
Original Paper

Balancing Accuracy and Privacy in Federated Queries of Clinical
Data Repositories: Algorithm Development and Validation

Yun William Yu1, PhD; Griffin M Weber2, MD, PhD
1Computer & Mathematical Sciences, University of Toronto, Toronto, ON, Canada
2Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States

Corresponding Author:
Griffin M Weber, MD, PhD
Department of Biomedical Informatics
Harvard Medical School
10 Shattuck St
Boston, MA, 02115
United States
Phone: 1 617 432 6134
Email: weber@hms.harvard.edu

Abstract

Background: Over the past decade, the emergence of several large federated clinical data networks has enabled researchers to
access data on millions of patients at dozens of health care organizations. Typically, queries are broadcast to each of the sites in
the network, which then return aggregate counts of the number of matching patients. However, because patients can receive care
from multiple sites in the network, simply adding the numbers frequently double counts patients. Various methods such as the
use of trusted third parties or secure multiparty computation have been proposed to link patient records across sites. However,
they either have large trade-offs in accuracy and privacy or are not scalable to large networks.

Objective: This study aims to enable accurate estimates of the number of patients matching a federated query while providing
strong guarantees on the amount of protected medical information revealed.

Methods: We introduce a novel probabilistic approach to running federated network queries. It combines an algorithm called
HyperLogLog with obfuscation in the form of hashing, masking, and homomorphic encryption. It is tunable, in that it allows
networks to balance accuracy versus privacy, and it is computationally efficient even for large networks. We built a user-friendly
free open-source benchmarking platform to simulate federated queries in large hospital networks. Using this platform, we compare
the accuracy, k-anonymity privacy risk (with k=10), and computational runtime of our algorithm with several existing techniques.

Results: In simulated queries matching 1 to 100 million patients in a 100-hospital network, our method was significantly more
accurate than adding aggregate counts while maintaining k-anonymity. On average, it required a total of 12 kilobytes of data to
be sent to the network hub and added only 5 milliseconds to the overall federated query runtime. This was orders of magnitude
better than other approaches, which guaranteed the exact answer.

Conclusions: Using our method, it is possible to run highly accurate federated queries of clinical data repositories that both
protect patient privacy and scale to large networks.

(J Med Internet Res 2020;22(11):e18735) doi: 10.2196/18735

KEYWORDS

algorithms; medical records; privacy; information storage and retrieval; medical record linkage

Introduction

Background
Widespread adoption of electronic health records has generated
vast amounts of data, which are increasingly being used in
clinical, epidemiological, and public health research [1]. Data
from multiple health care organizations are often needed to

increase statistical power or to access diverse patient populations
and geographic regions. Although it is possible to combine
patient-level data from multiple sites into a secure central
repository for analysis, there are often significant technical and
regulatory barriers to doing this in a way that ensures patient
privacy. Institutions must compare the benefit of centralized
data for research with the risk of violating the Health Insurance

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 1https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:weber@hms.harvard.edu
http://dx.doi.org/10.2196/18735
http://www.w3.org/Style/XSL
http://www.renderx.com/

Portability and Accountability Act (HIPAA) and other privacy
laws as a result of unintended disclosure of patient data. An
alternative approach is to create federated clinical data research
networks, which broadcast queries to multiple sites, run analyses
locally, and then combine the results. In this way, sites retain
control over their patient data. Two of the largest networks in
the United States are the Patient-Centered Outcomes Research
Network (PCORnet) [2] and the National Institutes of Health
(NIH)–funded Accrual to Clinical Trials (ACT) network [3-5],
both of which connect dozens of health care organizations across
the country and include health data on nearly 100 million
Americans.

As patients often receive care at more than one clinical site, the
data for a patient at any one site might not be complete, and the
same information about a patient might be duplicated at different
sites. This can lead to queries returning incorrect results. This
problem is amplified when the sites in the network are

geographically close and there is greater overlap in their patient
populations. However, because patients move or travel,
sometimes across state or country borders, even far apart sites
might share patients. A similar situation arises when patients’
data are intentionally separated for technical reasons, such as
when large amounts of clinical data (eg, diagnoses and
medications) and genomic data are stored in different locations,
and it is not feasible to merge them into a single database. In
both cases, computation must be performed in a distributed
fashion, but the challenge is that an individual patient’s data
may be spread across multiple databases.

Various methods to addressing this problem have been described
in the literature, but they have different trade-offs in terms of
accuracy, privacy, scalability, and computational complexity.
We grouped these into 3 broad categories: aggregate counts,
hashed patient identifiers, and privacy-guaranteed methods
(Figure 1).

Figure 1. Federated query methods. We classify methods for merging distributed queries into 3 groups: (top) sharing aggregate counts, (middle) sending
full hashed patient identifiers, and (bottom) generating bitstrings (displayed as hexadecimal) that do not directly correspond to individual patients but
can be merged together. HLL: HyperLogLog; MPC: multiparty computation; SSN: social security number.

Aggregate Counts
Federated queries in PCORNet and ACT ask sites to return the
number of patients in their local databases who match some set
of criteria, such as having both hypertension and diabetes. The
networks present the user with the aggregate count from each
site, and no attempt is made to link patients across sites or
deduplicate records. This can lead to large overestimates of the
number of distinct patients who match a query if the counts
from each site are naively summed [6]. To protect patient
privacy, the networks mask small counts by displaying ≤10
patients. However, it is possible to combine results from
multiple queries to reveal information about individual patients
(see the Methods section for details). Sites participating in these
networks are aware of this privacy risk, which they mitigate

through institutional agreements that require sites to audit
researchers’ queries and monitor their use of the network.

Hashed Patient Identifiers
The most accurate and semisecure method to deduplicate the
results in a federated query is for each site to return the full list
of patients who match the query. Privacy is the main concern,
as data on every patient matching the query (potentially many
millions of people) must be shared. Patient identifiers (eg, name
and date of birth) [7] are typically encrypted using a one-way
hash function, such as Secure Hash Algorithm 1 (SHA-1) [8].
The same patient at two sites will be hashed to the same value
if the same hash function is used (and there are no
inconsistencies in the underlying demographic data).
Unfortunately, hash functions are vulnerable to dictionary or
linkage attacks, where an adversary who knows the encryption

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 2https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

method can simply generate a rainbow table of the hashes of
many possible patient identifiers (eg, exhaustively searching
all 9-digit social security numbers or accessing public voter
registration lists) and then use this to reidentify the list of hash
values returned by a site [9].

Privacy-Guaranteed Methods
Secure multiparty computation (MPC) and homomorphic
encryption techniques enable true privacy guarantees in a
federated network (see the Methods section) and have recently
been introduced for distributed genome-wide association studies
[10] and pharmacological collaboration [11]. The limitation of
these algorithms is their computational complexity. Protocols
that securely determine the number of shared patients between
two sites [6,12-14] are impractical for large networks because
the number of pairwise and multiway comparisons grows
exponentially with the number of sites. Other approaches that
avoid exponential comparison either require sharing gigabytes
of data [15], making numerous rounds of back-and-forth
communication [16], or using trusted third parties [17]. These
are also problematic because, as we have previously shown
[18], large federated clinical data networks are fragile, with
multiple sites typically failing to respond even to aggregate
count queries.

HyperLogLog Sketch
In this paper, we propose a new method for combining data
from sites in a federated clinical data network, based on the
HyperLogLog (HLL) probabilistic sketching algorithm [19]. A
probabilistic sketch is a small data structure that summarizes
large amounts of data. A calculation can run on the sketch to
obtain a fast, accurate estimate of what the result would be on
the original data. Although HLL is widely used in many software
programs, such as internet search engines, to our knowledge, it
has not been applied to federated queries of health data.

The basic idea behind HLL (and other minimum value sketches)
[20] is that the minimum of a collection of random numbers
between 0 and 1 is inversely proportional to how many numbers
are present. For example, a single random number between 0
and 1 has an expected value of 0.5; however, if we have 99
random numbers, the minimum has an expected value of 0.01.
By using a hash function that maps patients to a random number
between 0 and 1, we can estimate the number of patients who
match a query at a site by keeping track of just the minimum
hash value of the matching patients. If the minimum hash value
is v, then the estimated number of patients is (1/v)-1. Although
the accuracy of this estimate is poor, the method can be
improved by using t different hash functions to generate t
independent estimates of the number of patients. The average
of these results in a more accurate overall estimate. The set of
t minimum hash values is the sketch.

If each site in a network uses the same hash function and returns
its minimal hash value, then we can estimate the number of
distinct patients in the whole network that match the query from
the smallest of those values. Although it may seem unintuitive
that the network minimum hash is the same as the hash for one
hospital, the hospital which the minimum hash corresponds to

changes when multiple hash functions are used, allowing the
estimator to be accurate.

Instead of using t hash functions, HLL improves the accuracy
of this method by using a single hash function but efficiently
dividing the patients into t partitions and returning the minimum
hash value of patients in each partition. HLL also returns the
position of the leading one indicator in the binary expansion of
the minimum values rather than the actual values. This only has
a small effect on accuracy; however, it greatly reduces the risk
of reidentification from a dictionary attack. For t partitions, the
relative error of HLL is approximately 1/sqrt(t). For example,
by asking sites to share an HLL sketch with only 100 values,
the number of distinct patients can be estimated with a 10%
relative error. The error can be reduced by increasing t. Although
higher t increases the risk of reidentification, the risk is
quantifiable and predictable, enabling networks to define
policies that maximize accuracy while reducing risk to an
acceptable level.

Objectives
We aim to enable accurate estimates of the number of unique
patients matching a federated query while providing strong
guarantees on the amount of protected medical information
revealed.

Structure of This Paper
In the Methods section, we first show how sites can generate a
privacy-preserving HLL sketch of the patients who match a
query and how the shared sketches from sites can be combined
to estimate the number of unique patients in the network who
match the query. We then describe several obfuscation
approaches that further reduce the privacy risk of aggregate
counts, hashed identifiers, and HLL sketches. These include
methods that might result in a loss of information or an increase
in computational complexity to make it more difficult or
impossible for an adversary to identify patients. In the Results
section, we test our algorithm and other methods using simulated
networks of different sizes and degrees of patient overlap. We
compare them along several dimensions, including accuracy,
privacy risk, computation time, and amount of data shared.
Finally, in the Discussion section, we summarize the trade-offs
and limitations of the algorithms and provide recommendations
on when networks should consider using HLL sketches.

Methods

Algorithms and Obfuscation Techniques for Federated
Queries
Here, we describe the algorithms we compared. The basic model
assumes that a researcher at one hospital in the network sends
a query of the form How many unique patients have condition
X across the hospital network? to a central network hub. The
hub then distributes the query to all the hospitals in the network.
The hospitals determine which of their patients match the query
and return a result (the form of this result varies by algorithm)
to the hub. The hub combines the results and returns an estimate
of the total number of unique patients to the researcher. The
name of each algorithm combines the base method (Count,

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 3https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

HashedIDs, or HLL) and any additional obfuscation (Mask,
MPC, Rehash, or Shuffle).

Count
Each hospital runs the researcher’s query locally and sends the
hub a single count of the number of matching patients. The hub
returns 2 numbers: (1) the maximum count from a hospital and
(2) the sum of counts from all hospitals. The maximum count
corresponds to a lower bound on the result, because even in the
event of significant overlapping patients between hospitals,
there are at least as many unique patients across the network as
there are at a single hospital. For example, in Figure 1, hospitals
1, 2, and 3 have 100,000, 80,000, and 50,000 patients,
respectively. It might be the case that all patients at hospitals 2
and 3 are also patients at hospital 1, which has the maximum
count. However, this is not possible for the hospitals with
smaller counts. For example, out of 100,000 patients of hospital
1, at most 80,000 can also be patients at hospital 2. The sum of
all counts is obviously an upper bound, although it might be a
substantial overestimate when there is a significant overlap
between hospitals. Conversely, the maximum of all counts is
obviously a lower bound.

Count+Mask
The procedure is identical to Count, except that if the actual
count of a hospital is between 1 through 9 inclusive, the hospital
returns 10 to the hub instead. This masking procedure ensures
that no nonzero number corresponds to fewer than 10 patients,
ensuring 10-anonymity. Both the PCORNet and ACT networks
use Count+Mask. ACT further obfuscates the result by adding
a small random number between –10 and +10 to the actual count
[4]; however, we ignore this in our analyses.

Count+MPC
This protocol is based on the ElGamal cryptosystem [21] using
a distributed private key to ensure that no one party can decrypt
intermediate data. Only the final sum is decrypted. The
individual hospital counts are hidden, even if all hospitals but
one and the hub are compromised. The major disadvantage is
that the MPC requires all hospitals to respond before any answer
can be given. In large networks, it is likely that some hospitals
will either be slow to respond or not respond at all [18], which
limits this protocol to only small networks in practice (for
additional information on our MPC implementation, see
Multimedia Appendix 1 [6,7,10-12,14-17,21-24]).

HashedIDs
Each hospital runs the query locally, producing a list of matching
patient IDs. Each hospital needs to use the same process for

constructing IDs so that the same patient at different hospitals
will have the same ID. As there is no universal patient identifier,
the ID should be based on information likely to be unique to
the patient and available at all hospitals, such as the
concatenation of the patient’s first name, last name, and date of
birth [7] (for additional details and limitations of generating a
patient ID, see Multimedia Appendix 1
[6,7,10-12,14-17,21-24]). Patient IDs are encrypted using a
one-way hash function. For our simulations, we used SHA-1,
but in practice, a newer, more secure hash function should be
used. The list of hashed IDs is then sent back to the hub. The
hub then counts the number of distinct hashed IDs received
from all sites and returns this as the exact answer to the query.
Sites can precompute the hashed IDs for all of their patients to
improve the performance of queries. Note that because
HashedIDs uses the same hash function for all queries, a
dictionary or linkage attack by the hub has a high likelihood of
success.

HashedIDs+Rehash
This is identical to HashedIDs, except that the originating
hospital (the hospital with the researcher who ran the query)
also sends the hub a random string encrypted with the public
keys of each of the other hospitals (using any kind of standard
off-the-shelf asymmetric key encryption, as used in protocols
such as Rivest-Shamir-Adleman [RSA] and Hypertext Transfer
Protocol Secure [HTTPS]). Each hospital rehashes all the
patients, prepending the random string before running it through
SHA-1. By doing so, because the hub does not know the random
prefix string, it cannot perform a dictionary attack to reverse
the hash function, and thus, all patients get 10-anonymity. Of
course, rehashing all patients with each query requires additional
computational time.

HLL
A graphical overview of HLL is shown in Figure 2. Like
HashedIDs, in HLL, the hospital uses the SHA-1 hash function
to produce a 160-bit pseudorandom number for each patient
that matches a query. The first 64 bits are interpreted as an
integer B, and the patient is put into bucket B mod t, where t is
the number of buckets. The hospital then finds the position V
of the first bit set to 1 in bits 65 to 128 of the SHA-1 string.
Within each bucket, the hospital stores the largest value V
corresponding to a patient. The list of bucket values is the HLL
sketch from that hospital. (Note that like HashedIDs, hospitals
can precompute the buckets B and values V for all of their
patients, so that this step does not have to be repeated for each
query.)

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 4https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 2. HLL sketches. (a) To create an HLL sketch, we first hash a set of identifiers for the matching patients (eg, social security number) to binary
strings. The first several bits of each binary string are used to bucket the values, and then within each bucket, we store the position of the leading one
indicator of the minimum value. (b) HLL sketches from different hospitals are merged by simply taking, within each bucket, the maximum value across
sketches. (c) Given a list of buckets, we can estimate the cardinality. HLL: HyperLogLog; SSN: social security number.

The hospitals send these HLL sketches to the central hub. The
hub combines the sketches by taking the maximum within each
bucket across the hospital sketches, generating a sketch of the
union. The hub then estimates the cardinality C of the union
sketch using the standard HLL estimator [19]. The hub also
provides a 95% CI by using the fact that the SD of the estimate
is around 1/sqrt(t), so 1±1.96/sqrt(t) gives the lower and upper
bounds of a 95% CI.

HLL+Mask
As shown in Figure 3, this algorithm is identical to HLL, except
that the hospital precomputes a list of bucket values that are
less than 10-anonymous. If after generating the HLL sketch
corresponding to the query, a hospital sees that there is a bucket
that is not 10-anonymous, the hospital aborts and reverts to the
Count+Mask algorithm, where only a single (possibly masked)
aggregate count is returned. The hub thus receives a combination
of sketches and masked counts.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 5https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. Applying obfuscation to HLL sketches. (a) HLL+Mask: For each bucket, we count the total number of patients (not just the ones who match
the query) whose hashes have the same leading 1-indicator. If that number is less than 10, then the bucket is not 10-anonymous, so we do not send the
HLL sketch. Instead, we only send a masked aggregate count of the number of patients matching the query. (b) HLL+Shuffle: We do a coordinated
random shuffling so the central hub does not know what the original buckets were for the leading 1 indicator. However, the hub can still estimate
cardinality in the same way as HLL without obfuscation. HLL: HyperLogLog.

The hub combines the sketches together using the HLL
cardinality estimator to obtain an estimate of the count of the
union of all the hospitals that sent sketches with appropriate
95% error bounds. From that, the hub goes through something
similar to Count. The hub returns 2 numbers: the sum of all raw
hospital counts plus the 95% CI maximum for the HLL union
count, which gives an upper bound, and the maximum of the
set of raw counts or the 95% CI minimum for the HLL union,
which gives a lower bound.

HLL+Rehash
This algorithm uses HLL but with an obfuscation method similar
to HashedID+Rehash. When the originating hospital sends a
query to the hub, it sends both a query and a random string
encrypted with public keys of each of the other hospitals in the
network. The hospitals completely regenerate the HLL sketch
while prepending the random string to the patient IDs before
hashing. Although this procedure takes more time, the hub
cannot use a dictionary attack at all because it does not know
the random string. Thus, all patients are guaranteed
10-anonymity if the random string is not revealed to the hub.

HLL+Shuffle
This algorithm also sends a random string encrypted with public
keys of each of the other hospitals in the network to the hub.
However, it is much faster than HLL+Rehash because it avoids
having to rehash all patients. Each hospital first creates an
ordinary HLL sketch using their precomputed hashed IDs. It
then shuffles the ordering of the buckets using the random string
to determine the sort order and then sends the shuffled sketch
to the hub (Figure 3).

As every hospital uses the same permutation, the sketches can
still be combined and the normal estimators can be used.

However, the hub, without knowing the random string, cannot
know which bucket in the original sketch corresponds to a
bucket in the shuffled sketch. Normally, an HLL bucket is less
than 10-anonymous if that value+bucket pair corresponds to
fewer than 10 individuals at the hospital. With shuffling, an
HLL bucket is less than 10-anonymous only if that value
corresponds to fewer than 10 individuals at the hospital. On
average, this decreases the risk by dividing the risk score by the
number of buckets. In other words, the buckets partition the
patient population into smaller, more identifiable groups. By
shuffling the buckets, it is no longer known which partition the
value came from, which makes the value less identifiable.

HLL+MPC
Like Count+MPC, this method is based on the ElGamal
homomorphic cryptosystem, and we use the same primitives as
in that method (with the same security guarantees). We
additionally take inspiration from a previous paper applying
MPC to a Flajolet-Martin style approximate counter [16]. The
key setup, exchange, encryption and decryption routines are
identical to those of Count+MPC (for additional information
on our MPC implementation, see Multimedia Appendix 1
[6,7,10-12,14-17,21-24]).

HLL+Shuffle+MPC
This procedure is simply a combination of HLL+Shuffle and
HLL+MPC. Each hospital simply shuffles their buckets
according to the random string before performing the encryption.
The rest of the procedure is identical to that of HLL+MPC.

Testing and Evaluating the Algorithms
To quantitatively measure privacy loss, we used an adapted
k-anonymity model of privacy, whereby the privacy risk is
defined to be the number of revealed data points that correspond

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 6https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

to fewer than k=10 patients [22,25] (for details on the privacy
risk score, see Multimedia Appendix 1 [6,7,10-12,14-17,21-24]).
We ran benchmarks for runtime, accuracy, and privacy loss on
(1) shared aggregate counts (Count and Count+Mask), (2) shared
hashed identifiers (HashedIDs), and (3) our proposed HLL
approach. Each of these was paired with various obfuscation
techniques of masking, rehashing, shuffling, and MPC. HLL
was tested using different number of buckets or values in the
sketch. We indicate the size of the sketch, t, with a number after

HLL, such that HLLN means 2N values. For example, t=21=2

(HLL1), t=24=16 (HLL4), t=27=128 (HLL7), and t=215=32,768
(HLL15). Although Count+MPC uses a standard MPC
privacy-guaranteed cryptosystem, we implemented our own
protocols for the HLL+MPC variants using ElGamal encryption
[21] and a private equality test [23]. We did not run benchmarks
for other existing privacy-guaranteed methods because they do
not scale well and are infeasible for running on large data sets,
with either extremely high runtime or error (for descriptions of
several of these algorithms and their limitations, see Multimedia
Appendix 1 [6,7,10-12,14-17,21-24]).

Due to patient privacy, we cannot test the algorithms using
actual hospital data. Therefore, we developed software for
generating simulated federated networks of hospitals spread
geographically with highly varying sizes and overlap [24] (for
details on simulating a federated hospital network, see
Multimedia Appendix 1 [6,7,10-12,14-17,21-24]). We ran our
benchmarks on simulated networks containing up to 100 million
total distinct patients, distributed across 100 hospitals. In the
simulations, patients on average received care at 2 hospitals.
However, this number varies and hospitals that are
geographically close in the simulations are modeled to have a
larger number of shared patients.

The benchmarks were run on an 8-core AMD Ryzen 1700
processor with 16 GB of RAM running Ubuntu 18.04.2 Long
Term Support. We measured the wall-clock time for each
pipeline component for time complexity and serialized bitstrings
in each communication round for transmission space complexity.
We provide all code in GitHub [26].

Results

Quantitative Simulation Benchmark Results
Multimedia Appendix 2 lists the detailed benchmark results for
accuracy, privacy risk, and runtimes of queries matching 1, 10,
100, 1000, 10,000, 100,000, 1 million, 10 million, or 100 million
patients using the different methods. As an example, Table 1
shows a subset of rows from the table in Multimedia Appendix
2 corresponding only to queries matching 10,000 patients and

HLL sketches with 27 (HLL7) and 215 (HLL15) values.

Accuracy is described in absolute terms as the 95% CIs of the
estimated number of patients who matched a query in 100
simulated experiments. More precisely, in each of the 100 runs,
each estimator tries to return either its best guess or upper or
lower bounds. If it returns a single best guess, then we report
the 97.5 and 2.5 percentiles as the upper and lower bounds,
respectively. If it returns upper or lower bounds, then we report
the 97.5 percentile of the upper bound and the 2.5 percentile of
the lower bound. These are then converted into relative errors
by comparing them with the true number of distinct patients.

Privacy risk is determined by counting the number of statistics
(ie, a count, HLL bucket, or hash) that are not 10-anonymous
revealed to either the hub or the hub colluding with a hospital.
It relates to the number of patients who are potentially
identifiable with a specific statistic, but it does not necessarily
mean that an adversary will be able to identify a patient from a
statistic. Therefore, it can be thought of as an upper bound on
direct linkage risk. Note that this guarantee is applicable
primarily for one common threat model. In the Discussion
section, we will cover some other more sophisticated potential
avenues for attack.

Wait time is the additional computational time that hospitals
require to generate the statistics plus the time the hub requires
to combine each hospital’s results. (It does not include the time
each hospital needs to run the query.) For the same query,
hospitals might have different wait times based on the number
of matching patients. We, therefore, report both mean wait time,
which is the average hospital computation time+hub
computation time, and max wait time, which is the maximum
hospital computation time for a run+hub computation time.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 7https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 1. Benchmark results for selected methods for queries matching 10,000 patients.

Risk: Hub+SiteRisk:HubWait (seconds)Estimated number of patientsMethod and obfuscation

MaxMeanRelative error (%)Range of counts

Count

2.652.6500–91 to 95899.9-19,470None

0000–91 to 95899.9-19,477Mask

000.0990.09989 to 9518,886-19,470MPCa

HLL7b

15.7315.730.0060.006–17 to 138310-11,347None

15.730.230.0060.006–17 to 138310-11,347Shuffle

15.7300.0160.007–17 to 138310-11,347Rehash

000.0050.005–28 to 417167-14,123Mask

0.30.337.8337.83–17 to 138310-11,347MPC

0.3037.8337.83–17 to 138310-11,347Shuffle+MPC

HLL15

370737071.4621.462–1 to 19928-10,075None

37070.231.4621.462–1 to 19928-10,075Shuffle

370701.6681.625–1 to 19928-10,075Rehash

000.0120.012–91 to 95899.9-19,477Mask

HashedIDs

19,17419,1740.0020.0020 to 010,000-10,000None

19,17400.0040.0020 to 010,000-10,000Rehash

aMPC: multiparty computation.
bHLL: HyperLogLog.

As an example, in Table 1, for a query that actually matches
10,000 patients, the basic Count algorithm had an estimated
count CI (using the summation for the upper estimate and
maximum for the lower estimate) of 899.9 to 19,470 patients
or a relative error of –91% to +95%. It also, on average, had
2.65 hospitals that returned potentially identifiable counts
because the value was less than 10. This risk can be eliminated
with Count+Mask, which increases the error, or by Count+MPC,
which adds computational complexity, and only gives a single
guess, instead of both upper and lower bounds. On the opposite
extreme, HashedIDs returns the exact answer, but all 10,000
patients’ identities are at risk from a dictionary attack. (Note
that Table 1 lists the risk for HashedIDs at 19,174 because the
same patient’s hash value can be returned by more than one
hospital. We report the number of potentially identifiable values
shared, not the number of unique patients at risk.) In
HashedIDs+Rehash, the hub alone cannot identify patients from
the hash values (the Risk:Hub column). However, the risk
returns if an adversary can also obtain the secret random string
from a hospital (the Risk:Hub+Site column).

Table 1 shows that HLL7 and HLL15 can achieve a more tunable
balance between accuracy and privacy. HLL7 has a relative
error of –17% to +13% (8310 to 11,347), which is considerably

better than that of Count, and HLL15 results in an even smaller
relative error of –1% to 1% (9928 to 10,075). HLL7 and HLL15
generate, on average, 15.73 and 3707 potentially identifiable
values. However, adding obfuscation with HLL+Shuffle adds
essentially no additional computation time but reduces the risk
to less than 1 (0.23 on average) potentially identifiable value.
In other words, highly accurate estimates with only 1% error
can be obtained with most queries having no risk of
reidentification. Even if an adversary obtains the secret random
string, the risk of 3707 is much less than 19,174 for HashedIDs.

Graphical Comparison of Algorithms
Figure 4 graphically illustrates the accuracy (the horizontal axis)
and risk (the vertical axis) trade-off of the different algorithms.
For simplicity, only the upper bound of the relative error is used
for accuracy. (The lower bound and absolute errors are not
shown.) Although an individual simulation is plotted as a single
point in the figure, algorithms are shown as regions because
changing the input parameters to the simulation affects the
results. For example, the blue region in Figure 4 covers the
range of HLLs with queries of different sizes (10 to 10 million
matching patients) and sketches of different sizes (HLL1=2 to
HLL15=32,768 values).

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 8https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 4. Comparison of the query accuracy/privacy risk trade-off based on the simulations of a network with 100 sites and 100 million patients.
HashedIDs and Count bound the graph, whereas HLL-based methods enable a more balanced approach. (HLL+MPC is only shown for 10 million
patients, and the values for HLL7+MPC and HLL15+MPC are theoretical rather than experimental.) HLL+MPC reduces the HLL risk by 1/s, where s
is the number of sites in the network. HLL+Shuffle reduces the HLL risk by 1/t, where t is the number of values in the HLL sketch. HLL: HyperLogLog;
MPC: multiparty computation.

The key takeaway from Figure 4 is that Count and HashedIDs
are extremes that cover only one axis or the other, whereas
variations of HLL enable networks to select an algorithm that
fits anywhere between the axes. In other words, with HLL,
networks can determine an acceptable risk level and pick the
sketch size and obfuscation method that will give the most
accurate result. Alternatively, they can start with a desired
accuracy and pick the most secure method that runs within a
given amount of time.

Count+Mask has the worst accuracy but guarantees
10-anonymity (thin horizontal gray box; Figure 4). As each
patient in the simulation was, on average, at two hospitals,
queries that matched all 100 million distinct patients returned
counts from each hospital that added up to 200 million—a 100%
overestimate. Queries that only matched a few patients (small
queries) had much greater error because of the obfuscation. The
worst case, in theory, is when a query matches one distinct
patient and that patient happens to be at each of the 100
hospitals. As each hospital returns ≤10, the upper bound estimate
assumes that there are 10 patients in each hospital and that there
is no overlap. This would result in an upper bound estimate of
100×10=1000 or a relative error of 99,900%. Even when patients
are only at one hospital (no overlap), Count+Mask can have a
900% error.

Without obfuscation, the relative error of Count in the
simulations remained near 100% for queries of all sizes (thin
vertical gray box; Figure 4). However, for small queries, many
sites returned potentially identifiable counts less than 10. At the
other extreme, HashedIDs always gave correct answers (0%

relative error). However, this requires sharing individual data
on all matching patients (thin vertical brown box; Figure 4).
The risk can be reduced if a different hash function is used for
each query (HashedIDs+Rehash) and an adversary is unable to
discover the hash functions.

Variations of HLL fill in the space between Count, Count+Mash,
and HashedIDs, allowing the networks to tune their estimation
method to achieve a more desirable balance of accuracy and
risk for a given application. In Figure 4, HLL (the blue region),
HLL+Shuffle (the red region), and HLL+Rehash (the thin
horizontal green box) have the same accuracy but different
levels of risk. In contrast to Count, which has more risk with
smaller queries, HLL, like HashedIDs, has a higher risk with
larger queries. Doubling the number of buckets in the HLL
sketch reduces the error by a factor of sqrt(2); however, without
obfuscation, it also doubles the risk.

The benefit of HLL+Shuffle is that buckets can be added to
reduce error with only minimal change in risk. For queries that
matched fewer than 100,000 patients, even HLL15+Shuffle,
which has a relative error of only approximately 1%, had an
average privacy risk of less than 1. HLL+Rehash reduced risk
even further but required over a minute of extra computational
time in some experiments, whereas the computational time of
HLL+Shuffle is negligible. HLL+Mask guarantees
10-anonymity, but its error was often almost as large as
Count+Mask. The benefit of HLL+Mask is that it can leverage
the improved accuracy of HLL when possible, while ensuring
that no added risk is introduced.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 9https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Qualitative Comparison of the Algorithms
Table 2 provides a qualitative summary of the results. In general,
HLL, especially with obfuscation, is much more accurate than
aggregate counts, lower risk than sharing hash values of all
matching patients, and more scalable than privacy guaranteeing

algorithms. The relevant benefits of certain methods depend on
the number of patients who match the query. For example, as
the number of patients increases, the risk of Count decreases,
as indicated by “(–)”, while the risk of HLL7 increases, as
indicated by “(+).”

Table 2. Qualitative comparison of algorithms.

Risk:Hub+SiteRisk:HubRuntime waitApproximation errorMethod and obfuscation

Count

Medium (–)Medium (–)Very smallLargeNone

ZeroZeroVery smallLargeMask

ZeroZeroMediumNo changebMPCa

HLL7c

Medium (+)Medium (+)SmallMediumNone

No changeSmall (+)No changeNo changeShuffle

No changeZeroMedium (+)No changeRehash

ZeroZeroMedium (–)Medium (+)Mask

Small (+)Small (+)LargeNo changeMPC

HLL7+MPCVery small (+)HLL7+MPCNo changeShuffle+MPC

HLL15

Large (+)Large (+)MediumSmallNone

No changeSmall (+)No changeNo changeShuffle

No changeZeroMedium (+)No changeRehash

ZeroZeroMedium (–)Large (+)Mask

HashedIDs

Very large (+)Very large (+)Medium (+)ZeroNone

No changeZeroNo changeNo changeRehash

aMPC: multiparty computation.
bNo change: the value is the same as the method without any obfuscation.
cHLL: HyperLogLog.

Computational and Communication Costs
Multimedia Appendix 3 shows the theoretical upper bounds on
the computational costs of each method plus obfuscation
technique, theoretical exact communication costs (the space
complexity of the amount of data that the hospitals and hub
have to send over the network), and the actual empirical results
of both computational and communication costs.

Discussion

Summary of Results and Practical Considerations
In this study, we surveyed and benchmarked a range of methods
for determining the number of distinct patients who matched a
federated query, exploring the trade-offs in accuracy, privacy,
and speed. We explicitly do not endorse a single one-size-fits-all
method because different networks and institutions will have
different needs. With data use agreements and a trusted third
party, HashedIDs provides the most accurate results. When
minimizing privacy risk is the most important factor, networks

can choose between (1) fast but inaccurate methods such as
Count+Mask, (2) accurate but slow algorithms such as
HLL+Rehash, or (3) privacy-guaranteed methods that only work
on small networks. A key goal of the ACT network is real-time
queries that enable rapid exploration of the data. As a result,
adding even a few seconds of computational time to ACT
queries might not be acceptable. When runtimes must be
minimized, methods such as HLL7+Mask and HLL7+Shuffle
are fast and have a good balance between accuracy and privacy.

In practice, we envision a combination approach. Queries can
first be run using a fast, private method, such as Count+Mask
or Count+MPC. Given these rough results and the needs of the
researcher, hospitals can then be asked to return the HLL
sketches for the patients who matched the query. The initial
count estimate and the privacy risk allowed by the network
could be used to select the HLL sketch size and obfuscation
method that would return the most accurate result in a reasonable
amount of time. In the final stage of research (eg, in preparation
for a full clinical trial), investigators could request permission

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 10https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

from institutions to run accurate but potentially identifiable
queries, such as HLL15 or HashedIDs.

Limitations
It is important for each institution to assess their own risk
models. In particular, our risk model assumes that given a sketch
for a given condition (eg, hypertension), the adversary already
has access to the list of patients at the hospital and wants to
identify patients that have the condition. The filled buckets of
an HLL sketch correspond to hashes of patients who have the
condition, and our goal is to ensure that for every patient with
the condition, at least nine other patients without that condition
could have hashed to the same value, ensuring 10-anonymity.
Statistics that do not meet this requirement count for the privacy
loss score. For example, our privacy risk analysis differs
considerably from that of Desfontaines et al [27] who argue that
“cardinality estimators do not preserve privacy.” However, their
threat model assumes that an adversary can access the sketches
as they are being generated, one patient at a time. In contrast,
our risk model is based on each hospital’s final sketch, which
represents all patients who match the query.

In addition, some amount of information is leaked about the
patients not included in the sketch, precisely because they were
not included. This does not allow an adversary to pinpoint
patients with a condition but may sometimes allow them to
determine a patient lacking that condition. Of course, this type
of leakage is to some extent a problem with any aggregate query
system, because if an adversary learns that only 1% of patients
at a hospital have a condition, then they know with high
certainty that most patients do not. In line with our analysis
mentioned earlier, however, for this type of leakage, Count is
more private than HLL, which is more private than HashedIDs,
so the same privacy-accuracy trade-off applies.

We only considered a federated or distributed network in which
no patient-level clinical data leave the institution and queries
only return aggregate counts. This is in contrast to
privacy-preserving record linkage approaches whose goal is to
assemble a centralized deduplicated limited or deidentified data
set through an honest broker without exchanging identifiable
information. With the appropriate technologies, a secure
infrastructure, and the proper institutional agreements in place,
it is possible to merge data sets, even on large scales. PCORNet,
in particular, has used methods similar to HashedIDs and
HashedIDs+Rehash to do this for subsets of hospitals in its
network [28,29]. There are multiple advantages of centralized
data, including exact results and ease of use. However, in this
study, we showed that (1) linking and deduplicating data at the
individual patient level is not necessary to obtain accurate
estimates and (2) this can be done in a computationally efficient
manner. There are benefits to this federated model. It reduces
concerns that hospitals might have in sharing data, it does not
require updating and relinking the central database, and it places
less dependency on having an honest broker.

Conclusions
We believe that as federated data networks expand to include
more institutions and data types (clinical, genomic,
environmental, etc), researchers will increasingly depend on
fast, accurate, and secure query tools to obtain the greatest
possible scientific value from the networks. However, because
no single algorithm meets all these requirements, having the
ability to select among different methods for a particular
application is essential. In this study, we introduce HLL and
several obfuscation techniques to provide networks with a
tunable approach to determine the number of distinct patients
who match a query, which is more balanced than commonly
used methods that greatly sacrifice accuracy (Count+Mask),
privacy (HashedIDs), or scalability.

Acknowledgments
This study was supported by the NIH Big Data to Knowledge Award U54HG007963 from the National Human Genome Research
Institute, U01CA198934 from the National Cancer Institute, and R01LM013345 from the National Library of Medicine. YY was
also supported by a training grant T15LM007092 from the NIH National Library of Medicine.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Details on the algorithms, secure methods that are not scalable to large networks, the privacy risk score, and the federated hospital
network simulation.
[PDF File (Adobe PDF File), 149 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Detailed benchmark results.
[PDF File (Adobe PDF File), 156 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Time and space complexity for various methods.
[PDF File (Adobe PDF File), 118 KB-Multimedia Appendix 3]

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 11https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v22i11e18735_app1.pdf&filename=efbd5f8f6ef68312128eefe514e2c7c3.pdf
https://jmir.org/api/download?alt_name=jmir_v22i11e18735_app1.pdf&filename=efbd5f8f6ef68312128eefe514e2c7c3.pdf
https://jmir.org/api/download?alt_name=jmir_v22i11e18735_app2.pdf&filename=41780f4bad81c8e4dda75b56332e6747.pdf
https://jmir.org/api/download?alt_name=jmir_v22i11e18735_app2.pdf&filename=41780f4bad81c8e4dda75b56332e6747.pdf
https://jmir.org/api/download?alt_name=jmir_v22i11e18735_app3.pdf&filename=e9793612a28f9dab73f2afb47e0e6a22.pdf
https://jmir.org/api/download?alt_name=jmir_v22i11e18735_app3.pdf&filename=e9793612a28f9dab73f2afb47e0e6a22.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/

References

1. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care.
Nat Rev Genet 2012 May 2;13(6):395-405. [doi: 10.1038/nrg3208] [Medline: 22549152]

2. Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-centered clinical
research network. J Am Med Inform Assoc 2014;21(4):578-582 [FREE Full text] [doi: 10.1136/amiajnl-2014-002747]
[Medline: 24821743]

3. Weber GM, Murphy SN, McMurry AJ, Macfadden D, Nigrin DJ, Churchill S, et al. The shared health research information
hetwork (SHRINE): a prototype federated query tool for clinical data repositories. J Am Med Inform Assoc
2009;16(5):624-630 [FREE Full text] [doi: 10.1197/jamia.M3191] [Medline: 19567788]

4. McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J, et al. SHRINE: enabling nationally scalable
multi-site disease studies. PLoS One 2013;8(3):e55811 [FREE Full text] [doi: 10.1371/journal.pone.0055811] [Medline:
23533569]

5. Visweswaran S, Becich MJ, D'Itri VS, Sendro ER, MacFadden D, Anderson NR, et al. Accrual to clinical trials (ACT): a
clinical and translational science award consortium network. JAMIA Open 2018 Oct;1(2):147-152 [FREE Full text] [doi:
10.1093/jamiaopen/ooy033] [Medline: 30474072]

6. Weber GM. Federated queries of clinical data repositories: the sum of the parts does not equal the whole. J Am Med Inform
Assoc 2013 Jun;20(e1):e155-e161 [FREE Full text] [doi: 10.1136/amiajnl-2012-001299] [Medline: 23349080]

7. Grannis SJ, Overhage JM, McDonald CJ. Analysis of identifier performance using a deterministic linkage algorithm. Proc
AMIA Symp 2002:305-309 [FREE Full text] [Medline: 12463836]

8. Eastlake D, Jones P. US Secure Hash Algorithm 1 (SHA1). IETF Tools. URL: https://tools.ietf.org/html/rfc3174 [accessed
2020-10-23]

9. Oechslin P. Making a Faster Cryptanalytic Time-memory Trade-Off. In: Annual International Cryptology Conference.
2003 Presented at: CRYPTO'03; August 17-21, 2003; Santa Barbara, CA, USA. [doi: 10.1007/978-3-540-45146-4_36]

10. Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol 2018
Jul;36(6):547-551 [FREE Full text] [doi: 10.1038/nbt.4108] [Medline: 29734293]

11. Hie B, Cho H, Berger B. Realizing private and practical pharmacological collaboration. Science 2018 Oct
19;362(6412):347-350 [FREE Full text] [doi: 10.1126/science.aat4807] [Medline: 30337410]

12. Kolesnikov V, Matania N, Pinkas B, Rosulek M, Trieu N. Practical Multi-Party Private Set Intersection From Symmetric-Key
Techniques. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017
Presented at: CCS'17; October 30-November 3, 2017; Dallas, Texas, USA. [doi: 10.1145/3133956.3134065]

13. de Cristofaro CE, Gasti P, Tsudik G. Fast and Private Computation of Cardinality of Set Intersection and Union. In:
International Conference on Cryptology and Network Security. 2012 Presented at: CANS'12; December 12-14, 2012;
Darmstadt, Germany. [doi: 10.1007/978-3-642-35404-5_17]

14. Swamidass SJ, Matlock M, Rozenblit L. Securely measuring the overlap between private datasets with cryptosets. PLoS
One 2015;10(2):e0117898 [FREE Full text] [doi: 10.1371/journal.pone.0117898] [Medline: 25714898]

15. Fenske E, Mani A, Johnson A, Sherr M. Distributed Measurement With Private Set-Union Cardinality. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017 Presented at: CCS'17; October
30-November 3, 2017; Dallas, Texas, USA. [doi: 10.1145/3133956.3134034]

16. Dong C, Loukides G. Approximating private set union/intersection cardinality with logarithmic complexity. IEEE Trans
Inform Forensic Secur 2017 Nov;12(11):2792-2806. [doi: 10.1109/tifs.2017.2721360]

17. Yigzaw KY, Michalas A, Bellika JG. Secure and scalable deduplication of horizontally partitioned health data for
privacy-preserving distributed statistical computation. BMC Med Inform Decis Mak 2017 Jan 3;17(1):1 [FREE Full text]
[doi: 10.1186/s12911-016-0389-x] [Medline: 28049465]

18. Weber GM. Federated queries of clinical data repositories: scaling to a national network. J Biomed Inform 2015
Jun;55:231-236 [FREE Full text] [doi: 10.1016/j.jbi.2015.04.012] [Medline: 25957825]

19. Flajolet P, Fusy E, Gandouet O, Meunier F. Hyperloglog: the Analysis of a Near-Optimal Cardinality Estimation Algorithm.
In: Conference on Analysis of Algorithms. 2007 Presented at: AofA'07; January 1, 2007; Juan des Pins, France p. 1 URL:
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

20. Bar-Yossef Z, Jayram T, Kumar R, Sivakumar D, Trevisan L. Counting Distinct Elements in a Data Stream. In: International
Workshop on Randomization and Approximation Techniques in Computer Science. 2002 Presented at: RANDOM'02;
September 13-15, 2002; Cambridge, MA, USA. [doi: 10.1007/3-540-45726-7_1]

21. Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inform Theory
1985 Jul;31(4):469-472. [doi: 10.1109/tit.1985.1057074]

22. El Emam K, Dankar F. Protecting privacy using k-anonymity. J Am Med Inform Assoc 2008;15(5):627-637 [FREE Full
text] [doi: 10.1197/jamia.M2716] [Medline: 18579830]

23. Jakobsson M, Juels A. Mix and Match: Secure Function Evaluation via Ciphertexts. In: International Conference on the
Theory and Application of Cryptology and Information Security. 2000 Presented at: ASIACRYPT'00; December 3-7, 2000;
Kyoto, Japan. [doi: 10.1007/3-540-44448-3_13]

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 12https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1038/nrg3208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22549152&dopt=Abstract
http://europepmc.org/abstract/MED/24821743
http://dx.doi.org/10.1136/amiajnl-2014-002747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24821743&dopt=Abstract
http://europepmc.org/abstract/MED/19567788
http://dx.doi.org/10.1197/jamia.M3191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19567788&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0055811
http://dx.doi.org/10.1371/journal.pone.0055811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23533569&dopt=Abstract
http://europepmc.org/abstract/MED/30474072
http://dx.doi.org/10.1093/jamiaopen/ooy033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30474072&dopt=Abstract
http://europepmc.org/abstract/MED/23349080
http://dx.doi.org/10.1136/amiajnl-2012-001299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23349080&dopt=Abstract
http://europepmc.org/abstract/MED/12463836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12463836&dopt=Abstract
https://tools.ietf.org/html/rfc3174
http://dx.doi.org/10.1007/978-3-540-45146-4_36
http://europepmc.org/abstract/MED/29734293
http://dx.doi.org/10.1038/nbt.4108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29734293&dopt=Abstract
http://europepmc.org/abstract/MED/30337410
http://dx.doi.org/10.1126/science.aat4807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30337410&dopt=Abstract
http://dx.doi.org/10.1145/3133956.3134065
http://dx.doi.org/10.1007/978-3-642-35404-5_17
https://dx.plos.org/10.1371/journal.pone.0117898
http://dx.doi.org/10.1371/journal.pone.0117898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25714898&dopt=Abstract
http://dx.doi.org/10.1145/3133956.3134034
http://dx.doi.org/10.1109/tifs.2017.2721360
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0389-x
http://dx.doi.org/10.1186/s12911-016-0389-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28049465&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00079-9
http://dx.doi.org/10.1016/j.jbi.2015.04.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25957825&dopt=Abstract
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://dx.doi.org/10.1007/3-540-45726-7_1
http://dx.doi.org/10.1109/tit.1985.1057074
http://europepmc.org/abstract/MED/18579830
http://europepmc.org/abstract/MED/18579830
http://dx.doi.org/10.1197/jamia.M2716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18579830&dopt=Abstract
http://dx.doi.org/10.1007/3-540-44448-3_13
http://www.w3.org/Style/XSL
http://www.renderx.com/

24. Berry BJ. City size distributions and economic development. Econ Dev Cult Change 1961 Jul;9(4, Part 1):573-588. [doi:
10.1086/449923]

25. Sweeney L. K-anonymity: a model for protecting privacy. Int J Unc Fuzz Knowl Based Syst 2012 May 2;10(5):557-570.
[doi: 10.1142/s0218488502001648]

26. yunwilliamyu / secure-distributed-union-cardinality. GitHub. URL: https://github.com/yunwilliamyu/
secure-distributed-union-cardinality [accessed 2020-10-23]

27. Desfontaines D, Lochbihler A, Basin D. Cardinality estimators do not preserve privacy. ArXiv 2020:- epub ahead of print.
[doi: 10.2478/popets-2019-0018]

28. Kho AN, Cashy JP, Jackson KL, Pah AR, Goel S, Boehnke J, et al. Design and implementation of a privacy preserving
electronic health record linkage tool in Chicago. J Am Med Inform Assoc 2015 Sep;22(5):1072-1080 [FREE Full text]
[doi: 10.1093/jamia/ocv038] [Medline: 26104741]

29. Bian J, Loiacono A, Sura A, Mendoza VT, Lipori G, Guo Y, et al. Implementing a hash-based privacy-preserving record
linkage tool in the oneFlorida clinical research network. JAMIA Open Sep 2019;2(4):562-569. [doi:
10.1093/jamiaopen/ooz050]

Abbreviations
ACT: Accrual to Clinical Trials
HLL: HyperLogLog
MPC: multiparty computation
NIH: National Institutes of Health
PCORnet: Patient-Centered Outcomes Research Network

Edited by G Eysenbach; submitted 15.03.20; peer-reviewed by S Visweswaran, H Hochheiser, J Farzi, M Mourby; comments to author
04.07.20; revised version received 28.08.20; accepted 07.09.20; published 03.11.20

Please cite as:
Yu YW, Weber GM
Balancing Accuracy and Privacy in Federated Queries of Clinical Data Repositories: Algorithm Development and Validation
J Med Internet Res 2020;22(11):e18735
URL: https://www.jmir.org/2020/11/e18735
doi: 10.2196/18735
PMID: 33141090

©Yun William Yu, Griffin M Weber. Originally published in the Journal of Medical Internet Research (http://www.jmir.org),
03.11.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic
information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be
included.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e18735 | p. 13https://www.jmir.org/2020/11/e18735
(page number not for citation purposes)

Yu & WeberJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1086/449923
http://dx.doi.org/10.1142/s0218488502001648
https://github.com/yunwilliamyu/secure-distributed-union-cardinality
https://github.com/yunwilliamyu/secure-distributed-union-cardinality
http://dx.doi.org/10.2478/popets-2019-0018
http://europepmc.org/abstract/MED/26104741
http://dx.doi.org/10.1093/jamia/ocv038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26104741&dopt=Abstract
http://dx.doi.org/10.1093/jamiaopen/ooz050
https://www.jmir.org/2020/11/e18735
http://dx.doi.org/10.2196/18735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33141090&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

