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Abstract

Background: COVID-19 is a rapidly emerging respiratory disease caused by SARS-CoV-2. Due to the rapid human-to-human
transmission of SARS-CoV-2, many health care systems are at risk of exceeding their health care capacities, in particular in terms
of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds, and mechanical ventilators. Predictive algorithms could
potentially ease the strain on health care systems by identifying those who are most likely to receive a positive SARS-CoV-2
test, be hospitalized, or admitted to the ICU.

Objective: The aim of this study is to develop, study, and evaluate clinical predictive models that estimate, using machine
learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test or require
hospitalization or intensive care.

Methods: Using a systematic approach to model development and optimization, we trained and compared various types of
machine learning models, including logistic regression, neural networks, support vector machines, random forests, and gradient
boosting. To evaluate the developed models, we performed a retrospective evaluation on demographic, clinical, and blood analysis
data from a cohort of 5644 patients. In addition, we determined which clinical features were predictive to what degree for each
of the aforementioned clinical tasks using causal explanations.

Results: Our experimental results indicate that our predictive models identified patients that test positive for SARS-CoV-2 a
priori at a sensitivity of 75% (95% CI 67%-81%) and a specificity of 49% (95% CI 46%-51%), patients who are SARS-CoV-2
positive that require hospitalization with 0.92 area under the receiver operator characteristic curve (AUC; 95% CI 0.81-0.98),
and patients who are SARS-CoV-2 positive that require critical care with 0.98 AUC (95% CI 0.95-1.00).

Conclusions: Our results indicate that predictive models trained on routinely collected clinical data could be used to predict
clinical pathways for COVID-19 and, therefore, help inform care and prioritize resources.

(J Med Internet Res 2020;22(10):e21439) doi: 10.2196/21439
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Introduction

COVID-19 was first discovered in December 2019 in China
and has since rapidly spread to over 200 countries [1]. The
COVID-19 pandemic has challenged health care systems
worldwide, as a high peak capacity for testing and
hospitalization is necessary to diagnose and treat affected
patients, particularly if the spread of SARS-CoV-2 is not

mitigated. To avoid exceeding the available health care
capacities, many countries have adopted social distancing
policies, imposed travel restrictions, and postponed nonessential
care and surgeries to reduce peak demand on their health care
systems [2-4].

The adoption of clinical predictive models that accurately predict
who is likely to require testing, hospitalization, and intensive
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care from routinely collected clinical data could potentially
further reduce peak demand by ensuring resources are prioritized
to those individuals with the highest risk (Figure 1). For
example, a clinical predictive model that accurately identifies
patients that are likely to test positive for SARS-CoV-2 a priori
could help prioritize limited SARS-CoV-2 testing capacity.

However, developing accurate clinical prediction models for
SARS-CoV-2 is difficult as relationships between clinical data,
hospitalization, and intensive care unit (ICU) admission have
not yet been established conclusively due to the recent
emergence of SARS-CoV-2.

Figure 1. We study the use of predictive models (light purple) to estimate whether patients are likely (i) to be SARS-CoV-2 positive and whether
SARS-CoV-2 positive patients are likely (ii) to be admitted to the hospital and (iii) to require critical care based on clinical, demographic, and blood
analysis data. Accurate clinical predictive models stratify patients according to individual risk and, in this manner, help prioritize health care resources
such as testing, hospital, and critical care capacity.

In this systematic study, we develop and evaluate clinical
predictive models that use routinely collected clinical data to
identify patients that are likely to receive a positive
SARS-CoV-2 test, patients who are SARS-CoV-2 positive that
are likely to require hospitalization, and patients who are
SARS-CoV-2 positive that are likely to require intensive care.
Using the developed predictive models, we additionally
determined which clinical features are most predictive for each
of the aforementioned clinical tasks. Our results indicate that
predictive models could be used to predict clinical pathways
for patients with COVID-19. Such predictive models may be
of significant utility for health care systems, as preserving health
care capacity has been linked to successfully combating
SARS-CoV-2 [5,6].

Concretely, this paper contains the following contributions:

• We developed and systematically studied predictive models
for estimating the likelihoods of a positive SARS-CoV-2
test in patients presenting at hospitals, hospital admission
in patients who are SARS-CoV-2 positive, and critical care
admission in patients who are SARS-CoV-2 positive.

• We validated the performance of the developed clinical
predictive models in a retrospective evaluation using
real-world data from a cohort of 5644 patients.

• We determined and quantified the predictive power of
routinely collected clinical, demographic, and blood analysis
data for the aforementioned clinical prediction tasks.

Methods

Problem Setting
In the present setting, we are given 106 routine clinical,
laboratory, and demographic measurements, or features, xi ∈ x
for presenting patients (see Multimedia Appendix 1 for full list).
Features may be discrete or continuous, and some features may
be missing as not all tests are necessarily performed on all
patients. The clinical predictive tasks consist of using the routine
clinical features xi to predict, for a newly presenting patient, the
likelihood ŷSARS-CoV-2 of receiving a positive SARS-CoV-2 test
result, the likelihood ŷadmission of requiring hospital admission,
and the likelihood ŷICU of requiring intensive care. In addition,
we are given a development data set consisting of N patients,
their corresponding observed routine clinical features xi,
SARS-CoV-2 test results ŷSARS-CoV-2 ∈ {0,1}, hospital
admissions ŷadmission ∈ {0,1}, and ICU admissions ŷICU ∈ {0,1},
where 1 indicates the presence of an outcome. Using this
development data set, our goal is to derive clinical predictive

models , , and for the aforementioned
tasks, respectively, to inform care and help prioritize scarce
health care resources.
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Methodology

To derive the clinical predictive models , ,

and from the given development data set, we set up a
systematic model development, validation, and evaluation
pipeline (Figure 2). To evaluate the generalization ability of the
developed clinical predictive models and to rule out overfitting
to patients in the evaluation cohort, the development data is

initially split into independent and stratified training, validation,
and test folds without any patient overlap. Concretely, the
multistage pipeline consists of preprocessing, model
development, model selection, and model evaluation stages.
For preprocessing and model development, only the training
fold was used, and only the validation and test folds of the
development data were used for model selection and model
evaluation, respectively. We outline the pipeline stages in detail
in the following paragraphs.

Figure 2. The presented multistage machine learning pipeline consists of preprocessing (light purple) the input data x, developing multiple candidate
models using the given data set (orange), selecting the best candidate model for evaluation (blue), and evaluating the selected best model's outputs ŷ.

Preprocessing
In the preprocessing stage, we first dropped all input features
that were missing for more than 99.8% of all training set patients
to ensure we had a minimal amount of data for each feature.
This removed a total of 9 features from the original 106 routine
clinical, laboratory, and demographic features. We then
transformed all discrete features for each patient into their
one-hot encoded representation with one out of p indicator
variables set to 1 to indicate the discrete value for this patient,
and all others set to 0 with p being the number of unique values
for the discrete feature. We defined those features as discrete
that have fewer than 6 unique values across all patients in the
training fold. For discrete features, missing features were
counted as a separate category in the one-hot representation.
Next, we standardized all continuous features to have zero mean
and unit standard deviation across the training fold data. Last,
we performed multiple imputation by chained equations (MICE)
to impute all missing values of every continuous feature from
the respective other features in an iterative fashion [7]. We
additionally added a missing indicator that indicates 1 if the
feature was imputed by MICE and 0 if it was originally present
to preserve missingness information in the data after imputation.
After the preprocessing stage, continuous input features are
standardized and fully imputed, and discrete input features are
one-hot encoded. All preprocessing operations were derived
only from the training fold and naïvely applied without
adjustment to validation and test folds to avoid information
leakage.

Model Development
In the model development stage, we trained candidate clinical

predictive models , , and using
supervised learning on the training fold of the preprocessed
data. To derive the models from the preprocessed training fold
data, we optimized various types of predictive models and
performed a hyperparameter search with m runs for each of
them. The model development process yielded m candidate
models with different hyperparameter choices and predictive
performances for each model category.

Model Selection
To select the best model among the set of candidate models,
we evaluated their predictive performance against the held-out
validation fold that had not been used for model development.
We chose the top candidate model by ranking all models by
their evaluated predictive performance in terms of the validation
set area under the receiver operator characteristic curve (AUC).
The model selection stage using the independent validation fold
enabled us to optimize hyperparameters without using test fold
data.

Model Evaluation
In the model evaluation stage, we evaluated the selected best
clinical predictive model against the held-out test fold that had
not been used for training or model selection to estimate the
expected generalization error of the models on previously unseen
data. Using this approach, every selected best model from the
model selection stage was evaluated exactly once against the
test fold.
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Using the presented standardized model development, selection,
and evaluation pipeline, we compared various types of clinical
predictive models in the same test setting with exactly the same
amount of hyperparameter optimization and input features
against the same test fold. This process enables us to
systematically study the expected generalization ability,
predictive performance, and influential features of clinical
predictive models for predicting SARS-CoV-2 test results,
hospital admission for patients who are SARS-CoV-2 positive,
and ICU admission for patients who are SARS-CoV-2 positive.

Experiments
We conducted retrospective experiments to evaluate the
predictive performance of a number of clinical predictive models
on each of the presented clinical prediction tasks using the
standardized development, validation, and evaluation pipeline.

Concretely, our experiments aimed to answer the following
questions:

• What is the expected predictive performance of the various
clinical predictive models in predicting SARS-CoV-2 test
results for presenting patients, hospital admission for
patients who are SARS-CoV-2 positive, and ICU admission
for patients who are SARS-CoV-2 positive?

• Which clinical, demographic, and blood analysis features
were most important for the best encountered predictive
models for each clinical prediction task?

Data Set and Study Cohort
We used anonymized data from a cohort of 5644 patients seen
at the Hospital Israelita Albert Einstein in São Paulo, Brazil in
the early months of 2020. Exact data collection dates are
unknown. The data set is available at [8]. Over the data
collection time frame, the rate of patients who were
SARS-CoV-2 positive at the hospital was around 10%, of which
around 6.5% and 2.5% required hospitalization and critical care,
respectively (Table 1). Notably, younger patients were
underrepresented in the SARS-CoV-2 positive group relative
to the general patient population, which may have been caused
by the reportedly more severe disease progression in older
patients [9]. Information on patient sex was not included in our
data set. Sex has been reported to be associated with COVID-19
outcomes with men reportedly being at higher risk for severe
outcomes, and models including sex as a covariate may,
therefore, achieve superior predictive performance [10]. We
randomly split the entire available patient cohort into training
(n=2822, 50%), validation (n=1129, 20%), and test folds
(n=1693, 30%) within strata of patient age, SARS-CoV-2 test
result, hospital admission status, and ICU admission status. We
performed the stratification by randomly shuffling the entire
set of available patients and then assigning a proportional
number of patients within the same strata of patient age,
SARS-CoV-2 test result, hospital admission status, and ICU
admission status to each fold, resulting in three separate folds
of the desired target fold sizes that had balanced proportions of
the stratification covariates (Table 1). We used the
implementation of the described stratification procedure
provided in [11] (StratifiedShuffleSplit, package version 0.22.2).

Table 1. Training, validation, and test fold statistics for all patients and patients who are SARS-CoV-2 positive.

TestValidationTrainingProperty

All patients

1693 (30)1129 (20)2822 (50)Patients (N=5644), n (%)

9.929.929.85SARS-CoV-2 (%)

1.421.331.42Admission (%)

1.591.681.59ICUa (%)

9.0 (2.0, 17.0)9.0 (1.0, 18.0)9.0 (1.0, 17.0)Age (20-quantiles)b

Patients who are SARS-CoV-2 positive

167 (30)112 (20)279 (50)Patients (n=558), n (%)

100100100SARS-CoV-2 (%)

6.596.256.45Admission (%)

2.992.682.87ICU (%)

10.0 (4.0, 17.5)11.5 (4.5, 18.5)10.0 (4.0, 17.0)Age (20-quantiles)b

aICU: intensive care unit.
bPatient ages are specified in 20-quantiles to maintain patient privacy (10% and 90% percentiles in parentheses).

Models
Using the presented systematic evaluation methodology, we
trained five different model types: logistic regression (LR),
neural network (NN), random forest (RF), support vector

machine (SVM), and gradient boosting (XGB) [12]. The NN
was a multilayer perceptron consisting of L hidden layers with
N hidden units each followed by a nonlinear activation function
(rectified linear unit [13], scaled exponential linear unit [14],
or exponential linear unit [15]) and batch normalization [16],
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and was trained using the Adam optimizer [17] for up to 300
epochs with an early stopping patience of 12 epochs on the
validation set loss.

Hyperparameters
We followed an unbiased, systematic approach to
hyperparameter selection and optimization. For each type of
clinical predictive model, we performed a maximum of 30

hyperparameter optimization runs with hyperparameters chosen
from predefined ranges (Table 2). The performance of each
hyperparameter optimization run was evaluated against the
validation cohort. After computing the validation set
performance, we selected the best candidate predictive model
across the 30 hyperparameter optimization runs by AUC for
further evaluation against the test set.

Table 2. Hyperparameter ranges used for hyperparameter optimization of logistic regression, neural network, random forest, support vector machine,
and gradient boosting models for all tasks.

Range/choicesaModel and hyperparameter

Logistic regression

0.01, 0.1, 1.0, 10.0Regularization strength C

Neural network

16, 32, 64, 128Number of hidden units N

1, 2, 3Number of hidden layers L

ReLUb [13], SELUc [14], ELUd [15]Activation a

16, 32, 64, 128Batch size B

0.0, 0.00001, 0.0001L2 regularization λ2

0.003, 0.03Learning rate α

(0%-25%)Dropout percentage p

Random forest

3, 4, 5Tree depth D

32, 64, 128, 256Number of Trees T

Support vector machine

0.01, 0.1, 1.0, 10.0Regularization strength C

polynomial, radial basis function, sigmoidKernel k

3, 5, 7Polynomial degree d

Gradient boosting

0.25, 0.5, 0.75, 1.0Subsample ratio r

2, 3, 4, 5, 6, 7, 8Maxe tree depth T

0.0, 0.1, 1.0, 10.0Minf partition loss γ

0.003, 0.03, 0.3, 0.5Learning rate α

1.0, 0.1, 0.001, 0.0L1 regularization λ1

1.0, 0.1, 0.001, 0.0L2 regularization λ2

5, 10, 15, 20Numg boosting rounds B

aParentheses indicate continuous ranges within the indicated limits sampled uniformly. Comma-delimited lists indicate discrete choices with equal
selection probability.
bReLU: rectified linear unit.
cSELU: scaled exponential linear unit.
dELU: exponential linear unit.
eMax: maximum.
fMin: minimum.
gNum: number.
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Predictive Performance
To assess the predictive performance of each of the developed
clinical predictive models, we evaluated their performance in
terms AUC, area under the precision recall curve (AUPR),
sensitivity, specificity, and specificity at greater than 95%
sensitivity (Spec@95%Sens) on the held-out test set cohorts
for each task (Table 1). After model development and
hyperparameter optimization, we evaluated each model type
exactly once against the test set to calculate the final
performance metrics. Operating thresholds for each model were
the operating points on the receiver operator characteristic curve
closest to the top left coordinate as calculated for the validation
cohort. We chose a variety of complementary evaluation metrics
to give a comprehensive picture of the expected performance
of each clinical predictive model on the evaluated tasks. For
each of the performance metrics, we additionally computed
95% CIs using bootstrap resampling with 100 bootstrap samples
on the test set cohort to quantify the uncertainty of our analysis
results. We also assessed whether differences between clinical
predictive models were statistically significant at significance
level α=.05 using pairwise t tests with the respective best models
for each task as measured by AUC.

Importance of Test Types
To quantify the importance of specific clinical, demographic,
and blood analysis features on each of the predicted outcomes,
we used causal explanation (CXPlain) models [18]. CXPlain
provides standardized relative feature importance attributions
for any predictive model by computing the marginal contribution
of each input feature toward the predictive performance of a
model [19] and is, therefore, particularly well-suited for
assessing feature importance in our diverse set of models. We
used the test fold’s ground truth labels to compute the exact
marginal contribution of each input feature without any
estimation uncertainty.

Results

Predictive Performance
In terms of predictive performance (Table 3), we found that the
overall best identified models by AUC were XGB for predicting
SARS-CoV-2 test results, RF for predicting hospital admissions
for patients who are SARS-CoV-2 positive, and SVM for
predicting ICU admission for patients who are SARS-CoV-2

positive with AUCs of 0.66 (95% CI 0.63-0.70), 0.92 (95% CI
0.81-0.98), and 0.98 (95% CI 0.95-1.00), respectively. Notably,
we found that predicting positive SARS-CoV-2 results from
routinely collected clinical measurements was a considerably
more difficult task for clinical predictive models than predicting
hospitalization and ICU admission. Nonetheless, the best
encountered clinical predictive model for predicting
SARS-CoV-2 test results (XGB) achieved a respectable
sensitivity of 75% (95% CI 67%-81%) and specificity of 49%
(95% CI 46%-51%). After fixing the operating threshold of the
model to meet a sensitivity level of at least 95%
(Spec@95%Sens), the best XGB model for predicting
SARS-CoV-2 test results would achieve a specificity of 23%
(95% CI 7%-32%). We additionally found that the differences
in predictive performance between the best XGB model for
predicting SARS-CoV-2 test results and the other predictive
models was significant at a prespecified significance level of
α=.05 (t test) for all but the AUPR metric, where NN achieved
a significantly better AUPR of 0.22, and the difference to SVM
was not significant at the prespecified significance level. On
the task of predicting hospital admissions for patients who are
SARS-CoV-2 positive, the best encountered RF model achieved
a sensitivity of 55% (95% CI 19%-85%), a high specificity of
96% (95% CI 92%-98%), and a Spec@95%Sens of 34% (95%
CI 29%-97%). Owing to the lower sample size due to the smaller
cohort of patients who are SARS-CoV-2 positive, the
performance results for predicting hospital admission generally
had wider uncertainty bounds but were nonetheless significantly
better for RF than the other predictive models at the prespecified
significance level of α=.05 (t test) for most performance metrics,
with the exception of AUC, where XGB achieved an AUC of
0.91, and AUPR, where LR achieved an AUPR of 0.44. On the
task of predicting ICU admission for patients who are
SARS-CoV-2 positive, SVM had a sensitivity of 80% (95% CI
36%-100%), a specificity of 96% (95% CI 92%-98%), and a
Spec@95% Sens of 95% (95% CI 91%-100%). Due to the small
percentage of about 3% of patients who were SARS-CoV-2
positive that were admitted to the ICU (Table 1), uncertainty
bounds were wider than for the models predicting hospital
admissions, and the results of the best encountered SVM were
found to be not significantly better than LR and RF in terms of
AUC, LR, and NN in terms of sensitivity, and NN in terms of
Spec@95%Sens at the prespecified significance level of α=.05
(t test).
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Table 3. Comparison of LR, NN, RF, SVM, and XGB models in terms of AUC, AUPR, sensitivity, specificity, and Spec@95%Sens for predicting
SARS-CoV-2 test results, hospital admission for patients who are SARS-CoV-2 positive, and intensive care unit admission for patients who are
SARS-CoV-2 positive on the test set cohort.

Spec@95%Sensd (95% CI)Specificity (95% CI)Sensitivity (95% CI)AUPRc (95% CI)AUCa (95% CI)bModel

SARS-CoV-2 test results

0.23 (0.07-0.32)0.49 (0.46-0.51)0.75 (0.67-0.81)0.21 (0.15-0.28)0.66f (0.63-0.70)XGBe

0.19 (0.10-0.25)h0.54 (0.46-0.57)h0.69 (0.61-0.74)0.19 (0.14-0.24)h0.65 (0.62-0.69)hRFg

0.17 (0.14-0.28)h0.55 (0.46-0.58)h0.60 (0.52-0.67)h0.22 (0.15-0.28)h0.62 (0.57-0.65)hNNi

0.19 (0.16-0.25)h0.55 (0.46-0.57)h0.58 (0.51-0.65)h0.17 (0.13-0.24)h0.61 (0.57-0.65)hLRj

0.14 (0.06-0.16)h0.59 (0.56-0.61)h0.57 (0.51-0.64)h0.21 (0.15-0.27)0.61 (0.57-0.65)hSVMk

Hospital admissions for patients who are SARS-CoV-2 positive

0.34 (0.29-0.97)0.96 (0.92-0.98)0.55 (0.19-0.85)0.43 (0.19-0.81)0.92 (0.81-0.98)RF

0.00 (0.00-0.94)h0.94 (0.90-0.97)h0.64 (0.43-0.95)h0.52 (0.28-0.84)h0.91 (0.80-0.98)XGB

0.13 (0.08-0.93)h0.85 (0.79-0.90)h0.82 (0.52-1.00)h0.44 (0.18-0.83)0.88 (0.70-0.98)hLR

0.11 (0.06-0.93)h0.95 (0.91-0.97)h0.64 (0.33-1.00)h0.31 (0.13-0.66)h0.85 (0.68-0.97)hNN

0.21 (0.15-0.96)h0.95 (0.91-0.97)h0.64 (0.30-1.00)h0.35 (0.17-0.77)h0.85 (0.70-0.98)hSVM

Critical care admissions for patients who are SARS-CoV-2 positive

0.95 (0.91-1.00)0.96 (0.92-0.98)0.80 (0.36-1.00)0.53 (0.14-1.00)0.98 (0.95-1.00)SVM

0.91 (0.87-1.00)h0.93 (0.89-0.96)0.80 (0.29-1.00)0.67 (0.09-1.00)h0.98 (0.93-1.00)LR

0.94 (0.90-0.99)0.95 (0.91-0.99)h0.80 (0.36-1.00)0.35 (0.10-0.88)h0.97 (0.94-0.99)hNN

0.90 (0.86-1.00)h0.98 (0.96-1.00)h0.60 (0.15-1.00)h0.56 (0.13-1.00)h0.97 (0.92-1.00)RF

0.00 (0.00-0.96)h0.94 (0.91-0.97)h0.40 (0.00-1.00)h0.29 (0.01-0.68)h0.67 (0.53-0.98)hXGB

aAUC: area under the receiver operator characteristic curve.
b95% CIs obtained via bootstrap resampling with 100 samples.
cAUPR: area under the precision recall curve.
dSpec@95%Sens: specificity at greater than 95% sensitivity.
eXGB: gradient boosting.
fItalics represent the best results.
gRF: random forest.
hSignificant at P<.05 (t test) to the model with the highest predictive performance in terms of AUC.
iNN: neural network.
jLR: logistic regression.
kSVM: support vector machine.

Feature Importance
In terms of feature importance, we found that importance scores
were distributed highly unequally, relatively uniform, and highly
uniform for the best models encountered for predicting
SARS-CoV-2 test results, for predicting hospital admissions
for patients who are SARS-CoV-2 positive, and for predicting
ICU admission, respectively (Figure 3). Most notably, we found
that 71.7% of the importance for the best XGB model for
predicting SARS-CoV-2 test results was assigned to the missing
indicator corresponding to the arterial lactic acid measurement
(ie, much of the marginal predictive performance gain of the
XGB model was attributed to whether or not the arterial lactic
acid test had been ordered). Beyond arterial lactic acid being

missing, age, leukocyte count, platelet count [20], and creatinine
[21] were implied to be associated with a positive SARS-CoV-2
test result by the best encountered predictive model, which
further substantiates recent independent reports of those factors
being potentially associated with SARS-CoV-2 [20-24]. Similar
to the best encountered XGB model for predicting SARS-CoV-2
test results, the top encountered predictive models for hospital
admission and ICU admission for patients who are SARS-CoV-2
positive assigned a considerable degree of importance to
missingness patterns associated with a number of measurements.
A possible explanation for missingness appearing as a top
predictor across the different tasks is that decisions on whether
or not to order a certain test to be performed for a given patient
were influenced by patient characteristics that were not captured
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in the set of clinical measurements that were available to the
predictive models. In the case of the missingness of the lactic
acid test being predictive of SARS-CoV-2 test results, the
importance could stem either from clinicians judging patients
to be more likely to have COVID-19 due to their clinical
presentation and, therefore, ordering a lactic acid test to account
for potential lactic acidosis due to COVID-19–induced reduced
oxygenation levels or from patients that clinicians see as at risk
for lactic acidosis being likely to have their symptoms caused
by an underlying SARS-CoV-2 infection. A controlled setting
with standardized testing guidelines would be required to
determine which confounding factors are behind the predictive
power of the missingness patterns that have been implied to be
associated with COVID-19 by the predictive models. Beyond

missingness patterns, top predictors for predicting hospital
admission were lactate dehydrogenase [25]; gamma-glutamyl
transferase, which through abnormal liver function has been
reported to be implicated in COVID-19 severity [26]; and HCO3

[27]. For predicting ICU admission in patients who are
SARS-CoV-2 positive, pCO2, creatinine [21], and pH [23] were
top predictors. Blood pH, and in particular respiratory alkalosis,
has been reported to be associated with severe COVID-19 [28].
We note that several factors that were not included in our study
have recently been reported to be implicated in COVID-19
outcomes, such as the number of ICU beds available at a hospital
[29], patients’ racial and ethnic backgrounds [30], and several
pre-existing conditions [31].

Figure 3. A comparison of the top 10 features ranked by relative feature importance scores for the best-encountered model for predicting SARS-CoV-2
test results (gradient boosting, top), hospital admissions (random forest, middle), and critical care admission for patients who are SARS-CoV-2 positive
(support vector machine, bottom), respectively. The bar length corresponds to the relative marginal importance (in %) of the displayed features toward
the predictive performance of the respective model. Feature names that include “MISSING” indicate that the given marginal contribution refers to the
importance of the presence of that feature's absence, not the feature itself.

Discussion

Principal Findings
We presented a systematic study of predictive models that
predict SARS-CoV-2 test results, hospital admission for patients
who are SARS-CoV-2 positive, and ICU admission for patients

who are SARS-CoV-2 positive using routinely collected clinical
measurements. Models that predict SARS-CoV-2 test results
could help prioritize scarce testing capacity by identifying those
individuals that are more likely to receive a positive result.
Similarly, predictive models that predict which patient who is
SARS-CoV-2 positive would be most likely to require hospital
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and critical care beds could help better use existing hospital
capacity by prioritizing those patients that have the highest risk
of deterioration. Facilitating the efficient use of scarce health

care resources is particularly important in dealing with
SARS-CoV-2, as its rapid transmission significantly increases
demand for health care services worldwide (Figure 4).

Figure 4. Receiver operator characteristic curves for the best-encountered model for predicting SARS-CoV-2 test results (gradient boosting, left),
hospital admissions for patients who are SARS-CoV-2 positive (random forest, top right), and critical care admissions for patients who are SARS-CoV-2
positive (support vector machine, bottom right). Numbers in the bottom right of each subgraph show the respective model's AUC. Solid dots on the
curves indicate operating thresholds selected on the validation fold. AUC: Area under the receiver operator characteristic curve.

Limitations
The main limitation of this study is that its experimental
evaluation was based on data collected from a single study site,
and its results may, therefore, not generalize to settings with
significantly different patient populations, admission criteria,
patterns of missingness, and testing guidelines. Operationally,
to ensure robustness, it is important to check for any significant
deviations in terms of patterns observed in the training cohort
when attempting to transfer predictive models trained in one
context to another (ie, when transferring a model to another
hospital). In case any significant deviations are detected,
fine-tuning the predictive model for the new target context is
strongly advised. In addition, we did not have access to mortality
data for the analyzed cohort, and we were, therefore, not able
to correlate our predicted individual risk scores with patient
mortality, which is another related prediction task that may be
of clinical importance. Future studies should include a broader
set of clinical measurements and outcomes, cohorts from
multiple distinct geographical sites, and under varying patterns
of missingness to determine the robustness of the clinical
predictive models to these confounding factors. Finally, we
believe that the inclusion of data from other modalities such as
genomic profiling and medical imaging, and data on
comorbidities, symptoms, and treatment histories could
potentially further improve predictive performance of clinical
predictive models across the presented prediction tasks.

Comparison With Prior Work
A substantial body of work is dedicated to the study, validation,
and implementation of predictive models for clinical tasks.
Clinical predictive models have, for example, been used to
predict risk of septic shock [32,33], risk of heart failure [34],

readmission following heart failure [35-37], false alarms in
critical care [38], risk scores [39], outcomes [40] and mortality
in pneumonia [41,42] , and mortality risk in critical care [43-45].
Predicting clinical outcomes for individual patients is difficult
because many confounding factors may influence patient
outcomes, and collecting and accounting for these factors in an
unbiased way remains an open challenge in clinical practice
[46]. Systematic studies such as this paper enable medical
practitioners to better understand, assess, and potentially
overcome these issues by systematically evaluating
generalization ability, expected predictive performance, and
influential predictors of various clinical predictive models.
Beyond the need for systematic evaluation, missingness [47-50],
noise [51,52], multivariate input data [38,53-55], and the need
for interpretability [18,56-58] have been highlighted as
particularly important considerations in health care settings. In
this study, we build on recent methodological advances to
develop and systematically study clinical predictive models that
may aid in prioritizing health care resources [59] for COVID-19
and, thereby, help prevent a potential overextension of health
care system capacity.

Clinical Predictive Models for COVID-19
Several clinical predictive models have recently been proposed
for COVID-19, for example, for predicting potential COVID-19
diagnoses using data from emergency care admission exams
[60] and chest imaging data [61-66], for predicting
COVID-19–related mortality from clinical risk factors [67,68],
for predicting which patients will develop acute respiratory
distress syndrome from patients’ clinical characteristics [69],
for predicting critical illness in patients with COVID-19 [70,71],
and for predicting progression risk in patients with COVID-19
pneumonia [72]. Siordia [73] presented a review of
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epidemiology and clinical features associated with COVID-19,
and Wynants et al [74] performed a critical review that assessed
limitations and risk of bias in diagnostic and prognostic models
for COVID-19. In addition, Wang et al [23] performed a cohort
study for clinical and laboratory predictors of COVID-19–related
in-hospital mortality that identified baseline neutrophil count,
age, and several other clinical features as top predictors of
mortality. Beyond prediction, Ienca and Vayena [75] have
argued for the responsible use of data in tackling the challenges
posed by SARS-CoV-2.

Owing to the recent emergence of SARS-CoV-2, there currently
exists, to the best of our knowledge, no prior systematic study
on clinical predictive models that predict the likelihood of a
positive SARS-CoV-2 test and hospital and ICU admission
from clinical, demographic, and blood analysis data that
accounts for the missingness that is characteristic for the clinical
setting. We additionally assessed the influence of various
clinical, demographic, and blood analysis measurements on the
predictions of the developed clinical predictive models.

Conclusions
We present a systematic study in which we developed and
evaluated clinical predictive models for COVID-19 that estimate

the likelihood of a positive SARS-CoV-2 test in patients
presenting at hospitals and the likelihood of hospital admission
and ICU admission in patients who are SARS-CoV-2 positive.
We evaluated our developed clinical predictive models in a
retrospective evaluation using a cohort of 5644 hospital patients
seen in São Paulo, Brazil. In addition, we determined the
clinical, demographic, and blood analysis measurements that
were most important for accurately predicting SARS-CoV-2
status, hospital admissions, and ICU admissions. Our
experimental results indicate that clinical predictive models
may in the future potentially be used to inform care and help
prioritize scarce health care resources by assigning personalized
risk scores for individual patients using routinely collected
clinical, demographic, and blood analysis data. Furthermore,
our findings on the importance of routine clinical measurements
toward predicting clinical pathways for patients increases our
understanding of the interrelations of individual risk profiles
and outcomes in SARS-CoV-2. Based on our study’s results,
we conclude that health care systems should explore the use of
predictive models that assess individual COVID-19 risk to
improve health care resource prioritization and inform patient
care.
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