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Abstract

Background: Screening for influenza in primary care is challenging due to the low sensitivity of rapid antigen tests and the
lack of proper screening tests.

Objective: The aim of this study was to develop a machine learning–based screening tool using patient-generated health data
(PGHD) obtained from a mobile health (mHealth) app.

Methods: We trained a deep learning model based on a gated recurrent unit to screen influenza using PGHD, including each
patient’s fever pattern and drug administration records. We used meteorological data and app-based surveillance of the weekly
number of patients with influenza. We defined a single episode as the set of consecutive days, including the day the user was
diagnosed with influenza or another disease. Any record a user entered 24 hours after his or her last record was considered to be
the start of a new episode. Each episode contained data on the user’s age, gender, weight, and at least one body temperature
record. The total number of episodes was 6657. Of these, there were 3326 episodes within which influenza was diagnosed. We
divided these episodes into 80% training sets (2664/3330) and 20% test sets (666/3330). A 5-fold cross-validation was used on
the training set.

Results: We achieved reliable performance with an accuracy of 82%, a sensitivity of 84%, and a specificity of 80% in the test
set. After the effect of each input variable was evaluated, app-based surveillance was observed to be the most influential variable.
The correlation between the duration of input data and performance was not statistically significant (P=.09).

Conclusions: These findings suggest that PGHD from an mHealth app could be a complementary tool for influenza screening.
In addition, PGHD, along with traditional clinical data, could be used to improve health conditions.

(J Med Internet Res 2020;22(10):e21369) doi: 10.2196/21369
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Introduction

With the increasing popularity of mobile health (mHealth), a
considerable amount of health-related data are now generated
and accumulated outside of hospitals [1-3]. These health-related

data cover a wide range of quantitative variables, such as
physical activity, blood glucose levels, blood pressure, heart
rate/rhythm, and oxygen saturation along with a range of
qualitative data, such as mood-related symptoms, food intake,
medication use, and sleep patterns. Even data from social media
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posts or search engine queries may be included [4]. These kinds
of health-related data are categorized as patient-generated health
data (PGHD) and defined by the Office of the National
Coordinator for Health Information Technology as
“health-related data—including health history, symptoms,
biometric data, treatment history, lifestyle choices, and other
information—created, recorded, gathered, or inferred by or from
patients or their designees (i.e., care partners or those who assist
them) to help address a health concern” [5].

Many studies have shown that PGHD have various potential
benefits for health care. For example, PGHD may help patients
with chronic diseases like diabetes or hypertension take better
care of themselves by delivering continuous monitoring and
support with more personalized treatment planning [6-9]. PGHD
are also beneficial for remote monitoring of patients’
postsurgical pain or chronic pain and have been found to more
accurately assess the psychoemotional status of patients [10-12].
Another example of PGHD use is forecasting contagious
diseases. Some research has shown that influenza [13-15] and
Middle East respiratory syndrome (MERS) [16] outbreaks could
be predicted using search engine query data, including Google
Flu Trends and social media posts. In addition to these indirect
methods, a website or smartphone app through which patients
directly report their symptoms can also be used to detect
epidemics [17,18].

Although influenza outbreaks can be predicted using PGHD,
the diagnosis or screening of individual patients has been
conducted using traditional medical devices, such as the rapid
influenza antigen test or reverse transcription–polymerase chain
reaction (RT-PCR). The rapid influenza diagnostic test (RIDT)
has mainly been used as a diagnostic test because of its reduced
processing time and easy accessibility [19]. However, due to
the low sensitivity of the RIDT, it is insufficient to serve as a
screening test for influenza [20-22]. Due to this concern,
influenza treatment with antiviral medication has been
prescribed for suspected influenza cases, based on clinical
judgment, even when the RIDT showed a negative result.
Influenza-like illness (ILI) case definition is one of the
symptom-based screening methods of suspected cases, but it
has been reported to have limited sensitivity despite its loss of
substantial specificity [23].

Fever is regarded as the most distinctive symptom of influenza.
Due to the lack of other distinguishable symptoms, it can be
challenging to differentiate influenza from other diseases
[24,25]. Recently, deep learning approaches have been reported
to exceed classical statistical methods for predicting the
outcomes of an individual patient using time series data, such
as inpatient data [23,26]. In this study, we propose a deep
learning method for influenza screening by combining
epidemiological information and PGHD from an mHealth app.
These results were then compared with the patients’ diagnostic
findings.

Methods

Data Collection
We retrospectively collected log data from the Fever Coach
app, which is available on Android and iOS [27]. Fever Coach
is a fever management app that uses the self-reported data of
its users (Figure 1).

The data were collected from January 2017 to December 2018.
A total of 480,793 users entered 28,010,112 records. During
the same period, the number of users diagnosed with influenza
at a clinic was 16,432. In 2017 and 2018, 3583 and 12,849 users
were diagnosed with influenza, respectively. The log data
included body temperature, volume, type and form of antipyretic
drugs or antibiotic drugs, sex, age, weight, symptoms, and
memos. The users of Fever Coach agreed that their deidentified
data could be used for research purposes, and the institutional
review board of Samsung Medical Center waived informed
consent.

We collected the daily mean temperature, daily maximum
temperature, daily minimum temperature, daily mean dew point,
daily mean relative humidity, and daily mean pressure data
between January 2017 and December 2018 from the Korea
Meteorological Administration information portal. The
observation point was Seoul 108 [28].

Korea Center for Disease Control (KCDC) produces a weekly
influenza-like illness report every Tuesday using data received
from public health centers during the previous week. These data
were collected for the period of January 2017-December 2018
[29].
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Figure 1. Screenshots of the Fever Coach app.

Data Preprocessing
All of the log data, separated by user ID and year, were then
split into episodes. The episodes were defined as the set of
consecutive days containing the day the user was diagnosed
with influenza or another disease. For example, if a user was
diagnosed with influenza on February 23, 2018, and recorded
his or her body temperature between February 21, 2018, and
February 24, 2018, these days were considered to be 1 episode.
If the user logged another record 24 hours after his or her
previous record, it was considered to be a new episode. Table
1 shows examples of episode separation.

Each episode must contain information about the user’s age,
gender, and weight. Users were divided into 4 age groups—0-2
years, 2-5 years, 6-12 years, and ≥13 years—to avoid possible
overfitting according to age, as age is one of the key factors of
influenza propagation. Any episode without age, gender, and
weight was excluded. Moreover, any episode not containing at
least 1 fever data point was excluded.

We then calculated the app-based weekly influenza surveillance
from the influenza-diagnosed episodes each year. The app-based
weekly influenza surveillance was defined by the weekly
number of reported influenza cases divided by the total number
of annually reported influenza cases in the same year. For
example, if there were 3000 reported influenza cases in 2018
and 300 weekly reported influenza cases in week 49 of 2018,
the app-based surveillance for week 49 of 2018 was 0.1. We
calculated this value every week for each year and then added

this value to the corresponding episode. If each episode had
multiple days, we used the first day of each episode as the
representative value, considering that the incubation period of
influenza is 1 to 4 days [30,31]. Our week-numbering was based
on the ISO week-date system [32]. The app-based weekly
influenza surveillance data are in Multimedia Appendix 1.

We also added meteorological data from the Korean
Meteorological Administration. As before, we used values
corresponding to the first day of each episode. We added KCDC
laboratory surveillance as well, but this time we used values
corresponding to 1 week before the first day of each episode.
Due to the reporting delay of the KCDC surveillance, we could
not use values corresponding to the same week.

Finally, as the log data we collected had more noninfluenza
episodes than the influenza episodes, we set the number of the
noninfluenza episodes to be the same as the influenza episodes
each year. Data from 2018 were used for training and
hyperparameter tuning, and those data were randomly split into
the training set (2664/3330, 80%) and the test set (666/3330,
20%). A 5-fold cross-validation was used on the training set.
Considering that the influenza epidemic is slightly different
each year, we prepared an additional validation set. Although
our training/test sets included the data collected in 2018, the
additional validation set included the data collected in 2017 that
had a different distribution of weekly reported influenza cases.
As with the training/test set, the additional validation set was
also adjusted to 50:50 for influenza and noninfluenza episodes.
Figure 2 summarizes the overall pipeline for data preprocessing.
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Table 1. Examples of episode separation.

Time elapsed since the previous logEpisodes and the user-added date and time log

Episode 1

N/Aa2018-09-06 22:25

0 h 12 min2018-09-06 22:37

0 h 16 min2018-09-06 23:53

0 h 8 min2018-09-07 1:01

1 h 48 min2018-09-07 2:49

7 h 11 min2018-09-07 10:00

5 h 56 min2018-09-07 15:56

5 h 19 min2018-09-07 21:15

14 h 5 min2018-09-08 11:20

0 h 50 min2018-09-08 12:10

9 h 0 min2018-09-08 21:10

15 h 4 min2018-09-09 12:14

9 h 24 min2018-09-09 21:38

12 h 2 min2018-09-10 9:40

11 h 50 min2018-09-10 21:30

11 h 44 min2018-09-11 9:14

10 h 0 min2018-09-11 19:14

Episode 2

> 24 h2018-10-03 22:11

0 h 1 min2018-10-03 22:12

0 h 14 min2018-10-03 22:26

1 h 5 min2018-10-03 23:31

1 h 0 min2018-10-04 0:31

2 h 7 min2018-10-04 2:38

Episode 3

> 24 h2018-10-11 8:30

1 h 40 min2018-10-11 10:10

0 h 2 min2018-10-11 10:12

0 h 2 min2018-10-11 10:14

1 h 21 min2018-10-11 11:35

aN/A: not applicable.
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Figure 2. Pipeline for data preprocessing. KCDC: Korea Center for Disease Control.

Deep Learning Model and Training Hyperparameters
We used GRU-D as our baseline model [26]. GRU-D is a
modified design of the gated recurrent unit (GRU) neural
network structure based on a recurrent neural network. Unlike
in the GRU, the mask and timestamp were combined together,
and input was manipulated to 3-channel data. Since Fever Coach
data were characterized by a variety of missing values, we
considered that the mask system of the GRU-D structure would
be effective in our experiment. Backpropagation was not
performed for the masked data; therefore, it did not update
parameters. The input data were manipulated to 3-channel data,
which were concatenated with a timestamp and masked as
previously described. Thus, the shape of the matrix Xinput was
3 × D × T, where D is the number of variables for each
experiment, and T is the maximum number of time series. We
used T=70 in the experiment in that the maximum count of the
input data in 1 episode was 70. The maximum number of
variable dimensions in our experiment was 16 (4 for age, 6 for
meteorological data, and 1 each for sex, weight, influenza
surveillance, app-based surveillance, antibiotic administration,
and antipyretics administration). We performed 3 experiments
using different combinations of variables. First, we used the

entire 16 dimensions (7 variables) for inputting the model, and
2 additional experiments were performed to evaluate the effect
of the input variables on performance. The second experiment
was performed with the same conditions as the first, except a
single variable was removed, which brought the number of
variables to 6. The third experiment was similar to the first as
well, except for the addition of 1 variable out of the 3 (body
temperature, antipyretics administration, and antibiotic
administration). We used binary cross-entropy as a loss function,
and we used accuracy as an evaluation metric to choose the best
model. All hidden states were initialized to 0. We used the
optimizer, rectified adaptive moment estimation, with a learning
rate of 0.0001 [33]. The total number of epochs was 50. The
softmax function was used as an activation function. We used
a dropout of 0.01 to prevent overfitting. All the input variables
were normalized to have a mean of 0 (SD 1). The codes are
publicly available at a GitHub repository [34].

Results

The total number of episodes obtained was 6657. Out of these
6657 episodes, 3326 were diagnosed with influenza. The average
and SD of each episode length were 29.24 (SD 21.79). Table 2
summarizes the general characteristics of the processed data.
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Table 2. General characteristics of the data set.

Year 2018Year 2017Variables

Body temperature

2015.05Average number of inputs

18.2916.32Variance in the number of inputs

Antipyretic administration

6.0404.578Average number of inputs

24.034.685Variance in the number of inputs

Antibiotic administration, n

4705372At least 1 antibiotic administration

19522118No antibiotic administration

Age (years), n

25298860 to 2

356413282 to 5

4792625 to 12

8514Older than 12

Sex, n

33481246Male

33091244Female

Based on the GRU-D, the proposed screening algorithm used
PGHD (body temperature records, antipyretic drug
administration records, and antibiotic drug administration
records), app-based surveillance, and meteorological data as
the input variables. The area under the receiver operating
characteristic (AUROC) curve of the test data set was 0.902,
with an accuracy of 82.43% (95% CI 80.28%-84.44%), a

sensitivity of 84.20% (95% CI 81.07%-87.00%), a specificity
of 80.92% (95% CI 77.85%-83.73%), a positive predictive value
(PPV) of 79.05% (95% CI 76.38%-81.50%), and a negative
predictive value (NPV) of 85.69% (95% CI 83.26%-87.83%).
The confusion matrix and the receiver operating characteristic
(ROC) curve are shown in Figures 3 and 4, respectively.

Figure 3. Confusion matrix for the test set and the additional validation set.
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Figure 4. Receiver operating characteristic (ROC) curve illustrating the screening ability of the model. The red line shows a random guess, the blue
line is the result of the test set collected in 2018, and the orange line is the result of additional validation using data from 2017. AUROC curve: area
under the receiver operating characteristic curve.

Considering that the influenza epidemic is slightly different
each year, we prepared additional validation set as described in
the methods section. For the additional validation set, we
achieved an area under the curve (AUC) of 0.8647, an accuracy
of 77.99% (95% CI 76.31%-79.61%), a sensitivity of 82.35%
(95% CI 79.91%-84.61%), a specificity of 74.79% (95% CI
72.46%-77.02%), a PPV of 70.57% (95% CI 68.59%-72.47%),
and an NPV of 85.24% (95% CI 83.47%-86.84%).

We also attempted to evaluate the effect of the input variables
on performance in 2 ways. First, we removed them one at a time
from all variables. Second, we added them one at a time from
baseline variables. To remove them one by one, we first trained
the model using all 10 input variables and measured the

performance at that time. We then removed 1 input variable and
trained the model on the same data set using a total of 9 input
variables and measured the performance. We obtained a total
of 10 results and summarized them in Table 3. For example,
the second row means all variables except fever were used. As
a result, the app-based surveillance turned out to be the most
influential variable, even though it had little effect on specificity.
The second most influential variable was the meteorological
observation data. Interestingly, KCDC surveillance data did not
seem to have a significant impact. The meteorological factors
and app-based surveillance seemed to compensate for the
exclusion of the KCDC surveillance data from the input
variables.

Table 3. The effects of the removal of each variable from the analysis. “–<Variable>” means that the variable was singularly removed from the list of
variables for the corresponding experiment.

F1NPVbAccuracyAUROCaSpecificitySensitivityVariable

0.83000.81630.82960.89310.84250.8171All

0.83380.83870.82730.89600.80280.8510–Sex

0.81890.81130.81610.88320.81500.8171–Weight

0.83390.83330.83390.89110.83460.8333–Age

0.81910.80650.81830.88820.82870.8083–Fever

0.83500.83920.82880.8744c0.80580.8510–Antipyretics

0.82920.82360.82580.88920.82110.8304–Anti-viral agent

0.8120c0.81030.8063c0.87750.79050.8215–App-based surveillance

0.83130.84460.82210.88920.7813c0.8614–KCDCd surveillance

0.81910.7997c0.82130.89000.84860.7950c–Meteorological

aAUROC: area under the receiver operating characteristic.
bNPV: negative predictive value.
cThe highest decrease in the value for the corresponding column.
dKCDC: Korea Center for Disease Control.
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Another experiment was conducted to observe the performance
changes by defining the base features and adding the variables
one at a time (Table 4). The baseline features used were body
temperature and the antipyretic and antibiotic drug data. We
repeated the analysis by adding each variable to the base features
and observing the performance. In each experiment, a total of
4 input variables was used. Consequently, gender data were
found to slightly decrease the AUC performance (–0.02), but
there was no significant difference between the baseline
performance and the performance modified by the addition of

gender. Weight and age also displayed no significant differences.
For the variables of meteorological data, app surveillance, and
KCDC laboratory surveillance, each significantly improved the
performance (P<.001). There was no significant difference
between the performance of "baseline features + app
surveillance" and that of "baseline features + meteorological
data" (P=.48). Similarly, there was no significant difference
between the performance of "baseline features + app
surveillance" and that of "baseline features + KCDC laboratory
survellance" (P=.46)

Table 4. Effect of each variable on the analysis. The baseline included body temperature, antipyretic drug, and antibiotic drug data. “+<variable>”
means that the variable was added to the baseline for the analysis and then removed for the next analysis (noncumulative addition).

F1NPVbAccuracyAUROCaSpecificitySensitivityVariable

0.64250.63510.65920.72210.71870.6018Baseline

0.62450.62290.65240.70870.74010.5678+sex

0.63150.63320.66190.72320.75230.5734+weight

0.62370.62290.65390.72010.74770.5634+age

0.8264c0.8467c0.8146c0.8808c0.75990.8673c+app surveillance

0.78020.76660.78000.86070.7936c0.7670+KCDCd surveillance

0.78880.79610.78020.87120.74700.8127+meteorological

aAUROC: area under the receiver operating characteristic.
bNPV: negative predictive value.
cThe highest increase in the value for the corresponding column.
dKCDC: Korea Center for Disease Control.

Finally, we looked at the correlation between the duration of
the input data and the screening performance. Figure 5 describes
the association between the duration of body temperature records
and the screening performance. We initially assumed that the
prediction would be more accurate if the user entered more data.

However, in reality, no correlation was found between the
duration of the input data and the screening performance.
Spearman rank correlation coefficient was 0.0916. Thus, the
association was not considered to be statistically significant.

Figure 5. Screening performance versus the number of body temperature records. The y-axis shows the percentage of accuracy, and the x-axis refers
to the number of body temperatures entered by the user.
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Discussion

With this study, we investigated the possibility of screening for
influenza using PGHD, such as body temperature and
medication records collected from an mHealth app.

At the beginning of this study, we did not know whether body
temperature would change when antipyretics were administered,
or if body temperature alone was more important. Although
fever is a major symptom of influenza, it is impossible to
diagnose influenza using only body temperature changes [24,25].
Therefore, we hypothesized that patients with influenza would
respond more slowly to antipyretics. To test this hypothesis, we
specifically looked at the difference between the performance
of the model with and without antipyretic administration. There
was a greater change in performance when the antipyretic dose
records were removed from the input variable than when only
the body temperature was removed. Based on these results, we
conclude that the model works as expected. Antibiotic
administration records are another variable that we considered
important. We expected that the antibiotic administration records
and antipyretic administration records would have similar
effects, but antibiotic administration records appeared to limit
the performance. This might have been due to the ineffectiveness
of antibiotics or unnecessary prescription of antibiotics. In our
data, 1952 of all 6657 users were prescribed antibiotics, and
674 of those who were prescribed drugs were diagnosed with
diseases other than influenza.

Body temperature is known to be one of the most important
symptoms of influenza. However, its effect on the model was
not as strong as we expected. A temperature higher than 38.3
ºC was recorded at least once during 97.42% (6485/6657)
episodes in our data. This shows that the majority of users used
the app when their children had a fever, which was the original
purpose of the app. Among the episodes, 50.82% (3296/6485)
were those of influenza, and 49.18% (3189/6485) were due to
other conditions. The mean and variance of body temperature
in the patient group diagnosed with influenza were 38.1519 ºC
and 0.8611 ºC, respectively; and the mean and variance of body
temperature with other conditions were 38.0449º C and 0.8367
ºC. There was a significant difference between the 2 groups
(P<.001). We speculate that because the app focused on fever,
the predictive power of body temperature for influenza was
diminished.

One interesting finding was the effect that sex had on specificity.
Although some studies have shown that there is a difference in

influenza prevalence by gender, our data found that the sex ratio
was almost equal, with 1677 males and 1660 females diagnosed
with influenza. Moreover, when we excluded sex from the input
variables, the accuracy and F1 measure did not significantly
change. We obtained similar results by repeating the ablation
study. Therefore, further research may be needed to clarify this
point.

In summary, age, weight, and gender had little effect on the
screening performance. App-based surveillance has greatly
improved the screening performance and is nearly identical to
using KCDC laboratory surveillance or meteorological data,
which are frequently used as indicators of influenza outbreaks.

This study has several limitations. First, the training and
validation data used were self-reported by the patients. Most
users reported their diagnosis using their smartphones; thus,
these data were not reported by clinicians. Therefore, we cannot
ascertain that the same results would be recorded if
hospital-generated data were used. Also, primary care doctors
usually use the RIDT instead of RT-PCR to diagnose influenza.
As the RIDT has low reliability, our ground truth label may be
noisy. For the deep learning model, if the character of the data
on deployment is slightly different from that of the training data,
it is difficult to achieve the expected performance on validation
due to the difficulties in analyzing the effect of the data
distribution and input variables on the model [35]. Since the
data did not include laboratory results, they are difficult to use
in a clinical setting or for general epidemiological analysis; and
we expect that the application of limited screening tests through
the Fever Coach app will be possible with further research. We
are planning to conduct a prospective observational study to
address these limitations. Second, various methods were used
to measure body temperature. Some of the app users used
axillary instead of tympanic temperatures. As there are no
primary blood vessels in the axilla, the axillary temperatures
are less accurate. This may have influenced the performance of
the model.

Screening for influenza can be challenging due to the low
sensitivity of rapid antigen tests and the lack of proper screening
tests. In this study, we developed a deep learning–based
screening tool using PGHD obtained from an mHealth app. The
experimental results confirm that PGHD from an mHealth app
can be a complementary tool for screening for influenza in
individual patients. Since our digital approach can screen
patients without physical contact, this approach could be quite
beneficial in screening new contagious diseases.
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