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Abstract

Background: Stress is a risk factor associated with physiological and mental health problems. Unobtrusive, continuous stress
sensing would enable precision health monitoring and proactive interventions, but current sensing methods are often inconvenient,
expensive, or suffer from limited adherence. Prior work has shown the possibility to detect acute stress using biomechanical
models derived from passive logging of computer input devices.

Objective: Our objective is to detect acute stress from passive movement measurements of everyday interactions on a laptop
trackpad: (1) click, (2) steer, and (3) drag and drop.

Methods: We built upon previous work, detecting acute stress through the biomechanical analyses of canonical computer mouse
interactions and extended it to study similar interactions with the trackpad. A total of 18 participants carried out 40 trials each of
three different types of movement—(1) click, (2) steer, and (3) drag and drop—under both relaxed and stressed conditions.

Results: The mean and SD of the contact area under the finger were higher when clicking trials were performed under stressed
versus relaxed conditions (mean area: P=.009, effect size=0.76; SD area: P=.01, effect size=0.69). Further, our results show that
as little as 4 clicks on a trackpad can be used to detect binary levels of acute stress (ie, whether it is present or not).

Conclusions: We present evidence that scalable, inexpensive, and unobtrusive stress sensing can be done via repurposing passive
monitoring of computer trackpad usage.

(J Med Internet Res 2020;22(10):e22743) doi: 10.2196/22743
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Introduction

Overview
Several health risks such as cardiovascular disease and immune
deficiencies, which can diminish the quality of life and shorten
life expectancy [1], are linked to repetitive daily acute stress
(ie, short-term response to a perceived threat or challenge [2,3]).
Stress can also have a profound impact on cognitive and
emotional well-being. Advances in wearable technology enable
affective and cognitive state measurements. Still, wearable
devices can suffer from high attrition and low adoption, in
general, and getting stable stress measurements “in the wild”
(eg, heart rate variability [HRV] and electrodermal activity
[EDA]) remains challenging.

Previous lab studies have shown that data from interactions
with everyday devices, such as computer mouse movements,
keyboard pressure, smartphone touch, and key swipes, or even
the steering wheel of a car, can be used in an unobtrusive and
scalable way to detect the presence of acute stress [4-8]. To the
best of our knowledge, this paper presents the first work showing
the feasibility of detecting acute stress from interactions with
laptop computer trackpads.

There are several billion personal computing devices (PCDs)
deployed in the world, and this number increases by around 300
million every year [9]. Laptops, or notebooks, represent the
largest (42%) and the fastest-growing segment [9] among PCDs.

Most laptop users prefer the trackpad over an external mouse,
for improved mobility or due to space limitations. Investigating
biomechanics and motor control of finger dynamics during
trackpad use can lead to reliable detection of acute stress,
especially for long-term unobtrusive continuous monitoring.
We propose two research questions (RQs):

1. RQ1: Can we assess differences between stress versus
relaxation through changes in the damping ratio (Γ) and
damping frequency (ω) of a mass-spring-damper (MSD)
model derived from finger strokes on a laptop trackpad,
similar to our previous study on a computer mouse [4]?

2. RQ2: Are there differences between stress and relaxation
in other metrics of finger dynamics, such as contact area,
velocity, and acceleration, which are theoretically linked
to muscle tension?

We conducted a within-subjects study (N=18) counterbalancing
relaxed and stressed conditions. Subjects performed 40 trials
each of three canonical computer tasks using a trackpad, namely,
clicking, steering, and drag and drop (see Table 1 and Figure
1), similar to what Sun et al did with a computer mouse [4]. We
focused our analyses on metrics derived from finger dynamics.
Our results confirm a significantly higher mean and SD of the
contact area under the finger for the tasks performed under stress
compared to relaxed conditions, even among the initial 10% of
the data (ie, 4 out of 40 clicks) from clicking trials. To the best
of our knowledge, this is the first systematic study that links
acute stress to finger strokes on the trackpad of a laptop device.

Table 1. Different task configurations by varying the distance and width parameters.

Width by configuration, pixelsDistance by configuration, pixelsTask type

432154321

6432168102451225612864Click

128643216102451225612864Drag and drop

6432168102451225612864Steer

Figure 1. Computer tasks used in the study: (1) click, (2) steer, and (3) drag and drop. Different combinations of width (W) and distance (D) were
randomly presented (see Table 1). In the click trials, subjects had to click anywhere on the blue rectangle first and then the yellow rectangle. In the steer
trials, subjects had to hold down the left key and steer across the distance between the two rectangles. In the drag-and-drop trials, subjects had to click
on the green rectangle, hold it, drag it, and then drop it over the red rectangle.
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Background

Stress Measurements
Stress can be measured via self-reports or physiological signals.
Self-reported stress (SRS) can be measured through the
Perceived Stress Scale (PSS) [10,11]. Typically, a simplified
version with a single 11-item scale of stress, ranging from 0 to
10, is used in repeated-measure studies [4,12]. Although
subjective responses are commonly used, they are not precise
and suffer from response bias and noncompliance [13], making
them impractical for long-term monitoring.

Complementarily, physiological measurement of stress can be
done by an indirect observation of the autonomic nervous system
(ANS) signal [14]. A popular metric is EDA [15,16]. EDA,
formerly known as the galvanic skin response, is a measurement
of skin conductance due to the activation of the eccrine sweat
glands, which are only innervated by the sympathetic nervous
system (SNS). The SNS is one of the branches of the ANS
linked to the “fight or flight” response, the coordinated response
by the body organs to a threat signal (ie, stressor). High average
levels and an increase in skin conductance responses (SCRs)
(ie, the number of EDA peaks) are associated with stress [16].
Another popular measure is HRV, which is the measurement
of the time variation between R-R peaks of an electrocardiogram
(ECG) signal due to the sinusoidal arrhythmia [14]. EDA and
ECG can be obtained in ambulatory settings using wearable
devices. However, these sensors are obtrusive, leading to
dropout, and are also affected by motion artifacts. In this paper,
we validated our stressor with SRS and EDA.

Links Between Stress, Motor Control, and Muscle
Tension
Previous research suggests that hormones and neurotransmitters
released during heightened stress arousal can influence motor
output [17]. Noteboom et al [17] carried out a precision task
that required a submaximal isometric pinch grip. Their research
found that the steadiness in electromyography (EMG) activity
in the first dorsal interosseous (FDI) muscle of the hand (see
Figure 2), and the flexor digitorum superficialis muscle of the
forearm, was increased during stress, especially in those with
moderate anxiety trait compared to those with low anxiety trait.
Laidlaw et al [18] measured the motor unit activity using
intramuscular EMG recordings in the FDI during a pinch grip
task. They concluded that increased variability of motor unit
discharge is associated with reductions in steadiness. Coombes
et al [19] showed that the force production in wrist and finger
extensor muscles was increased during continuous exposure to
unpleasant stimuli, compared to neutral stimuli, for a voluntary
bimanual maximal isometric contraction task. Arnich et al [20]
showed that nervous or anxious individuals have higher levels
of movement variability while sitting (ie, a higher center of
pressure dispersion on the seat). These studies provide evidence
on how acute stress can influence variability while performing
a motor task.

Additionally, various studies have shown that acute mental
stress increases muscle tension in the neck, forehead, and arms
[21-24]. The shoulder's trapezius muscle [25], as well as biceps
and triceps [26], have shown direct changes due to mental
arithmetic tasks. In this study, we used two types of
biomechanical metrics: those that are influenced by changes in
muscle tension and motor control variability due to stress.
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Figure 2. Main muscles activated when using computer input devices: mouse and trackpad.

Effects of Stress on the Manipulation of Computer Input
Devices
Sun et al [4] showed a direct correlation between stress, muscle
tension, and movement of a computer mouse by approximating
the mouse movement trajectories as a step response of an MSD
system. They calculated the Γ and ω, both of which were higher
under stress. Hernandez et al showed a higher contact area with
the surface of a capacitive mouse under stressful conditions
compared to relaxed conditions [6]. Wahlstrom et al [27] showed
that muscle activity in the right extensor digitorum (ED) and
right trapezius muscles were greater in stressed situations evoked
by time pressure and verbal provocation while working with a
computer mouse. Carneiro et al [28] showed that acceleration
and mean and maximum intensity (aka, pressure) of touch when
interacting with touchscreen devices were higher under stressful
conditions. While not the same as stress, Gao et al [7] showed
that the velocity and contact area of the finger strokes during
the frustrated state in comparison to the relaxed state were
among the main features used in a machine learning (ML)
prediction model of frustration during game-playing interactions
on an iPod. To the best of our knowledge, there is no prior
research on systematic stress detection using finger dynamics
during laptop trackpad use.

Biomechanics of Trackpad Versus Mouse Usage
It is important to understand the biomechanical differences
between trackpad and mouse use [29]. Direct comparisons
between methods and metrics used with a computer mouse may
not be feasible for a trackpad. Mouse use primarily triggers the
large trapezius muscles for moving the entire arm leading to

horizontal and vertical movement of the cursor on the screen
[29]. Although both mouse and trackpad movements use the
ED muscle for clicking, trackpad displacement mainly involves
the rather small FDI hand muscle [29]. Figure 2 shows the
relative sizes of the muscles of the arm and hand.

In comparison to the trackpad, mouse use induces larger
shoulder abduction and smaller elbow flexion [29]. Trackpad
use requires a more static posture of the upper arm to maintain
stabilization of the hand but a more rigorous movement of
fingers [29]. Stress detection via an approximation of muscle
tension [4] benefits from more muscle activity. However, the
absolute level of muscle activity in the FDI during trackpad
usage is low compared to that in the bigger trapezius muscle
during computer mouse usage [29,30]. As a result, it could be
hard to rely on muscle tension and stiffness to infer stress using
trackpad versus mouse data [4,27].

Methods

Subjects
We recruited 22 subjects (10 males [45%] and 12 females
[55%]), with ages ranging from 19 to 68 (mean 37, SD 16), not
screened for preferences in using a computer mouse or trackpad.
We eliminated 4 subjects for whom our stressor did not have
any effect on SRS, leaving a total of 18 subjects (8 males [44%]
and 10 females [56%]). Of the remaining 18 subjects, 11 (61%)
reported using a computer mouse and 9 (50%) reported using
a laptop trackpad daily. The mean self-reported daily usage
duration of the laptop trackpad (mean 2.6, SD 3.1 hours) was
significantly lower (t17=2.1, P=.03) than that of the computer

J Med Internet Res 2020 | vol. 22 | iss. 10 | e22743 | p. 4http://www.jmir.org/2020/10/e22743/
(page number not for citation purposes)

Goel et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


mouse (mean 5.2, SD 3.1 hours). Subjects provided written
informed consent before participation and were given US $20
gift cards for their participation. The study was approved by
the Institutional Review Board of Stanford University.

Apparatus
The experiment was performed in an office setting without any
distractions. We used a 15-inch 2015 MacBook Pro (Apple Inc)
(see Figure 3) equipped with a 140×70-mm Force Touch
trackpad with sensitivity preset to a default value of 1.0. An

overhead camera captured hand movement, and our logging
software captured trackpad and cursor activity. The logger was
implemented in C and Swift (Apple Inc) using Apple’s
MultiTouchSupport framework. It recorded coordinates rounded
to the nearest hundredth of a millimeter with an average
sampling rate of 8.17 milliseconds (SD 3.75), multiple finger
touches marked with ID numbers, contact shape under the finger
(ie, major and minor axes of the ellipse), interaction type (ie,
touching, dragging, etc), and pressed state (ie, active or inactive).

Figure 3. Apparatus: a 15-inch 2015 MacBook Pro (Apple Inc) with a passive movement logger teamed with an overhead camera for the ancillary
recording of hand movement.

Stimuli
The stimuli consisted of Relaxation and Stressor phases
replicated from prior studies [4,5]. During the Relaxation phase,
we instructed subjects to breathe deeply while viewing a
soothing video, which is recommended over doing nothing [31].
The acute Stressor phase consisted of an arithmetic cognitive
stressor combined with social evaluation (ie, the presence of an
experimenter continuously observing and correcting if the
subject made a mistake), derived from the Trier Social Stress
Test [32], and enhanced with a biased financial stimulus. The
test required subjects to perform a series of subtractions out
loud (eg, subtract 13 from 2017, and so forth) under the scrutiny

of the experimenter. If the subject made a mistake, or if he or
she took more than four seconds to respond, the experimenter
asked the subject to start again from 2017. The subject was
offered an additional US $1 for every 10 consecutive arithmetic
operations performed correctly, but only US $1 was to be
deducted for each mistake. All subjects made mistakes that
made them “lose” money, but after debriefing, they all received
full compensation. The financial part of the stimulus based on
performance could have been more frustrating than stressful for
some subjects. However, it was added, as was done in our
previous study [4], since frustration can further exacerbate acute
stress.
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Experimental Tasks
All subjects performed three types of tasks—click, steer, and
drag and drop (see Figure 1)—as in our previous study using
the computer mouse [4]. Five different distance (D) and four
different width (W) configurations were used for each of the
three task types, resulting in a total of 20 configurations per

task (see Table 1) [4]. Users performed two trials per
configuration within each task type (see Figure 4). Tasks of the
same type were grouped to prevent performance differences
due to subjects needing to adjust to different task types. In total,
each experimental condition, tStressed (stressed task) and
tRelaxed (relaxed task), had 120 trials (3 task types × 40 trials).

Figure 4. Example of distribution of different task types across different subjects.

Experimental Design

Testing Procedure
The experiment consisted of four distinct phases (see Figure
5):

1. Baselining and Relaxation: a 5-minute phase designed to
normalize the effects of any stressors, including any external
factors, and to bring the subject to a baseline level.

2. tRelaxed: an approximately 7-minute phase (mean 6.8, SD
1.7 minutes) during which subjects were instructed to
perform the randomized tasks—click, drag and drop, and
steer (see Figure 1)—as quickly and accurately as possible.

3. Stressor: a 5-minute stress-inducing phase.

4. tStressed: an approximately 7-minute phase (mean 6.8, SD
1.5 minutes) during which subjects were instructed to
perform the randomized tasks—click, drag and drop, and
steer (see Figure 1)—as quickly and accurately as possible.

The 18 subjects were assigned to one of the two counterbalanced
arms: Relax-Stress (3 males [17%] and 5 females [28%]) and
Stress-Relax (5 males [28%] and 5 females [28%]) (see Figure
5). The Stress-Relax arm required an additional baselining phase,
before tRelaxed, to normalize the effects of external factors
before applying the stressor. Subjects wore an E4 wristband
(Empatica Inc) to measure EDA in their nondominant hand and
provided perceived self-reported stress, tension, and
concentration levels on a scale of 0-10, before and after each
phase (see Figure 5).

Figure 5. Study procedure with (A) Relax-Stress and (B) Stress-Relax counterbalanced arms. The Relax part is shown with a green transparent box
and the Stress part is shown with a red transparent box. Data were collected at self-report marker (SR) time points 0-5. *For the Stress-Relax arm, before
the stressor phase, a baselining phase was carried out to normalize the effects of external factors. tRelaxed: relaxed task; tStressed: stressed task.

Data Processing

Self-Report and Ancillary Data

SRS was assessed using a simplified version of the PSS [11],
an 11-point scale question—“What is your current level of
stress?” where responses ranged from Low (0) to High

(10)—immediately after completion of each phase (see Figure
5). To verify that the stressor did not induce cognitive
alterations, we assessed perceived concentration, ranging from
Low (0) to High (10), and measured trial completion time.
Finally, we captured ancillary data on perceived muscle tension,
ranging from None (0) to High (10). Self-report markers (SRs)
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in Figure 5 show the time points during the experiment where
these data were collected. To estimate the self-reported metrics
during any phase, the before and after values were averaged for
that phase. For example, the average of SR4 and SR5 values
for stress for subjects in arm A (see Figure 5) gave us an
estimate of the SRS value during the tStressed phase.

All self-reported metrics were min-max normalized across the
four phases—Relaxation, Stressor, tRelaxed, and
tStressed—unless stated otherwise. For normally distributed
data, where the Shapiro-Wilk test was not significant, we applied
a 1-tailed paired t test. Otherwise, we applied a 1-tailed
Wilcoxon signed-rank test. We used 1-sided comparisons, as
we had prior knowledge about the expected direction of changes
in the different metrics, and the stressor task we used has already
been shown to be effective in inducing stress in prior studies
[4,5,32]. Effect sizes (Cohen d) are provided for within-group
changes for primary measures, where Cohen d values between
0.20 and 0.49 indicate a small effect, values between 0.50 and
0.79 indicate a medium effect, and values of 0.80 and above
indicate a large effect [33]. For any bivariate correlations, we
used the Pearson correlation coefficient for normally distributed
data; otherwise, we used Spearman rho.

Out of 22 subjects, 4 (18%) showed no change in SRS across
the two extreme phases—Stressor and Relaxation—and were
excluded from all analyses, leaving a working set of 18 subjects.

EDA Processing

We eliminated 3 of the 18 subjects (17%) before the analysis,
leaving a total of 15 subjects (83%) for EDA analysis: 1 subject
did not have a signal due to loose contact, another had an
anomalous signal above 20 µS [34], and 1 had more than 5%
noisy 5-second epochs estimated with the EDA Explorer [35].
For the remaining 15 subjects, EDA signals were filtered using
a 6th-order 1-Hz low-pass Butterworth filter [36]. Then, using
Ledalab, version 3.2.5 [37], we obtained the tonic mean, phasic

mean, and the number of SCR peaks with an amplitude above
0.01 µS. Only data from tRelaxed and tStressed phases were
considered for the EDA analyses.

RQ1: MSD Model Evaluation

We modeled trackpad finger trajectories using a linear predictive
coding (LPC) inverse filtering technique [38] as in Sun et al,
who successfully modeled the arm movement as an
approximation of a step response of a single-degree-of-freedom
MSD system [4]. The LPC approximation for the MSD model
has been used in several other studies, like in our previous work
using steering wheel data [5] and also by Guo et al [39], using
data from touchpad interactions. However, unlike mouse
movements, which are primarily continuous and more
standardized across subjects, there are many quirks in the way
different individuals interact with the trackpad. Since subjects
were given the freedom to use the trackpad as normally as
possible, we observed that 17 out of 18 subjects (94%) used
multiple fingers from their dominant hand, and/or used fingers
from both hands (see Figure 6), creating many discontinuities
in the finger strokes during each trial (see Figure 7). Across all
subjects, a mean of 38.0% (SD 13.9) of the trials had at least
one gap in the continuity of the finger stroke because subjects
either used multiple hands (see Figure 6, A), multiple fingers
(see Figure 6, B), or even the same finger, but the finger hovered
on the trackpad. We used our ancillary videos to observe this
behavior, as it was impossible to use logger data alone to verify
that the subject used the same finger multiple times or separate
fingers during one trial.

We identify gaps (see Figure 7, A) by searching for large
variations in x or y coordinates and keeping points that
represented the largest continuous movement of the underlying
stroke (see Figure 7, B—green trace). We fitted an
approximation to the MSD model [4] to this stroke and extracted
Γ and ω for the horizontal x-direction, which contained most
of the displacement information for our tasks.

Figure 6. (A) multiple hands or (B) multiple fingers being used while interacting with the trackpad.
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Figure 7. Example traces from a click trial. (A) Multiple traces at the same time (see between 4.6 and 5.0 seconds) suggests the use of multiple fingers
from the same or different hands at the same time. The gap between 5.70 and 5.75 seconds indicates that the subject lifted his or her finger and then
placed the same or another finger back. (B) Identifying the largest stroke (green trace) and other ancillary strokes due to the use of different fingers
(orange and red traces). X represents the horizontal movement on the trackpad.

RQ2: Measurements of Finger Dynamics From Trackpad
Interactions

Under stress, wrist and forearm muscles present changes in
mean force production [19] and motor control variability [17].
Therefore, we measured mean and SD values for three typical
finger dynamics measurements: velocity, acceleration, and
contact area under the finger. We kept all strokes and substrokes
for every trial by identifying the gaps between partial
movements (see Figure 7, B) and averaged their metrics for
each trial. We estimated the contact area of the ellipse (π × a ×
b) between the finger and the trackpad using the major axis (a)
and minor axis (b) provided by the logger. We calculated finger
velocity by differentiating position information and finger
acceleration by differentiating velocity information. We used
only horizontal (x-direction) displacement data, which contained
most of the information for our tasks.

Statistical Modeling and Sensitivity Analysis
First, we evaluated a Mixed Task omnibus model independent
of specific task types—click, drag and drop, and steer—and
task configurations (W × D). Values for each task type were
obtained by averaging across all configurations and repetitions
(ie, 40 trials) for each of the tStressed and tRelaxed phases for
each subject. Then, a single value for each tStressed and
tRelaxed phase was obtained after averaging across all three
task types for each subject. Variables with significant differences
across the tStressed and tRelaxed phases in the Mixed Task
model were further examined using Task-Specific models. To

avoid inflation, we applied Bonferroni correction (0.05/3 =
0.017) for Task-Specific models. Finally, for the type of task
with the most significant difference, we applied a sensitivity
analysis comparing the initial 10% (ie, 4 trials out of 40) of data
across the tStressed and tRelaxed phases. We also carried out
post hoc power (β) analyses on all finger dynamics measures
that were found to be significant. Additionally, to check if the
order of stress-relax condition has any effect, we investigated
the Order (ie, A vs B; see Figure 5) × Condition (ie, stress vs
relax) interaction effect using analyses of variance on all finger
dynamics measures that were found to be significant.

Results

Mental Stress Validation

SRS and Tension Metrics
On average, the SRS was significantly higher during the Stressor
phase (mean 0.56, SE 0.04) compared to the Relaxation phase
(mean 0.15, SE 0.03) (Z17=3.72, P<.001). The SRS was also
significantly higher during the tStressed phase (mean 0.72, SE
0.03) compared to the tRelaxed phase (mean 0.23, SE 0.04)
(t17=13.06, P<.001). Figure 8 shows a comparison of min-max
normalized SRS values for the four phases of the experiment.
Table 2 shows the average raw SRS values at the end of the
Relaxation, tRelaxed, Stressor, and tStressed phases. It can be
observed that SRS levels go down over time during the tStressed
phase.
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Figure 8. Levels of min-max normalized self-reported stress. Error bars represent SE. tSRelaxed: relaxed task; tStressed: stressed task.

Table 2. Average raw self-reported stress values across all subjects at the end of different phases.

Mean (SE)Time point

2.27 (0.42)End of Relaxation phase

3.78 (0.42)End of tRelaxeda phase

6.22 (0.61)End of Stressor phase

4.50 (0.42)End of tStressedb phase

atRelaxed: relaxed task.
btStressed: stressed task.

In addition to SRS, we found that the perceived tension was
significantly higher during Stressor (mean 0.52, SE 0.05) versus
Relaxation (mean 0.09, SE 0.02) (Z17=3.59, P<.001) phases and
during tStressed (mean 0.78, SE 0.03) versus tRelaxed (mean
0.29, SE 0.04) (t17=11.79, P<.001) phases. Furthermore,
perceived tension and SRS were highly correlated (r=.74,
P<.001).

No statistical differences (t17=0.58, P=.29) were observed for
trial completion time between tRelaxed (mean 2.04, SE 0.14
seconds) and tStressed (mean 2.10, SE 0.13 seconds).
Additionally, we found no statistically significant differences
for perceived concentration during Stressor versus Relaxation
phases (Z17=1.46, P=.07), and tStressed versus tRelaxed phases
(Z17=0.56, P=.28). This shows that our stressor elicited an
affective response as opposed to a response due to changes in
cognitive performance.

Physiological Stress
All metrics for EDA were significantly higher. Mean phasic
EDA during tStressed (mean 0.040, SE 0.015 S) compared to
tRelaxed (mean 0.020, SE 0.006 S) was higher (Z14=2.33,
P<.01); mean tonic EDA during tStressed (mean 4.223, SE
1.389 S) compared to tRelaxed (mean 2.057, SE 0.806 S) was

higher (Z14=3.181, P<.001); and the number of EDA peaks (ie,
SCR events) during tStressed (mean 68.2, SE 16.9) compared
to tRelaxed (mean 40.4, SE 11.7) was higher as well (Z14=2.86,
P<.01).

Overall, both SRS and EDA evaluations showed that our stressor
was effective in inducing acute stress, as planned.

Trackpad Interactions

Mixed Task Models
Both the mean and SD of contact area under the finger were
significantly different between tRelaxed and tStressed phases
with large effect sizes (Cohen d>0.8) and large post hoc power
(β>97%) (see Table 3). The mean and SD of velocity and
acceleration, as well as the two LPC-approximated
biomechanical MSD parameters (Γ and ω), were not
significantly different. Paired t tests were carried out for all
these measures except for Γ, for which a Wilcoxon signed-rank
test was carried out. For mean contact area, the Order ×
Condition interaction effect was not significant (F1,32=1.87,
P=.18). However, for the SD of contact area, the interaction
effect was significant (F1,32=11.17, P<.01), suggesting that the
Order of the conditions did have a significant effect on the
overall SD of the contact area across the two Conditions.
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Table 3. Summary of descriptive statistics between tRelaxed and tStressed phases for the Mixed Task model.

Cohen dP valueZ test (17)t test (17)tStressedb,
mean (SE)

tRelaxeda, mean
(SE)

Measure

Normalized velocity

0.15.31N/Ac0.500.49 (0.12)0.47 (0.16)Mean

0.48.09N/A1.420.47 (0.20)0.39 (0.14)SD

Normalized acceleration

0.49.10N/A1.360.43 (0.18)0.35 (0.15)Mean

0.64.07N/A1.540.42 (0.17)0.31 (0.17)SD

Normalized area

0.87.02 dN/A2.180.55 (0.16)0.40 (0.18)Mean

0.92.03N/A2.080.53 (0.13)0.39 (0.17)SD

Mass-spring-damper model

0.09.460.11N/A0.540 (0.006)0.538 (0.007)Γ (damping ratio)

0.17.12N/A1.210.261 (0.005)0.256 (0.006)ω (damping frequency) (rad/s)

atRelaxed: relaxed task.
btStressed: stressed task.
cN/A: not applicable.
dItalicized values indicate significance (P<.05).

Task-Specific Models
Task-Specific models for mean and SD of the contact area under
the finger (see Figure 9) were performed for all three task types.
Significant differences (P<.02) between tStressed and tRelaxed

were observed for click tasks only, both for mean area (Z17=2.37,
P=.009, β=91%) and for SD of the area (Z17=2.33, P=.01,
β=86%). Overall, click tasks (see Figure 9, A and E) show large
percentage differences between tRelaxed and tStressed phases.

Figure 9. Bar plots (Mean ± SE), effect size (Cohen d), and the percentage difference between tRelaxed (relaxed task) and tStressed (stressed task)
phases of (A, E) click, (B, F) drag, (C, G) steer tasks, and overall combining (D, H) All Tasks (Mixed Task model) for both mean and SD of contact
area, respectively. (*) for click indicates P<.05/3 = .017 (Bonferroni correction), and (*) for All Tasks indicates P<.05.

The interaction effects for mean and SD of contact area during
click tasks were not significant (mean area: F1,32=0.00, P=.98;
SD area: F1,32=1.39, P=.25). We also evaluated the interaction
effects for SD of the contact area for drag and drop (F1,32=1.82,
P=.19) and steer (F1,32=4.48, P=.04), the latter of which was
significant, suggesting that the significant interaction in SD of
the contact area variable in the Mixed Task model (see the Mixed
Task Models section) is mainly due to significant interaction

effect only in steer task trials. Overall, our results suggest that
finger dynamics from click tasks alone, which are the most
common computer interactions (see Discussion section), and
are unaffected by Order effects, can be used as robust
measurements to detect acute stress.
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Sensitivity Analyses

Data Reduction
In this section, we focus on click data, which was the only task
type contributing to the overall differences in the Mixed Task
model. We started looking for data closest to the stressor (ie,
the initial 10% [4 clicks out of 40]), and we intended to explore
bigger segments (ie, 20%, 30%, etc) in case we did not find a
signal sufficient to detect acute stress across the two conditions.

To our surprise, with only 4 clicks, we could see a significant
difference across the two phases (see Table 4). This result may
be because the effect of the stressor is higher earlier during the
tStressed phase, and it decays over time (see Table 2). Similar
sensitivity results have been observed in other biomechanical
models of stress [5]. Neither of the two variables mentioned in
Table 4 showed any significant interaction effect (mean area:
F1,32=0.00, P=.99; SD area: F1,32=0.50, P=.49), which
reconfirms that click tasks are not influenced by Order effects.

Table 4. Summary of descriptive statistics between tRelaxed and tStressed phases pertaining to only the initial 10% of click trials.

β, %Cohen dP valuet test (17)tStressedb, mean
(SE)

tRelaxeda, mean
(SE)

No. of clicks
(N=40), n (%)

Measure

560.44<.01 c2.81284.6 (8.1)270.9 (6.3)4 (10)Mean area (mm2)

910.73<.012.8821.2 (1.3)16.7 (1.6)4 (10)SD area (mm2)

atRelaxed: relaxed task.
btStressed: stressed task.
cItalicized values indicate significance (P<.05).

Click Rate Manipulation
Our original manipulation generated click trials at a rate of
roughly 1 click per 3.5 seconds: 40 click trials were completed
in an average of 136 seconds (SD 31). To create a scenario in
which the clicks are obtained at a slower rate, which could also
be plausible in the wild, we tested the artificially slowest rate
by decimating the samples, using only 10% of the data
distributed across the entire range of the production of the click
trials. We picked the first, the last, and 2 random click trials
from 1 to 40, in this way simulating a scenario in which clicks
are generated once every ~45 seconds. As it turns out, both area
measures were still significantly different across two stress
conditions. The mean of the mean area for tStressed was 277

mm2 (SE 8.61) and for tRelaxed was 267 mm2 (SE 6.4)
(t17=2.07, P=.03, d=0.32 , β=37%). The mean of the SD area

for tStressed was 22 mm2 (SE 1.8) and for tRelaxed was 18

mm2 (SE 1.5) (t17=1.86, P=.04, d=0.54, β=71%). Further, no
significant interaction effect was found for either of these two
measures as well (mean area: F1,32=0.14, P=.72; SD area:
F1,32=1.98, P=.17).

Individual Differences
When looking at individual differences for all tasks, 12 out of
18 (67%) participants showed an expected increase in either the
mean or the SD of the area under the finger. For the initial 10%
(ie, 4 out of 40 clicks), 13 out of 18 (72%) subjects had changes
in the expected direction for either mean or SD (see Figure 10).
Participants A1, A4, B10, B1, and B3 showed an opposite trend
for the mean area (see Figure 10, A), while participants A10,
A2, A5, B3, and B7 showed an opposite trend for SD area (see
Figure 10, B). Subject B3 showed an opposite trend for both
measures. If we were to consider a hard evaluation where both
metrics must occur at the same time, we would see 11 out of
18 (61%) subjects satisfying the expected change. However, if
we were to detect stress whenever either of the two measures
has the right trend, we would detect stress changes in 17 out of
18 (94%) subjects. This latter approach is plausible, as both
measurements are theoretically linked to changes in either
muscle tension or motor control alterations due to stress (see
section RQ2: Measurements of Finger Dynamics From Trackpad
Interactions).

Figure 10. Individual differences for (A) mean and (B) SD of the contact area under the finger across the initial 10% of the click trials. tRelaxed: relaxed
task; tStressed: stressed task.
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Discussion

Principal Findings
Enabling precision health and effective stress management
regimes are dependent on the evolution of ubiquitous real-time
stress sensors and algorithms. An ideal scenario would be to
passively obtain data from everyday use devices, rather than
having people wear sensors or answer survey questions. In this
study, we aim at assessing the feasibility of using passively
obtained laptop trackpad data to detect acute stress. We present
evidence that binary levels of acute stress (ie, whether it is
present or not) can be detected from finger strokes alone.

In response to RQ1, we found out that our approximation to an
MSD model, previously used with data from the computer
mouse [4], cannot be used directly on trackpad data. Our
analyses provide new insights into the complexity of the use of
finger stroke data from trackpad operations for applying an
MSD model. Unlike a computer mouse, handling a laptop
trackpad is subject dependent. Some people may employ
multiple hands and/or multiple fingers to perform the same
tasks. This creates challenges to process the data due to the gaps
present in the strokes and the difficulty of obtaining a clean
intentional segment of data, with a clear beginning and end,
required to get meaningful MSD results. These limitations leave
little useful data for analysis, and we did not observe a difference
in either of the two MSD parameters (ω and Γ) between the
tRelaxed versus tStressed phases. However, our analyses were
restricted to the largest stroke per trial. It is possible that in the
wild, where we can collect larger amounts of data that would
allow us to extract valid displacement segments, an MSD
approach may still be useful to assess changes due to muscle
tension under acute stress.

Our RQ2’s results are encouraging, showing the robustness of
the mean and SD of the finger contact area as a stress sensor.
Both metrics were higher during the stressed tasks as compared
to the relaxed tasks. We show that as few as 4 click trials per
subject are sufficient to see a significant difference, which is
promising for longitudinal studies. Overall, we present evidence
of the use of the finger contact area from laptop trackpad
measurements to detect acute stress while performing common
computer tasks.

Acute Stress Detected Using Click Finger Dynamics
This is the first study showing that the mean and SD of the
contact area under the finger on a trackpad are higher under
stress compared to a relaxed state (ie, Mixed Task model).
Theoretically, the mean value is related to mean force production
[19] and higher variability [17] under stressful situations in the
wrist and forearm muscles. There may be other underlying
mechanisms (eg, changes in hand or body posture [40]) through
which stress may influence finger dynamics, and future studies
should monitor those variables as well. In the Task-Specific
model, differences in mean and SD of the contact area under
the finger were different for click trials. If combined, mean or
SD, we could detect up to 94% of acute stress events. This is
encouraging because clicking tasks represent nearly 70% of all
computer mouse events in a typical day [41].

With just the initial 10% of clicking trials (ie, 4 clicks out of
40), we could still see small and medium effect size differences
in mean and SD of the contact area under the finger. Since click
trials were not always carried out right after the stressor, the
difference is not due to ordering effects; here we are referring
to ordering of click, steer, and drag and drop, and not the
ordering of stress-relax conditions. We attribute the strength of
using so little data to the proximity to the stressor, as there is a
clear decay of stress over time, which would clearly affect values
averaged over longer periods. Furthermore, we simulated a
scenario where clicks are produced at a different rate (ie, going
from 1 click produced every ~3.5 seconds to every ~45 seconds).
We obtained significant results even for the lowest click
productivity we could simulate with our data (1 click/45 s). In
a separate pilot study, collecting computer mouse data “in the
wild,” we have seen that a typical user may generate a click
every 10-30 seconds, and at least 1000 clicks are generated in
any given working day. Thus, we feel confident we can use our
findings as the basis for a passive, continuous, scalable,
inexpensive, and unobtrusive stress sensor. In the wild, of
course, changes in muscle tension would not only be due to
affective (ie, ANS) processes but also due to cognitive processes
(see Potential Interaction Effects With Task Performance
section). Ultimately, a reliable “in the wild” stress detection
system would have to combine multiple modalities, such as
biomechanical, behavioral, and physiological sensors, as well
as contextual information.

Potential Interaction Effects With Task Performance
Mean and SD of finger velocity and acceleration were similar
across the two phases, as well as trial completion time. This
reconfirms that our stressor did not change the cognitive
performance of the subjects but only their affective state.
However, the relationships between stress, velocity, and
acceleration may not be simple. For example, one may say that
under a stressful situation, a user may want to move the fingers
with higher velocity and/or acceleration; however, after a certain
point, it will also start affecting the accuracy of this fine motor
control task [42]. Thus, the user may not use higher velocities
and/or acceleration under stress. Further studies with different
elicitations to modify the performance rewards must be
performed to observe interaction effects between these variables.

Contrasting With Other Touch Technologies
At least two studies have shown higher finger pressure under
stress [28] and under frustrating [7] conditions while using
touchscreen devices. However, the usage and handling of
touchscreen devices are not the same as that of a trackpad, in
terms of fine and precise interaction [43]. The capacitive
technologies used in touchscreens and trackpads are different
in terms of how much pressure needs to be applied: typically,
the trackpad requires stronger pressure [43]. Additional research
would be needed to determine if our finger dynamics from
contact area (ie, mean and SD) can be translated to other types
of touch-sensitive devices.

Limitations
Our study has four limitations related to sample size, stressor
effect size, apparatus, and assumptions for modeling. First,
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because of the small sample size (N=18) we could not
investigate the effects of age, gender, length of experience with
trackpads, and frequency of day-to-day usage of trackpads. We
also could not build reliable predictive models (eg, using
different ML techniques), which could parse out the importance
of various features in predicting acute stress. Second, given the
mild nature of the stressor, not all users (18/22, 82%) responded
to our manipulation. Nevertheless, this level of efficacy is
expected for a mild stressor and in line with our prior study [6].
Third, although we do not expect the behavior of users to be
fundamentally different across different laptops, our experiment
should be revalidated on other models of trackpads. Fourth,
using finger contact area as a proxy to pressure assumes a linear
relationship between the two. However, factors like the angle
of the finger can also influence this relationship. Since the time
of the data collection for this study, Apple has updated the
MultiTouchSupport framework, and it now also provides
information about pressure and capacitance density underneath
the fingers. Additional models collecting this new data would
be quite useful to strengthen the precision of our detection
method further.

Future Directions
We plan to expand current results by running lab experiments
with larger sample sizes; by logging other actions performed
using trackpads, such as scrolling and multiple finger gestures;
and by collecting other behavioral metrics, such as click
production rate, the timing between clicks, etc. Once we collect
more data, both in the laboratory settings and “in the wild,” we
aim at building predictive models that include both
biomechanical and behavioral metrics to increase the accuracy
and specificity of stress prediction in real time.

As we move out of the lab, we will explore ways to carry out
longitudinal studies collecting data from our passive loggers
across devices (ie, mice, trackpads, touchpads), contextual data,
and stress “labels” obtained from empirical sampling methods
or physiological measurements. As we accumulate richer and
bigger datasets, we plan to investigate data-intensive
unsupervised and supervised ML methods to optimize data
collection, preprocessing, and prediction. For example, we plan
to investigate algorithms to parse types of events and movements
(eg, clicks, drag and drop, etc) or to select segments that may
have the right morphology to derive biomechanical features
(eg, MSD parameters, contact area, etc). Ultimately, we hope
that our lab and field findings can help select the appropriate
behavioral, biomechanical, contextual, and perceptual features
(ie, feature engineering) to train ML systems to be able to detect
stress levels throughout the day.

Conclusions
The current methods for sensing stress are often inconvenient,
expensive, or suffer from limited adherence. In this lab study,
we show the efficacy of repurposing signals from a laptop
trackpad to detect acute mental stress. We showed that with a
handful of click events, we could use the mean and SD of the
finger contact area to obtain a binary estimation of acute stress
(ie, whether it is present or not). We validated our sensing
models against well-known stress metrics such as self-reports
and EDA. Complementarily, we validated that we did not elicit
performance or cognitive confounds that may affect our affective
stress elicitation. These results provide a firm baseline toward
our future goal of deploying our algorithms in the wild,
leveraging the trackpad as a potential unobtrusive, scalable,
continuous, and inexpensive stress sensor.
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