome based on test performance and obtained 91% accuracy.

Erguzel et al [44] tested their optimized classification methods
on 147 participants with MDD treated with rTMS. They tested
the performance of a GA and a back-propagation neural
network; they were evaluated using 6-channel pre-rTMS EEG
patterns of theta and delta frequency bands. Using the reduced
feature set, they obtained an increase of 0.904 in the ROC curve
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(area under the curve). Zhang et al [45] explored neural
complexity in patients with poststroke depression in a
resting-state EEG study. Their sample consisted of 21 poststroke
patients with depression (PSD), 22 patients with ischemic stroke
but no depression (PSND), and 15 HCs. A total of 16 electrodes
were used for recording resting-state EEG. LZC was used to
assess changes in complexity from EEG. PSD (depressed)
presented lower neural complexity compared with PSND
(nondepressed) and control subjects for the entire brain region.
LZC parameters used for the recognition of PSD possessed
>85% specificity, sensitivity, and accuracy, suggesting the
feasibility of LZC as a screening indicator for PSD. In addition,
there were 2 antidepressive treatment nonresponse prediction
studies by Shahaf et al [45] and Al-Kaysi et al [46]. Shahaf et
al [45] developed a new electrophysiological
attention-associated marker from a single channel (2 electrodes:
Fpz and 1 earlobe) using 1-min samples with auditory oddball
stimuli that was capable of detecting treatment-resistant
depression (26 patients and 10 controls). Al-Kaysi et al [46]
aimed to predict the transcranial direct current stimulation
(tDCS) treatment outcome of patients with MDD using
automated EEG classification. They accurately predicted 8 out
of 10 participants when using FC4-F8 (with an accuracy of
76%) and 10 out of 10 participants when using CPz-CP2 (92%
accuracy). This finding demonstrates the feasibility of using
machine learning to identify patients responsive to the tDCS
treatment. Cai et al [47] used only 3 electrodes on prefrontal
positions to record the signal when stimulating their participants
with a sound. They claim that owing to the small number of
electrodes that can be easily positioned, their method has
excellent potential for use in clinics. They used an
electrophysiological database consisting of 92 patients with
depression and 121 HCs; resting-state EEG was recorded using
sound stimulation (pervasive prefrontal lobe electrodes were
used on the Fp1, Fp2, and Fpz positions). After denoising (finite
impulse response filter), they combined the Kalman derivative
formula and the discrete wavelet transformation and an adaptive
predictor filter; a total of 270 linear and nonlinear features were
extracted (it is not clear what they were). Feature selection was
minimal-redundancy-maximal-relevance, which reduced the
dimensionality of the feature space. Four classification methods
were applied: SVM, KNN, DTs, and artificial neural networks.
For evaluation, they used 10-fold cross-validation. KNN
presented the highest accuracy at 79.27%. Jaworska et al [48,49]
published 2 papers. In the first study [48], they examined a
variation of pretreatment EEG to predict depression treatment
success, and in the second work [49], they performed a 12-week
machine learning study to predict the outcome of pharmacology
treatments in 51 patients with MDD. They used both
electrophysiological and demographic data (including the
Montgomery-Asberg Depression Rating Scale scores before
and after treatment) as well as source-localized current density
and random forest for classification, with 78% to 88% accuracy
depending on model complexity. They also used kernel PCA
to reduce and map important features. Similar to the
abovementioned research, this lays the groundwork for studies
on personalized, biomarker-based treatment approaches. For
this group of studies, it is clear that methodology comparisons
are challenging, but they are part of the same effort to show that

not only detection but also monitoring and predicting the pace
of recovery, or output of the treatment (sometimes called
responders detection), is possible. The problem with both
detection and interventional studies tends to be the modest
sample sizes and almost complete absence of an external
validation process (on previously unseen data, from an
independent sample), which puts their high reported accuracies
into question.

Discussion

Most of the publications included in our review presented high
accuracy in classifying individuals with depression and healthy
participants based on their resting-state EEG, although they
utilized various combinations of features and machine learning
models. Although direct comparison is challenging, the common
denominator for all presented studies can be summarized as a
comparison of the methodological steps that are inevitable in
this kind of research, in which certain features, previously found
to be characteristic for depression, were used to feed classifiers
of their choosing.

Several approaches may be used to examine the changes in the
complexity of the EEG characteristic of depression. Researchers
have reached a consensus that depression is characterized by
high EEG complexity, compared with healthy peers [13].
Changes in functional connectivity characteristic of depression
are demonstrated in the current literature, whether using fMRI,
fractional anisotropy [50,51], or graph theory analysis based on
EEG signals [52]. It is possible that decreased functional
connectivity may be reflected by increased excitability of the
cortex; thus, a difference in EEG between people diagnosed
with depression and HCs could be detected [16,21,24,25]. The
most important conclusion of the review by de la Torre-Luque
and Bornas [13] was that “EEG dynamics for depressive patients
appear more random than the dynamics of healthy non-depressed
individuals.” It is also accepted that the use of more than one
nonlinear measure should be standard as different measures
detect unique features of the EEG signals, “revealing
information which other measures were unable to detect”
[52,53].

The classification of patients diagnosed with depression and
HCs can be considered as a first step in exploring the potential
for prediction. Differentiation between episode and remission
is also possible [54]. The prediction of clinical outcomes or
relapses (eg, after incomplete remission or relapse in recurrent
depression) would be of great clinical significance. However,
there are several challenges, both methodological and statistical,
to the development of a model to predict a specific clinical
outcome for previously unseen individuals. A group of authors
elucidated some of the risks, pitfalls, and recommended
techniques to improve model reliability and validity in future
research [4,7,55-58]. The authors declared that neuroimaging
researchers who begin to develop such predictive models are
typically unaware of some of the required considerations to
accurately assess model performance and avoid inflated
predictions (so-called unwarranted optimism) [4,55,56,59]. The
common characteristics of this type of research are as follows:
classification accuracy is typically 80% to 90% overall, the
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sample size tends to be small to modest, and samples are usually
gathered from a single site. SVM and its variants are very
popular, but the use of embedded regularization frameworks is
recommended, at least with the absolute shrinkage and selection
operator [7]. LOOCV and k-fold cross-validation are also
popular procedures for validation (for model evaluation), and
model generalization capability is typically untested on
independent samples [7]. The rarely employed
Vapnik-Chevronenkis dimension [60] should be of standard
use for model evaluation or reduction. A lack of external
validation is common in most current studies. From a
methodological point of view, those problems must be resolved.
For example, the problem of generalization. Generalization is
the ability of a model that was trained in one data set to predict
patterns in another unseen data set. When testing
generalizability, we are examining whether a classification is
effective in an independent (not shown to the previous
algorithm) population. When developing a model, one does not
wish to train the classifier on a general sample characteristic;
for example, if using nonlinear measures, they may differ
because some measures change with age [17] or may be
characteristic of a certain gender [61,62]. Some authors refer
to these as nuisance variables because the algorithm learns to
recognize that particular data set with all of its characteristics.
Overfitting is common and consequently the treatment of
nuisance variables. Overfitting takes place when “a developed
model perfectly describes the overall aspects of the training data
(including all underlying relationships and associated noise),
resulting in fitting error to asymptotically become zero” [7].
Thus, the model will be unable to predict what we want on
unseen (test) data. The sample size is usually small to modest
(typically <100; in the study by Chekroud et al [56], for
example, it is >4000 because of the use of a collaborative data
set). Hence, balancing the model’s complexity against the
sample size is essential for improving the prediction accuracy
for unseen (test) data [7]. How can this goal be achieved? By
collecting more data. The collection of other more expensive
neuroimaging data would be a potential solution to establish a
standard set-up and start collaborative projects, as a single site
is usually not sufficient to ensure a large sample size. In EEG
collection, a desired model could be one that is made up of large
collaborative projects such as RDoC, STAR*D, and IMAGEN.
In addition, corecording with fMRI and magneto
encephalography may be a solution [57]. Another option could
be the use of wireless EEG caps. Although present wireless
EEG caps are still quite expensive (Epoch, ENOBIO
Neuroelectrics, and iMotions, to mention just a few), they can
be used for research in the environment without restraining the
patient or even to monitor individuals recovering from severe
episodes. If wireless EEG recorders would become accessible
soon, early detection and timely intervention will most likely
prevail rapidly. In frameworks such as the National Institute of
Mental Health Research Domain Criteria and European
Roadmap for Mental Health Research, which aim to discover
stratifications based on biological markers that cut across current
classifications [58], this should be possible. Through large
collaborative efforts, the conditions may be met to extract
genuinely reliable models for clearly defined neuromarkers for
future clinical use [57]. Large-scale imaging campaigns and the

collection of general population data are essential conditions
for the transfer of these research findings to clinics. By
permitting regular medical checkup data to become a part of
such organized collaborative efforts, patients would also
contribute to the improvement of this precise diagnostic in the
near future. According to Kraiij [63], the 4P concept for health
care improvement stands for prediction, prevention,
personalization, and participation. It has been suggested that
health care focuses too much on disease treatment and not
enough on its prevention. It has also been observed [58] that
treatment and diagnosis tend to be based on population averages.
In some cases, treatment has negative effects. Therefore, there
is much room for improvement (and for the other 3 Ps aside,
personalization). Data collection, analysis, and sharing play an
important role in the improvement of health care. The first
project to implement the 4Ps is the SWELL (Smart Reasoning
for Well-being at Home and at Work) project, part of the Dutch
national ICT program, COMMIT (between 2011 and 2016 in
the Netherlands, Leiden University). There is also an option of
testimonial data sharing that is already official, eg, in Austria.

Whelan and Garavan [55] addressed overfitting and many other
methodological issues. They revealed how regression models
may incorrectly appear to be predictive. They also described
methods for quantifying and improving model reliability and
validity. The authors conclude that “...perhaps counterintuitively
to those who deal primarily with a general linear model,
optimism increases as a function of the decreasing number of
participants and the increasing number of predictor variables
in the model (the model appears better as sample size
decreases)” [55].

Although it has been shown that small sample sizes and a lack
of external validation lead to unwarranted optimism, most
published research does not embrace these principles as standard
practice [64]. Collecting additional data may resolve this issue.
The theory of data mining is clear; all models work best on
larger samples. The repository may be used to test a developed
model on an unseen cohort. We learned that statistics needs “to
stop making fools of ourselves” [65]. Data mining is the art of
finding meaning from supposedly meaningless data. Peduzzi
et al [66] showed the optimal number of events per variable in
logistic regression analysis.

A minimum rate of 10 cases per predictor is common [64],
although it is not a universal recommendation [67]. Optimism
may also be avoided with the introduction of the regularization
term [68]. In addition, using previous information to constrain
model complexity relying on Bayesian approaches is
recommended. Bootstrapping [69] is another useful method, as
is cross-validation [59]. Cross-validation tests the model’s ability
to generalize and involves separating the data into subsets. Both
Kohavi [70] and Ng [64] described this technique. In addition,
an effective and efficient 10-fold cross-validation, Elastic Net,
is useful for optimizing parameters. Ng [64] stated that
“...optimism becomes unreliable as the probability of overfitting
to the test data increases with multiple comparisons.” One can
use several functions available in MATLAB (MathWorks) such
as lassoglm, bootstrap for bootstrap sampling, or several
functions for Bayesian analysis or the function crossvalind for
testing sets and cross-validation.
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In conclusion, when discussing the importance of maintaining
completely separate training and test subsets, Whelan and
Garavan [55] stated the following: “any cross-contamination
will result in optimism.” We could not agree more. Additional

research is necessary to reframe nosology in psychiatry and to
help support the patient’s journey to remission. We hope that
many people will benefit from the cloud-based services provided
by already digitized health care institutions.
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DFA: detrended fluctuation analysis
DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, fourth edition
DT: decision tree
DWT: discrete wavelet transform
EEG: electroencephalogram
ERP: evoked response potential
fMRI: functional magnetic resonance imaging
GA: genetic algorithm
HC: healthy control
HFD: Higuchi fractal dimension
ICA: independent component analysis
KEFB-CSP: kernel eigen-filter-bank common spatial pattern
KFD: Katz fractal dimension
KNN: K-nearest neighbors
LAM: laminarity
LDA: linear discriminant analysis
LLE: largest Lyapunov exponent
LOOCV: leave-one-out cross-validation
LR: linear regression
LZC: Lempel-Ziv complexity
MDD: major depressive disorder
MRI: magnetic resonance imaging
NB: naïve Bayes
NBC: naïve Bayes classifier
PCA: principal component analysis
PSD: poststroke patients with depression
PSND: patients with ischemic stroke but no depression
ROC: receiver operating characteristic
rTMS: repetitive transcranial magnetic stimulation
RWE: relative wavelet energy
SampEn: sample entropy
SASI: spectral asymmetry index
SVM: support vector machine
tDCS: transcranial direct current stimulation
WPD: wavelet packet decomposition
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